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ABSTRACT

The integration of electronics with sensors is resulting in a revolution in sensors.  A new non-

contact optical torque sensor which utilizes neural network signal processing is described as an

example. This sensor serves as a model for advanced sensors arrays which combine integrated

sensors and signal processing for fault tolerance, high noise immunity, and non-linear signal

processing. Micromechanical sensors are one example of sensors which can be produced on silicon

with the associated signal processing electronics.  Already this approach has produced

accelerometers, position sensors, pressure gages, and magnetic sensors which may be useful for

advanced diagnostic applications.

1. INTRODUCTION

Advances in electronics and data processing have made possible the integration of sensors and

pattern recognition systems on a single integrated circuit. One can measure a single quantity, such

as temperature, using a single sensor; however, complex measurements such as machine diagnostics

may require many sensors measuring a variety of different modalities to correctly predict machine

performance, or a multiplicity of sensors measuring the same quantity to provide improved

accuracy, linearity, or fault tolerance. In these situations, the output patterns from the sensor arrays

must be utilized to estimate the physical quantity of interest. Since the outputs from a sensor array

can be viewed as multi-dimensional patterns, this becomes similar to many pattern recognition

problems.

Generalized integrated circuit sensing structures have made rapid advancements in recent years due

to advancements in integrated circuit technology, i.e., surface and bulk micromachining, and high

aspect ratio lithography.  In particular, these techniques can be used to selectively etch silicon

producing mechanical structures such as beams and diaphragms which can be used as the basis for
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a wide range of sensors such as pressure, acceleration, and temperature [Wise,1985].  The

mechanical structures which form the basis of these sensors are called micro-electromechanical

systems (MEMS) and is the basis of considerable development in the sensor community [Bryzek,

1996].  Other techniques have been used to integrate optical, chemical, and biological sensors on

silicon substrates which can detect smells or gas composition.

However, such sensors and arrays of sensors are of limited utility without adequate signal

processing.  Typically, we tend to think of sensor electronics as linearizing or calibrating a sensor.

However, we are often interested in fault tolerance as well as combining outputs from a variety of

sensors for purposes such as fault tolerance and pattern recognition for such applications as

machine diagnostics.  In particular, artificial neural networks (ANNs) can be used to handle

inaccurate or statistical sensor output patterns and can learn the characteristics of

unknown/unmodeled systems. Only training samples (i.e., inputs and the corresponding outputs)

are needed to characterize a given system. One does not have to have an analytical system model. In

conventional approaches dealing with statistical sensor output patterns, there must be an appropriate

mathematical model of the system. Many times, it is not possible to develop an accurate model for

the system, or, it is not possible to mathematically solve the model. In this case, conventional

systems will either perform very poorly or simply be impossible to implement. It is not difficult to

see that ANNs outperform the classical approach using Kalman filters [Park, 1991; Pao, 1991; Lo,

1994].

2. SENSORS

In this section we describe a variety of silicon and optical sensors which may be suitable for

machine diagnostics.  Their signal processing will be described in the next section.

a. Optical Torque Sensor

Various non-crystalline transparent materials such as certain polymeric plastics are optically

isotropic under normal conditions but become birefringent when stress is applied. When polarized

light is passed through a stressed (under load) birefringent material an optical phase shift which is

proportional to the local strain is produced in the light. The resulting changes in the polarized light

reflected from the sensor may be analyzed by a polarization filter, which converts the two-

dimensional optical phase function to a two-dimensional intensity function (fringe pattern) such as

shown in Figure 1. These optical fringe patterns are a function of the stress on the plastic and are

suitable for stress analysis but need human interpretation for proper analysis.  However, a neural
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network may be used to analyze these patterns to produce a shaft torque sensor as will be described

below.

Figure 1. Typical Intensity Pattern produced by Optical Torque Sensor

An experimental optical torque sensor is shown in Figure 2.  A cylinder of polycarbonate plastic

(birefringent) was epoxied to aluminum mounts which were then attached to a motor shaft (see

Figure 2) using collets. The plastic cylinder was illuminated by polarized light which passes

through the plastic, was reflected from a coating of reflective epoxy on the inner surface of the
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Figure 2. Experimental Torque Sensor

plastic cylinder, and then passed through the plastic a second time.  The light traveling through the

plastic cylinder incurs an optical phase shift which is dependent upon the photo-induced strain (a

function of the shaft torque) at that point as it travels through the sensor’s plastic cylinder.  This



4

optical phase shift is a two-dimensional function of position on the sensor surface and loading

(torque) on the motor shaft.

