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Abstract

An autoassociative memory using neural networks
is proposed for sensor failure detection and correction. A
classical approach to sensor failure detection and
correction relies upon complex models of physical systems,
however, a neural network approach can be used to
represent systems through training for which mathematical
models can not be formulated. In such cases, a neural
network autoassociative memory can be used to predict
sensor outputs. Differences between measured sensor
outputs and sensor outputs estimated by the autoassociative
memory can be used to identify faulty sensors. Median
filtering or other signal processing schemes may then be
used to correct faulty sensor outputs. This technique can be
used to process data from MEMS (Micro Electromechanical
systems) or other sensor arrays.

1 Introduction

Sensor failure detection and correction is a very
important subject for a variety of applications. If one or
more sensors in a system fail or are failing, they should be
identified and isolated. Whenever a sensor(s) is not
functioning correctly, there should be a way to deal with and
potentially correct for this inaccurate sensor data. In
conventional approaches dealing with inaccurate sensor
outputs, there must be an appropriate mathematical model of
the system. However, it may not be possible to develop an
accurate model for the system, or, it may not be possible to
mathematically solve the model. In either case, conventional
systems will either perform very poorly or simply be
impossible to implement. The rapid development of solid
state sensors, and especially MEMS based sensors, allows
the development of new signal processing paradigms.

We propose an autoassociative memory using
neural networks for sensor failure detection and correction.
An artificial neural network can learn the characteristics of a
non-linear, unknown/unmodeled system through training
samples. Comparison of the autoassociative memory filtered
sensor signals with the raw sensor outputs can be used to
determine which sensor(s) is(are) faulty. Median filtering or
other signal processing schemes may then be used to correct
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the faulty sensor outputs. Such an autoassociative memory
can also be used as a filter to minimize the effects of noise
and other external disturbances. This neural network
autoassociative memory technique can be successfully used
to process data from MEMS or other solid-state sensor
arrays.

2 Conventional Approach

Since sensors are typically the least reliable
components in a control system and are subjected to harsh
conditions, some form of redundancy is necessary to
achieve adequate reliability in many control situations.

Hardware redundancy uses multiple sensors to
measure system variables. Voting schemes compare
multiple output values from the sensors and can be used to
detect and isolate faulty sensors. Since multiple sensors are
deployed, there can be a substantial increase in weight, cost,
and space in a physically redundant system.

Analytical redundancy (AR) uses a reference
model for the system and redundant information from
dissimilar sensors to provide an estimate of measured
variables. Analytic formulas must be developed which
describe the system. Differences between measured sensor
outputs and estimated sensor outputs, called residuals, are
used to identify faulty sensors. This residual generation is
typically based on knowledge of the system [1, 2, 3, 4]. If
such knowledge is not available, analytical redundancy can
not be used or will perform very poorly.

3 Autoassociative Memory Using Neural Networks

Neural networks are commonly used for
classification and functional approximation. A neural
network with one hidden layer with sufficient nodes can be
thought of as a universal function approximator [5, 6]. The
network learns a mapping from the given inputs to the
desired outputs through training samples. The neural
network can learn autoassociation from training samples.
The mapping is apparent, i.c. the network output should be
equal to the network input at all times. The autoassociative



memory is useful because it can correct noise, distortion
and/or partial input values.

Several researches have used a three layer network
(one hidden layer) to implement an autoassociative memory.
Baldi and Hornik [7] showed that a three layer network is
equivalent to PCA (Principal Component Analysis)
projection. Later, Bourlard [8] showed that the three layer
network is not superior to PCA. Recently, several
researchers have shown that a five layer (three hidden
layers) network can improve on PCA, as a non-linear
Principal Component Analysis [9, 10, 11, 12].

Output Layer

Demapping Layer

Bottleneck Layer

Mapping Layer

Input Layer
Figure 1. Three hidden layer autoassociative neural network

A three hidden layer autoassociative memory can
be viewed as a serial combination of two single hidden layer
networks. The input, mapping, and bottleneck layers
represent a nonlinear function or mapping, which projects
the input data into a lower dimension feature space. The
bottleneck layer, demapping layer. and the output layer
represent a second network that remaps an approximation of
the input from the feature space of the bottleneck layer
output.

