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t a (corresponding to points aligned with but beyond the rails) it can
be shown that 84,/3x — 0, and H, is finite.

The expressions derived here can be used to compute the
electromagnetic pulse produced at a point in space by an electric gun
of given characteristics. It is necessary, of course, to make
preliminary calculations of armature velocity and geometric parame-
ters as functions of time. An example calculation has been made of
the electric field pulse produced by a gun with characteristics similar
to those of EMACK, namely, rail length: 5 m, muzzle velocity: 4.2
km/s, rail spacing: 7 cm, and current: 2.1 X 10 A. A space point in
the plane of the rails has been selected, 5 m distant from, and abreast
of, the muzzle. Equations (14) and (15) have been used.

The magnitude of the E-vector is plotted versus time in Fig. 4. The
direction of the vector changes with time, from an orientation at 45°
to the rails at the start, to a position parallel to the rails at maximum
field. The abrupt termination of the pulse, which gives the pulse
broad-band capability for interference, is caused in this simple model
by the instantaneous switch-off of current when the armature leaves
the rails. This condition may be modified in real life by factors such
as arcing at the muzzle.
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Abstract—An algorithm for computing the atmospheric mutual co-
herence function from flux measurements taken at the.focal plane of a
reflector antenna is presented. The procedure consists of first computing
the inverse Abel transform of the flux, taking the Fourier transform of the
result, and then dividing by the aperture pupil function. It is shown that
when flux measurements contain additive noise, the Abel inversion is an
ill-posed problem. Therefore, calculation of the inverse Abel transform
is accomplished via a Kalman filtering algorithm. Results of the mutual
coherence function estimator are given for simulated flux measurements.
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1. INTRODUCTION

The mutual coherence function (MCF) of a propagating electro-
magnetic wave is a measure of the long-term spatial coherence of the
complex fields in a plane transverse to the direction of propagation.
It is an extremely useful quantity that arises in propagation studies [1]
(e.g., it provides the degree of coherence of the field at two points,
the angular distribution of the field, and the field’s mean energy) and
it determines the signal-to-noise ratio (SNR) in an optical heterodyne
receiver [2], [3]. )

The experimental determination of the MCF can be accomplished
through two methods; the statistical Fourier-optical method (SFOM)
[4] and the long baseline interometric method (LBIM) [5]. The LBIM
has been used extensively at microwave and millimeter wave frequen-
cies and consists of a multiple-phased receiving array. By employing
a variable phase shifter in each antenna output and mixing various
combinations of antenna outputs together, measurements of both the
amplitude and phase fluctuation, along with the amplitude correla-
tion of the wave front, are made. However, because the antennas are
at fixed positions during the measurements, the MCF. can only be
determined for those spatial separations.

The SFOM, first introduced by Land [4] for visible wavelengths,
is the two-dimensional continuous analogue of the LBIM with each
point of a large spherical reflector acting as a separate point an-
tenna. Using the basic principles of optics for reflector antennas, we
know that the instantaneous intensity distribution appearing at the
focal plane of the reflector is equal to the magnitude-squared spa-
tial Fourier transform of the electromagnetic field at the antenna’s
aperture plane. Therefore, the position and shape of the focal plane
distribution is' directly related to the angle-of-arrival and intensity
fluctuations, and the MCF is computed directly from the temporal
average of these fluctuations [6]. Here, the MCF is given over a con-
tinuous interval which is limited by the aperture size of the reflector.

In this communication we present a method for computing the
MCEF at optical and millimeter wavelengths from a receiver based on
the SFOM. The receiver consists of a parabolic reflector (or lens)
with a spatial sampling device located at the focal plane. The spatial
sampling device scans the focal plane diffraction pattern and allows
measurement of the spatial and temporal fluctuations of the pattern.

II. THE STATISTICAL FOURIER-OPTICAL METHOD

For the case of a parabolic reflector antenna (or lens) of radius R
and focal length f, the average intensity (I(q)) at a point q in the
focal plane is given by [6]

2
(I@) = (%) § T(0)M(p) exp[~i §q : p] &
)

where the MCF, I'(r{,r,) = (E(r{)E*(rp)), is taken to be homo-

geneous (i.e., the MCF depends only on the difference coordinate .

p = 1| —I,),r; and r, are coordinates in the aperture plane, E(r)
is the stochastic aperture plane field, (- ) denotes an ensemble aver-
age, kK = 2w/\ where A is the wavelength, and M| (p), defined as
the convolution of the receiver aperture function, W(r), with itself,
is given by

Mp(p) = Sm

—®

W@EHW,r — p)d*r. @)

Since it is assumed that the ergodic theorem holds, the ensemble
average in (1) is replaced by an average over time where the statistic

0018-926X/89/0100-0131$01.00 © 1989 IEEE



132

is taken over a period much larger than the characteristic time of the
atmosphere: //V | where [ is the smaller of the initial transmitted
beam diameter or the transverse coherence length! of the wave and
V| is the wind velocity transverse to the direction of wave propa-
gation [2].