As shown in Figure 2 a neural net was used to process the sensor data.  The motivation for this was

that neural nets are excellent functional estimators and should be able to learn the functional

mapping from intensity patterns to shaft torque.  Shaft intensity patterns such as shown in Figure 1

can be recorded using a conventional CCD camera. However, a conventional camera image has far

too many pixels to directly input pixel information into a neural net and would be far too expensive

for a low-cost torque sensor. In this experimental sensor, image preprocessing was used to reduce

the number of inputs to the neural net and simulate a photodiode array as might be found in a

commercial version of this torque sensor. Figure 3 shows this horizontal strip of 32 virtual sensor

cells.

Virtual
Sensor Cell

(32x32 p ixels)

Figure 3. Pre-processing of 256x256x8 image

b. MEMS SENSORS

Silicon is an excellent mechanical material which can also support integrated electronic fabrication.

The important mechanical property of silicon for most sensor applications is its flexibility - it is

very elastic below the breaking point.  Aside from its mechanical advantages silicon based sensors

also benefit from batch fabrication techniques and generous support from the integrated circuit

industry.  These latter advantages result in a well established industry which can produce low-cost

sensors.

i. silicon micromachined accelerometers

Silicon based accelerometers have been produced by bulk micromachining of silicon to produce a

large proof mass supported by a thin flexure area (a cantilever arm) as shown in Figure 4.  A

complete survey of the field may be found in Yun [Yun, 1991].  Sensors of the type shown in

Figure 4 are produced by bulk micromachining which etches along crystal planes in the silicon to

delineate the features.  Other, typically much smaller sensors, are produced by surface
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micromachining in which sacrificial oxide layers are deposited on top of a silicon crystal, followed

by additional layer(s) of polysilicon.  The oxide is then selectively etched away to produce thin,

free-standing silicon sensing elements.  Such devices are typically limited to several microns

thickness and cannot produce large masses (such as shown in Figure 4) which are needed for low-g

sensing applications.  The accelerometer in Figure 4 works by measuring the flex of the seismic

mass through the cantilever arm.  Figure 4 shows a piezoresistive sensor placed at the cantilever arm

to measure the acceleration although many other techniques such as hall effect, capacitive and

resonant beam techniques may be used for electronic readout  [Bicking,1993].  The nominal range

of commercial silicon accelerometers is ±2g to ±100 g although higher and lower sensitivities can

be achieved [Kubler, 1995].

Seismic 
Mass ie

iezoresistive sensors

Figure 4.  Cross-section of silicon piezoresistive sensor

ii. silicon micromachined pressure sensors

The same micromachining techniques that can be used to produce accelerometers can also be used

to produce silicon pressure transducers.  Figure 5 shows a silicon pressure sensor where a thin

diaphragm has been etched into a silicon substrate.  The etched silicon chip is then bonded (sealed)

to a second wafer which then forms a sealed compartment containing a standard reference pressure.

The readout mechanism is capacitive sensing of the displacement of the diaphragm as a function of

external pressure variations.  Because of the capacitive sensing mechanism these sensors typically

need relatively sophisticated on-chip electronics to detect the small signals.
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Figure 5. Silicon capacitive pressure sensor

iii. magnetic sensors

Magnetic sensors are particularly important for motor diagnostics.  The Hall effect is the most

commonly utilized transduction scheme for magnetic field sensing.  Such devices detect the Hall

potential resulting from the Lorentz force acting on moving carriers and are sensitive to the

magnetic field in a particular direction.  Micromachining can be used to produce two-dimensional

structures which can be used for 2-D sensing of in-plane magnetic fields [Paranjape, 1994;

Paranjape, 1995].  However, Hall effect sensors are suitable for high magnetic field strength

applications (i.e., 1 mT).  Fluxgate sensors based upon the non-linear B-H curve of ferromagnetic

materials (i.e., nickel-iron) are also compatible with silicon processing and can provide two orders

of magnitude better resolution.  Fluxgate sensors use ferromagnetic cores surrounded by several

coils.  An excitation coil(s) drives the sensor core into saturation periodically.  Pick-up coils then

measure the resulting changes in magnetic flux via the induced voltage.  Gottfried-Gottfried

describes a microfabricated fluxgate sensor in which the coils are fabricated by interconnecting two

metal layers and the sensor is provided by a 0.46 µm thick nickel-iron layer [Gottfried-Gottfried,

1995].   The signal processing for this sensor is quite complex requiring detection of signals at

even harmonics of the signal yet was able to be put onto a single CMOS ASIC [Gottfried-Gottfried,

1995]

iv. “smart” sensors

The future of smart sensors is to incorporate micromechanical sensing elements on the same

substrate as the signal conditioning and processing electronics.  This electronics will facilitate

communications between sensors in arrays or complex machinery, will provide analog or digital

signals as needed, and will use signal processing to correct for non-ideal sensor characteristics such
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as temperature drift and non-linearities.  Such smart electronics will provide on-chip calibration,

eliminating the need for laser trimming and similar expensive calibration techniques.