Since the bottleneck layer has fewer nodes than the
input and output layers, the network is constrained to
develop a lower dimensional representation in the
bottleneck layer. This three hidden layer autoassociative
neural network works as a nonlinear compressor-
decompressor pair {12, 13]. This type of autoassociative
memory is quite difficult to train, since many nonlinear
nodes are involved in the training, and it often fails to
converge to an acceptable training error. If a large number
of inputs are involved in the problem, a three hidden layer
autoassociative memory may not be a practical solution.
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4 Autoassociative Memory Using Random
Vector Enhanced Phasor Neural Networks

For implementing an autoassociative memory, a
random vector enhanced phasor neural network (RV-PNN)
was used [14]. In an RV-PNN autoassociative memory input
patterns are enhanced by the multiplication of the input
patterns and randomly chosen vectors. These random vector
enhancements are further discussed in [15, 16].

Suppose that there are » original attributes
(features, or elements) and j augmented attributes in the real
domain pattern x. For the augmented attribute x;, the
attribute is defined as

X; = €; f0r1=n+1, vee s n+J (1)
where e =ax; +.. tax = a’x
a= [ 4Gy 4 Qin
— T
X = [X] xz xn]

and g, is the random vector. The elements of the vector a;
are randomly generated on the real interval {-Q, Q].

These augmented patterns are then transformed
into complex vectors. One way to convert the pattern
attributes (real numbers) to complex numbers is to assign a
phase angle to each attribute and give it a unit magnitude.
The resulting attributes are on the unit circle in the complex
plane (phasors). A phase angle can be assigned by using the
Z-score as '

2n
e
I+e ©
where 1 and o are, respectively, the mean and standard
deviation of the input key vectors. Equation (2) converts
unbounded real values into phase angles from 0 to 2n. For
the complex number input patterns, complex number
random vectors are generated over a magnitude range which
avoids saturation of the transfer function. After the
enhancement by equation (1), these patterns are fed into a
sigmoidal transfer function such as ranh(realx)) + i
tanh(imag(x)).

These transformed patterns then form the linear
associative memory via the Moore-Penrose pseudoinverse.
In the linear associative memory model, patterns are linearly
transforimed by a relation of the form

y;, = Mx, fori=1,..,p (3)
where M is the memory matrix, (x;, y;) is the i-th associated
pair of patterns, and p is the total number of associated
patterns. In terms of the key vector matrix X and the
recollection vector matrix Y, the associative memory must
satisfy Y = MX. Generally X is not square, and, thus, the
Moore-Penrose pseudoinverse is used for the memory
matrix M [17]

M=YX" 4)

If such a pseudoinverse approach is not possible,
gradient-descent learning can be used instead [14], as

2



M= MY+ (Y - MYX)X 5)
where = denotes the conjugate transpose, and o is the
learning rate (a small positive number). By equation (5), it is
possible to construct the pseudoinverse based M matrix
iteratively. Since the learning is linear, this approach is
guaranteed to find the global minimum.

When dealing with large amounts of input data, the
training time can be a critical issue for neural networks.
Since training a three hidden layer network, or a single
hidden layer network, for large number of input nodes is not
trivial, RV-PNNs can be wused instead of standard
backpropagation neural networks to dramatically decrease
the necessary training time.

5 Experimental Results

5.1 Overview of Experiments

Photoelasticity can be used to accurately measure
surface strains or stresses in a part or structure. A strain
sensitive (photoelastic) plastic cylinder is attached to the
shaft and illuminated by polarized light [18]. As the shaft
torque varies the photoelastic plastic displays the
corresponding shaft strain as a 2-D fringe pattern when
viewed through an optical polarizer. The strain that causes
this observed optical pattern is some complex function of
the torque applied to the shaft.