Assuming that the atmospheric fluctuations are not only homoge-
neous, but also isotropic (this assumption is questionable for propa-
gation near the ground), we can convert (1) into plane polar coordi-
nates. Performing the angular integration yields

2 ho
(r@) = ﬁ(;) ) r(p)MLmJo(%q—@)pdp ®

which is the fundamental equation of the SFOM relating the mea-
sured average intensity to the MCF for the case of homogeneous
and isotropic fluctuations of the electric field in the aperture plane.
Changing variables, one can see that (3) is simply the Hankel trans-
form of the function T'(fp/k)M (fp/k). Solving for the MCF in
terms of the measured average intensity gives

2

1“(’%”)1;@

S (I(@)Jo(gr) adq @
0

where

2 i el
M, (o) = 2R [cos <ﬁ> <

0,

III. CALCULATION OF THE MUTUAL
COHERENCE FUNCTION

It is well known [7] that the Hankel transform of a function can
be computed as the one-dimensional Fourier transform of the Abel
transform of the function (the projection-slice theorem). The Abel
transform Ar(P) of the two-dimensional, circularly symmetric in-
tensity distribution is

Ar(P) = 2 S (@) qdq

P ./qZ_P2

where Ar(P) is an even function. The MCF is then computed as

r<£k€> N S Ap(P) exp{—i2xpP}dP. (T)
w ()
L\ %

Calculation of (6) can be performed by any one of the many Abel
transform algorithms given in the literature [7]-[9] and (7) is com-
puted with a fast Fourier transform (FFT) algorithm.

For the case of the focal plane spatial sampling device being a
radially scanning iris, the quantity that is measured is not the average
intensity, but the average flux passing through an iris of radius q.
Expressing the intensity in terms of the flux, we get

d
——(@(@)
1 [d dq
@) = 5.4 <dq <I>(q)> : ®

©®

2nq

1 The authors are using the spherical wave coherence length given by Fante

2] as a5

1
oo = [1.46ka S dgd - 5)5/3C3(8x)]
0
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It is possible to interchange the averaging operator and the differen-
tial operator in (8) since the average is over time and the derivative
is over space. Substituting (8) into (6) results in

d

o —(@(q)
=L 2
,

which is the negative of the inverse Abel transform. Therefore, com-
putation of the MCF from the flux consists of calculating the inverse
Abel transform of the flux, negating, taking the Fourier transform,
and dividing by the aperture pupil function. One difficulty in ap-
plying this solution to experimental measurements is that, for noisy
data, the Abel inversion is ill-posed; i.e., taking the derivative of
the noise in the flux results in a new additive white noise sequence
whose variance is inversely proportional to the iris radial step size.
Hence, to avoid the calculation of the derivative in (9), a slightly
modified version of the Kalman filter described by Hansen and Law
[8] is used to compute the Abel inversion.

For the Abel inversion of (9), the Kalman filter consists of as-
suming a form for the projection Ar(P), computing the forward
Abel transform of Ar(P) to obtain an estimate of the flux, comput-
ing the error between the estimated and measured average flux, and

dq )

2R

2-8))] e

|| > 2R. &)

correcting the initial estimate of the projection. The forward Abel
transform [9] is written in terms of a linear shift-variant system and
then approximated by a state variable model. The advantage of this
algorithm is not only very fast computational speeds, but also the
fact that the recursive state equations can be easily converted into
the Kalman filter.

The basis of the Kalman filter that we use here is the inwardly
recursive augmented state variable model given by

fn — 1) = Fm)n) + Gw(n) (10a)

(®(m) = Hi@) + v(n) (10b)

where v(n) is the zero-mean white Gaussian measurement noise,
w(n) is a similar process noise (independent of v(n)) and

Ar(n) 1 1 0 --- 0
tmy =| At =1 | Fmy=| O 0 0 ... 0
_x-(n)—— By(n) Bi(n) Z(n)
0 0
1 0
_ - r_| -
G=1o0 H =] (1
0 i

Here, x(n) is the state vector and By(n), Bi(n), and E(n) are Abel
transform dependent matrices given in [9].

Suppose now that a minimum variance, unbiased linear estimate
of ¢(n) has been obtained using measurements (®(/V')) down to and
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including (®(n)) (measurements are made recursively inward from
the iris open position n = N down to the closed position n = 1).
The estimate and its estimation error covariance matrix are repre-
sented by {(n|n) and A(n|n), respectively. A prediction of the next
state vector {(n — 1), without using further measurements, can be
obtained from

§n = 1|n) = F(n)§(nln) (12)
where {(n—1 |r) means that {(n— 1) has been estimated with measure-
ments down to only n. The error covariance matrix for the estimate
is

A — 1|n) = Fo)A@mF’ (1) + Go2G 13)

where 03, is the variance of w(r). The filter’s estimate of the next
data point (®(n — 1)) is then

(@(n - 1|m) = H{n — 1|n). (14

The second step of the filtering process is to compare the predicted
output (®(n — 1|n)) to the actual measured flux (®(m — 1)) and
compute the error. This error is then combined with the estimated
state vector to produce a new filtered flux estimate (®(n — 1jn — 1)).