3. Sensor Signal Processing

On-chip signal processing is essential for many applications providing stability, accuracy and

ruggedness.  Commercial accelerometers for automotive air-bag deployment are among the best

examples of sensor/electronic integration.  Similar requirements are also found in industrial

pressure sensors [Moore, 1995; Matthews, 1996].

a. Neural networks

Neural nets can compute any computable function [Funahashi, 1989; Hornik, 1989]. Anything that

can be represented as a mapping between vector spaces can be approximated to arbitrary precision.

In practice, neural nets are useful for mapping problems which are tolerant of errors, have example

data available, but to which hard and fast rules can not easily be applied. They are particularly useful

for the non-linear mappings such are found in sensor calibration and compensation.

Such a neural network was used to interpret the intensity patterns produced by the optical torque

sensor described in Section  2a.  For the optical torque sensor the neural net was used to learn the

mapping between the optical fringe pattern as seen by the virtual sensor array and the shaft torque,

as measured by a conventional strain gauge torque sensor. There was no known analytical

relationship between the given input (optical intensity pattern) and the measured output (shaft

torque) for the sensor making this sensor array ideal for neural net signal processing.

Before training a neural network, the connection strengths (weights) between nodes are assigned to

small random numbers.  Training using the standard backpropagation technique then proceeds by

presenting the training pairs to the network and adjusting the weights until a satisfactory level of

performance is reached [Rumelhart, 1986].

As an example of typical neural network processing a backpropagation network with 32 nodes in

the input layer, 12 nodes in a single hidden layer, and 1 output node was used for torque estimation

for the sensor described in section 2a.  Backpropagation computes the partial  derivatives of error

with respect to the neural weights. With these partial derivatives, it is possible to do gradient descent

in weight space. If small steps are taken in the direction of the gradient, the error is guaranteed to
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reach a local minimum. This local minimum has been empirically accepted as a good enough

solution for most purposes, although it is a very slow, time consuming process.

Although neural networks are useful in prototype experiments they have some important drawbacks

for mass-produced sensors: (1) the time required to train the neural network, and (2)

accommodation of manufacturing variations in the sensors,  The first drawback is significant for all

neural network applications.  As an example, the neural networks used for the optical torque sensor

typically took several hours to train on a UNIX workstation.  Such times are not acceptable for

mass production of sensors, even if the device has the on-board electronics to perform such

calibration.  The second drawback is each and every manufactured sensor must be trained and, even

if the electronics is on the chip, will dramatically slow the manufacturing process.

There are solutions which can be used to address each of these points. For a practical sensor it is

desirable to train the neural net in the shortest possible time. This requires taking the largest

possible steps in the direction of the gradient without overshooting the minimum error solution. A

set of partial derivatives collected at a single point does not have enough information for deciding

step size. If the higher-order derivatives (the curvature of the error function) are available, it is

possible to choose better, or larger, step sizes which will result in faster learning.  One such

algorithm called the quickprop algorithm [Fahlman, 1988] assumes each weight in the neural net

has a quadratic error curve. Each weight in the network is assumed to affect the error independently

of the others. The quadratic calculation is then approximated using a difference of gradients

between the current and the previous epoch. Special provisions must be made for starting the

algorithm, what to do when last weight changes are zero, and what to do when the current derivative

is greater than the previous derivative. The quickprop technique works well in practice, and

considerably shortens the training time compared to plain backpropagation techniques.

Other techniques such as random vector enhancement have dramatically reduced the training time

for these networks and have increased the generalization (interpolation) ability of neural networks

by changing the neural network architecture.  These techniques eliminate the hidden layer by

random vector enhancement of the input, i.e. computing additional functions of the inputs [Chung,

1995; Pao, 1994] .

For the optical torque sensor described in 2a, a random vector enhanced phasor neural network

[Chung, 1995] was trained to estimate the applied torque from the supplied fringe pattern. The

training pairs thus consisted of 32 element sensor array intensity vectors corresponding to an

experimentally obtained fringe pattern from the birefringent sensor, and a corresponding torque
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value as measured by the strain gauge shaft torque sensor.  Typical performance of this neural

network processing is shown in Figures 6 and 7 for a statically loaded shaft. Figure 6 shows the

training of the neural network for forty-one torque values (70 to 150 pound-inches in 2 pound-inch

increments).  The neural net output (represented by x's in Figure 6) is superimposed on the linear

training curve (represented by a solid line which can barely be seen) and the difference (error)

shown by the thick solid line as a percentage of the actual torque. The average training error was

0.16%.
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Figure 6. Performance of Neural Net Torque Estimator (Training)

The performance of a single hidden layer neural network torque estimator is shown in Figure 7.