A single hidden layer neural network was trained
and tested as a torque estimator using data from a linear
optical sensor array which consisted of 32 sensors. There
was no known analytical relationship between a given input
(optical pattern) and an estimated torque for this sensor
array making this sensor array ideal for neural network
signal processing. The performance of a single hidden layer
neural network torque estimator was quite satisfactory (less
than 0.4% average estimation error) [18]. This result is
shown in Figure 2.

A stuck-at sensor failure is defined to be a sensor
failure where the sensor is stuck at one extreme of its signal
range. In practice, this is likely to be an open (stuck-at 0)
sensor or a short circuited (stuck-at 1) sensor. Such stuck-at
sensor failures can be detected and corrected by using an
autoassociative memory. It is a two step process. First,
residuals are generated by taking the differences between
the output of the sensors and the output of the
autoassociative memory. If the residuals of particular
sensors are greater than a certain threshold limit, the
corresponding sensors are regarded as failed. This can also
be verified by comparing the sensor outputs with the
operational range of the sensor output. These residuals can
be further processed using statistical decision theory, e.g.,
the sequential probability ratio test [19]. Since failed sensors
do not produce any useful data, this can be regarded as a

7

9

missing data problem where identified stuck-at sensor
outputs can be replaced by the mean values for the failed
sensors [20, 21, 22]. If the mean values are not known, the
medians of the sensor output range can be used instead.
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Figure 2.%Result of the Neural Network Torque Estimator

5.2 Sensor Failure Detection and Correction

After any substitutions for failed sensors, the
sensor data is fed into the autoassociative memory and
estimated sensor outputs are reproduced. These reproduced
sensor outputs can be used for later processing (e.g.,
estimation of torque) with more accuracy.

Figure 3 shows sensor failure detection and
correction by the autoassociative memory of the individual
sensor when 12 out of 32 sensors are stuck-at 1. Two
different autoassociative memory architectures (a three
hidden layer neural network and an RV-PNN) were
implemented for the same data. Without autoassociative
memory preprocessing, the neural network torque estimator
has an error of 42.9% for this particular input. With the RV-
PNN autoassociative memory, the test error decreases to
0.4%.

Figure 4 shows the effect of the autoassociative
memory when 16 out of 32 sensors are stuck-at 1. Without
the autoassociative memory, the neural network torque
estimator shows an average estimation error of 24.3% over
the given torque range. With the autoassociative memory
used as a filter between the sensor outputs and the neural
network torque estimator inputs, the average torque
estimation error decreases 1o 5.2%.
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Figure 3. Sensor Failure Detection/Correction for Stuck-at 1
Sensor Faults
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Figure 4. Test Result of Stuck-at | Sensor Failure

Table 1 shows the performance of wvarious
autoassociative memory architectures for stuck-at 0 failures
as a function of the number of stuck-at sensor failures.

Table 2 shows the performances of wvarious
autoassociative memory architectures for stuck-at 1 failures
as a function of the number of stuck-at sensor failures.

5.3. Sensor Processing in Noisy Environment

Figure 5 shows the method used to test the
performance of the various autoassociative memory
architectures. Gaussian random noise was added to the
relatively noise-free data from the optical sensor array. This
noisy data was then filtered by two types of autoassociative
memory. The neural network torque estimator was tested for
filtered and unfiltered data.
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Table 3 shows the noise filtering performance of
the RV-PNN autoassociative memory, the three hidden layer
neural autoassociative memory, and the neural network
torque estimator performance without the associative
memory while decreasing the S/N ratio.