The error between the predicted flux value and the actual measured
flux is

&n — 1n) = (®(n — 1)) — Hfa(n — 1}n). (15)
Multiplying the estimation error by the Kalman gain vector K(n)

and adding the result to the predicted flux, the new filtered estimate
becomes '

§n—1n —1) = fn - 1|n) + K(n)é(n — 1|n) (16)
and
An—1n—-1 = An — 1|n) - KmHAR - 1jn) (17)
where the Kalman gain matrix is
K(m) = A — mHTHAR - 1A + )71 (18)

The quantity in parenthesis in (18) is a scalar quantity, therefore
the matrix inversion reduces to a division. The projection estimate,
Ar(n — 1) can now be calculated by

Ar(n —1) = G{(n — 1|n — 1). (19)

Initial conditions for the Kalman filter are f‘(N|N ) = 0 and
AN|N) = Ga,,ZGT. The variance o,,z is computed from the mea-

surement noise of the receiver, while the quantity o,zv is computed as
in [8].

IV. NUMERICAL RESULTS

Results of the Kalman filter MCF estimator on simulated aver-
age flux signals are given in Figs. 1 and 2. The simulation model,
based on a submillimeter wave experiment [10], assumes a collimated
beamwave (initial beam diameter is 0.6 m) with a 0.89 mm wave-
length propagating through an atmosphere characterized by weak
turbulence. The receiver, located 1.6 km away from the transmitter,
has a radius of 0.79 m and a focal length of 0.66 m. Average focal
plane flux estimates are computed from 1000 samples taken at 512
iris radii with an iris step size of 0.01 mm. A complete scan takes
approximately 20 min.

One advantage of the Kalman filter form of the MCF estimator is
that calculations can be performed in real time. At each iris radius
the average flux is computed from the 1000 data samples received
at that radius and the projection Ar(n) is determined before starting
the next iris radius. Therefore, at the end of each scan, the MCF
is simply computed by performing an FFT on the values of Ar and
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dividing by the aperture function. Some points that are exploited in
implementing the estimator are 1) the matrix F(n) is quite sparse and
its values are precomputed and stored in memory (8], 2) the variances
o and a?VW are fairly constant over the course of an experiment,
therefore, the covariance matrices, and hence, the Kalman gain ma-
trix are precomputed and stored in memory, and 3) the aperture
function, given in (5), is also precomputed and stored in memory.
Fig. 1 gives the results for the flux plus a O dB SNR additive
instrumentation noise and Fig. 2 gives the results for 25 dB additive
noise (SNR is defined as peak signal to average noise). In both fig-
ures, the turbulence level is C,%R =2x10" " M3, C,%, =107V
m~ 23, Cun; = 0,npg = 1.0,n0; = 1075, and for completeness
the transverse wind velocity ¥ ., across the propagation path is 2
m/s. The error is computed as the mean-squared difference between
the estimated MCF and the true MCF which is calculated from the
theoretical equations given in [11]. In both cases, agreement between
the estimated and true values is excellent. Although this example as-
sumes clear-air turbulence, it should be noted that this method is valid
for computing the MCF caused by other atmospheric phenomena.

V. CONCLUSION

A procedure for calculating the atmospheric mutual coherence
function of a propagating beamwave from measurements of the noisy
flux at the focal plane of a reflective antenna has been derived.
The algorithm consists of first computing the inverse Abel transform
of the average flux, negating the result, taking the one-dimensional
Fourier transform, and dividing by the aperture pupil function. Since
the average measured flux is a noisy process, the Abel inversion is
an ill-posed problem. Therefore, to compute the Abel inversion, a
modified version of the Kalman filter given by Hansen was derived.
Results of the MCF estimator on simulated signals was shown to
give a mean-square error on the order of 1073 for signal-to-noise
ratios above 0 dB. The advantages of the Kalman filtering algo-
rithm over other methods for computing (4) are: 1) the algorithm
is very robust in the presence of noise (numerically integrating the
flux plus noise using the same conditions as in Figs. 1 and 2 gives
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a MSE of 2.72 x 10™3W for 25 dB SNR and 6.42 x 1072 for 0 dB
SNR) and 2) it is computationally efficient (the algorithm requires
only O[8IN + N log, N] multiplies compared to O[N 2] required
for direct numerical integration).
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