The average sensor error was less than 0.4% for stationary shafts, and increased as the shaft

rotational speed increased, up to 4% for shaft speeds less than 20 rpm.
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Figure 7. Performance of Neural Net Torque Estimator (Test)

An autoassociative memory using neural networks can be used for sensor failure detection

and correction and can also correct for sensor variations eliminating many calibration requirements.

Conventional systems for failure analysis and detection rely upon complex models of physical

systems and have traditionally been utilized in high-cost applications such as jet aircraft and

spacecraft [Chow,1984].  However, as neural networks can be used to represent systems through

training for which mathematical models can not be formulated they can be applied to sensor

systems and can be used to predict sensor outputs. The autoassociative memory learns a 1:1

mapping for a noise-free set of sensor outputs.  Once this mapping is learned, differences between

measured sensor outputs and sensor outputs estimated by the autoassociative memory can be used

to identify faulty sensors. Furthermore, the autoassociative memory can also be used to substitute

correct sensor output values for faulty values. In practice, this autoassociative memory is placed

between the sensor outputs and before any additional sensor signal processing to function as a

noise-eliminating, fault correcting filter [Chung,1995].

4. Discussion and Conclusion

The integration of electronics and sensors is well underway.  However, the advent of MEMS and

neural network signal processing is leading to new classes of “smarter” sensors which can correct

for sensor noise, drift, failure and manufacturing tolerances. A neural network autoassociative

memory uses redundant information from a sensor array to provided corrected sensor outputs. A



11

second neural network combines the sensor information to estimate the required system parameters.

This neural network approach avoids the use of complex analytical models and exploits the

information redundancy of a sensor array.

In order to detect sensor failures, outputs from the sensors are initially processed by the

autoassociative memory and sensor residuals are calculated. Conventional residual generation is

typically based on analytical knowledge of the system. However, an autoassociative memory can

represent the system through learning and can be used to describe non-linear systems. The

residuals can be processed using methods like thresholding or statistical decision theory to identify

a particular sensor failure.

We have tested this approach on a one dimensional (i.e., linear) optical sensor array. An

autoassociative memory was implemented for a 32 element optical sensor array using real data for

functional estimation. With no sensor noise the system was able to estimate torque (the sensed

parameter) to an accuracy of about 1%. Computer simulations were done adding independent

Gaussian noise to the sensor outputs. Without using autoassociative memory signal processing, the

estimation error dropped to 17% for a sensor S/N of 0.75dB. With the autoassociative memory the

estimation error was only about 4% under the same conditions. The neural net based birefringent

torque sensor has shown its ability to accurately measure shaft torque values over limited torque

ranges. The neural net torque estimator has exhibited less than 0.4% average estimation error over a

70 - 150 lb-inch static torque range. The excellent torque measurement accuracy achieved in these

experiments shows the potential of accurately measuring torques by means of non-contacting

optical sensor arrays. The images used in these experiments are identical to those from a linear

array of optical sensors which would detect an  average optical intensity corresponding to a limited

spatial region. This could be equivalently performed by an array of photodetectors with a

considerable reduction in system complexity.

This neural network approach has several advantages which are important to sensor arrays such as

might be implemented using MEMS technology: (1) it dramatically reduces the effects of individual

sensor noise; (2) it accommodates sensor-to-sensor variation in arrays by treating the variation as

noise; (3) it should be capable of multi-sensor fusion.

We have simulated a MEMS array of thermal sensors and are in the process of collecting data from

an actual array of MEMS sensors for comparative evaluation. We are also fabricating a specialized

silicon chip which will incorporate thermal heaters and sensors.  Our simulations  show that neural
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network signal processing can be used to isolate faulty sensors. Simulations and experiments in

noise, sensor failure and sensor tolerance for MEMS sensor arrays are in progress.

The actual development of such MEMS based systems is underway in many laboratories; however,

the sensor signal processing and especially the reliability and accuracy of the sensor array is very

important to critical applications such as diagnostic monitoring and machine maintenance.  Such

applications seem to be especially well suited to neural network signal processing of the type

described. The principle difference is that envisioned MEMS systems are often two-dimensional.

To test the applicability of neural network sensor processing and control in MEMS systems we are

developing a test chip which will consist of a two dimensional array of semiconductor heaters and

thermal sensors on a silicon wafer. The thermal sensors will be interleaved between the resistive

heaters as shown in Figure 6. The long-term goal of this work is to use the heater/sensor array with

a 2-D feedback control algorithm to precisely generate two-dimensional thermal profiles. While this

chip is being designed and fabricated we have developed simple computer models to test our signal

processing and control algorithms.
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