Table 1. Stuck-at 0 Performances of Various
Autoassociative Memory Architectures

AM Number of Stuck-at 0 Sensor Faili
Architecture 4 8 4
Torque Estimation
with RV-PNN AM 1.4% 2.9% 4.5% 5.7%
Torque Estimation o o o 0
with 3 Hidden Layer 1.3% 2.8% 4.3% 5.5%
AM
Torque Estimation . o o o
with No AM filtering 9.9% 13.2% 15.6% 15.8%

Table 2. Stuck-at 1 Performances of Various
Autoassociative Memories

AM Number of Stuck-at I Sensor Failures
Architecture 4 8 ‘ 12 16
Torque Estimation 0 o . )
with RV-PNN AM 1.4% 2.4% 3.0% 3.7%
Torque Estimation o o o .
with 3 Hidden Layer | 1% | 22% 3% | 50%
AM
Torque Estimation o o o o
with No AM filiering | 144% | 186% | 202% | 22.5%
Noise- Auto Neural
ffce Noisy Associative Network
Original Data [ Memory Torque
Data ; Estimator
Gaussian - Neural :
Random Noise ; Network .
v Torque ;
! Estimator

Figure 5. Test Methods

Even at a S/N of -2.2dB, the average estimation
error of the neural network torque estimator was 7.1% with
the RV-PNN autoassociative memory and 7.5% with the
three hidden layer autoassociative memory filters.



Table 3. Noise Filtering of Autoassociative Memory

—

AM o o SN
Architecture 35dB [ 0754B | -10dB
Torque Estimation
with RV-PNN AM 22% 4.2% 5.7% 7.1%
filtering
Torque Estimation
with Three Hidden 2.5% 3.9% 5.3% 7.5%
Layer AM filtering
Torque Estimation
with No AM filtering 12.2% 17% 17.4% 21.5%

5.4 MEMS Sensor Processing Simulation

Micro Electromechanical Systems (MEMS) are
being actively pursued for the realization of high-density
array architectures of microfabricated sensors and actuators
for distributed monitoring and control of thermal, structural,
and aerodynamic parameters within a system. The
requirements for such sensor arrays are that they be low-
cost, reliable, high density integrated sensor/actuator arrays
capable of real-time signal processing and control. We
envision an integration of materials and distributed MEMS
to locally manipulate the environment for real-time control
of thermal, structural, and/or aerodynamic behavior of a
system. For example, using a network of microfabricated
pressure sensors, local flow instabilities can be detected in
real time and suppressed by appropriately opening or
closing localized microvalves. In terms of a particular
application, we envision an ice detection and removal
system for gas turbine engines which utilizes a network of
resonant diaphragm microsensors to detect ice formation.
This information could then be used to open microvalves
which locally route warm compressor bleed air to melt the
ice. This ice detection system could also be used for
monitoring ice formation on helicopter rotor blades. Sensor
array information could also be used to control local shape
memory alloy microactuators that flex to break the ice.

The actual development of such MEMS based
systems is underway in many laboratories; however, the
sensor signal processing and especially the reliability and
accuracy of the sensor array is very important to the aircraft
applications described.  Such applications seem to be
especially well suited to neural network signal processing of
the type described in the previous section. The principle
difference is that envisioned MEMS systems are often two-
dimensional. To test the applicability of neural network
sensor processing and control in MEMS systems we are
developing a test chip which will consist of a two
dimensional array of semiconductor heaters and thermal
sensors on a silicon wafer. The thermal sensors will be
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interleaved between the resistive heaters as shown in Figure
6. The long-term goal of this work is to use the
heater/sensor array with a 2-D feedback control algorithm to
precisely generate two-dimensional thermal profiles even if
one or more heater elements have failed. While this chip is
being designed and fabricated we have developed simple
computer models to test our signal processing and control
algorithms.

Only the sensor signal processing aspects of this
work will be described in this paper. In our MEMS sensor
simulation, we deploy a 4x4 array of thermal sensors
between a 3x3 array of resistive heaters as shown in Figure
6. Our goal is to detect and/or correct sensor and heater
failures in the simulated chip using autoassociative neural
network signal processing. For purposes of simulation we
have treated the heaters as impulse type thermal sources and
solved the heat equation (6) for the silicon wafer subject to
boundary conditions (7), i.e., the boundary temperature is
equal to that of environment, and is fixed [23]. A finite
element method is used to solve (6).

orT 82T_Q ¢
ox* " oyt ot ©)
1, =T, = constant (7

This simulation generates a steady state temperature profile
of the silicon wafer which is then sampled by the thermal
Sensors.
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Figure 6. Heater(H) / Sensor(S) configuration

Figure 7 shows a typical temperature profile
generated by the simulation. The profile is shown a long
time after the heat sources have been turned off and the
wafer is in thermal steady state. The issue is whether the



two-dimensional sensor array can be used to detect heater
failures.
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5 5
Figure 7. Normal Temperature Profile

Figure 8 shows temperature profiles as measured
by the sensor array for various combinations of individual
heater failure. Here a heater failure is defined as an open,
i.e., no heating. This is similar to the stuck-at-0 sensor
faults described previously.

The steady-state temperature profiles
corresponding to all possible heater failures were generated.
The sensor signals from these temperature profiles were
then used to train a neural network with the goal of
detecting heater failure states. A random vector enhanced
functional-link net was used in this experiment for faster
training [15, 16]. Gaussian random noise was added to the
temperature profiles during testing to simulate sensor noise.
Table 4 shows the performance of a neural network heater
failure detection system as a function of sensor S/N ratio.
Note that this particular simulation is only examining heater
failures, not sensor failures. ]

These results are excellent and show that neural
network signal processing is promising for MEMS
sensor/actuator applications such as in aerospace and smart
materials.

5 Discussion

We have developed a neural-network based sensor
processing system which can correct for sensor noise, drift
and failure. An autoassociative memory uses redundant
information from a sensor array to provided corrected
sensor outputs. A second neural network combines the
sensor information to estimate the required system
parameters. This neural network approach avoids the use of
complex analytical models and exploits the information
redundancy of a sensor array.
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(a) Heater 3, 5 failed

(¢) Heater 2, 3, 5, 6 failed

(d) Heater 1, 3, 7, 8, 9 failed

Figure 8. Sensor Array Temperature Profiles for Various
Heater Failures



Table 4. Heater Failure Detection Result

1 No

Sensprony 1 43dB | 178 T-S.SdB | 4708
: noise : ;

Percentage

Correct 100% | 99.9% | 914% | 83.6% | 80.2%

Detection of

Failed Heaters

In order to detect sensor failures, outputs from the
sensors are initially processed by the autoassociative
memory and sensor residuals are calculated. Conventional
residual generation is typically based on analytical
knowledge of the system. However, an autoassociative
memory can represent the system through learning and can
be used to describe non-linear systems. The residuals can be
processed using methods like thresholding or statistical
decision theory to identify a particular sensor failure.

We have tested this approach on a one dimensional
(ie., linear) optical sensor array. An autoassociative
memory was implemented for a 32 element optical sensor
array using real data for functional estimation. With no
sensor noise the system was able to estimate torque (the
sensed parameter) to an accuracy of about 1%. Computer
simulations were done adding independent Gaussian noise
to the sensor outputs. Without using autoassociative
memory signal processing, the estimation error dropped to
17% for a sensor S/N of 0.75dB. With the autoassociative
memory the estimation error was only about 4% under the
same conditions.

This neural network approach has several
advantages which are important to sensor arrays such as
might be implemented using MEMS technology: (1) it
dramatically reduces the effects of individual sensor noise;
(2) it accommodates sensor-to-sensor variation in arrays by
treating the variation as noise; (3) it should be capable of
multi-sensor fusion.

We have simulated a MEMS array of thermal
sensors and are in the process of collecting data from an
actual array of MEMS sensors for comparative proposals.
We are also fabricating a specialized silicon chip which will
incorporate thermal heaters and sensors.

Our simulations show that neural network signal
processing can be used to isolate faulty sensors. Simulations
and experiments in noise, sensor failure and sensor
tolerance for MEMS sensor arrays are in progress.

If the performance of the necural network sensor
array processing can be derived analytically, the proposed
method can also be applied to very hard problems, e.g. jet
engine or space craft control, which require performance
bounds upon the effects of sensor failures.
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