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Learning Capability Assessment and Feature Space
Optimization for Higher-Order Neural Networks
Leda Villalobos and Francis L. Merat

Abstract— A technique for evaluating the learning capability
and optimizing the feature space of a class of higher-order
neural networks is presented. It is shown that supervised learning
can be posed as an optimization problem in which inequality
constraints are used to code the information contained in the
training patterns and to specify the degree of accuracy expected
from the neura] network. The approach establishes: (a) whether
the structure of the network can effectively learn the training
patterns and, if it can, a connectivity which corresponds to
satisfactorily learning; (b) those features which can be suppressed
from the definition of the feature space without deteriorating
performance; and (c) if the structure is not appropriate for
learning the training patterns, the minimum set of patterns which
cannot be learned. The technique is tested with two examples and
results are discussed.

[. INTRODUCTION

HEN an artificial neural net (ANN) is trained with

information whose complexity exceeds its learning
capabilities, the training session finishes in failure. The reason
for this is that no ANN can learn what it is not capable of
doing in principle. What an ANN can learn depends upon its
structure and the properties of its component elements [17].
Since the process of training is usually very time consuming, it
is highly desirable to have a method which establishes whether
the ANN is capable of learning the information contained in
the training patterns. If learning is infeasible, it is also desirable
to have guidance on how to modify either the ANN’s structure
or the feature space in which the problem is being defined.
The use of a procedure with these capabilities would save
the time spent in unsuccessful training sessions and expedite
the implementation of computationally efficient systems for
practical applications.

The usefulness of mechanisms suitable for efficient network
complexity reduction and evaluation of learning capacity has
been recognized since the early days of the Perceptron [1].
The initial work was primarily concerned with evaluating the
linear separability of the training patterns [10] and with finding
a connectivity that would produce the correct classification of
as many patterns as possible [5], [20]. More recently, Sietsma
and Dow [19] have proposed a pruning technique based on the
suppression of connectivity which remains unchanged with
every epoch. This is done by analyzing every neuron under
the presentation of all the training patterns. Karnin [7] has
introduced an algorithm which examines the sensitivity of the
error function to the inclusion/exclusion of every connection
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in the ANN. The suppression of the synapses with the lowest
sensitivities diminishes the performance of the trained ANN
the least. Other approaches for pruning single-layer ANN’s
recourse to the application of pseudoinverses [21].

This paper introduces another approach to address the
problem of efficient ANN structure design and feature space
reduction. The approach establishes whether the structure
of the ANN can effectively learn the training patterns and,
if it can, a connectivity which corresponds to satisfactorily
learning. Furthermore, it identifies those features which can
be suppressed from the feature space without deteriorating
performance. If the structure of the ANN is not appropriate
for learning the training patterns, the approach indicates the
minimum set of training patterns which cannot be learned.

In Section II, supervised learning is posed as an optimiza-
tion problem in which inequality constraints capture both
the information contained in the training patterns and the
degree of accuracy expected from the ANN. In Section III, a
linear programming formulation for solving the optimization
problem is introduced in the context of higher-order ANN’s.
Tests and results are presented in Section IV, with conclusions
in Section V.

II. SUCCESSFUL LEARNING AS SATISFACTION OF CONSTRAINTS

The goal of supervised training is to synthesize a connectiv-
ity which enables the ANN to perform satisfactorily when it is
consulted with new patterns. This concept discovery process
requires sufficient information to be included in the training
patterns and that the learning error be small. Ideally, perfect
learning would reduce the training error to zero. In practice,
training is considered to be successful when the error has been
reduced below a small, nonzero value because some degree of
discrepancy between the desired and actual outputs is tolerated.
This characteristic is exploited in this paper to show that
supervised learning can be posed as an optimization problem
in which constraints encode both the information contained
in the training patterns and the degree of accuracy expected
from the ANN.

A. Error Tolerance and Successful Learning

Consider first how learning is assessed in the Delta Rule
or the Generalized Delta Rule paradigms. When an ANN
is trained, its performance is usually assessed through the
computation of an error function given by

1 P M )

p=1m=1

(1)

1045-9227/95%$04.00 © 1995 IEEE



268

Higher-order Feature
Expansions

Fig. 1. Higher-order ANN architecture. The most important characteristic
of a higher-order ANN is the nonlinear expansion introduced in the feature
space. In the figure, the original feature vector has N components; through
appropriate nonlinear transformations of these components, higher-order terms
are generated and added to the original feature vector effectively expanding it.

where P is the number of training patterns, M is the number of
outputs, Ty, is the desired mth output associated with the pth
training pattern, and Op,, is the actual mth output obtained
for the pth training pattern.

Training is considered successful when E has been re-
duced below a small, nonzero value. This implicit discrepancy
tolerance acts as an inequality constraint for the ANN. To
show the effect it has on the training process, consider the
case of a particular training pattern with K features (Fi;¢ =
1,2,---, K), and one desired output (7). This pattern can be
represented by the vector

[F1 Fy Fx Ti). )

If the discrepancy tolerance for this pattern is given by an

upper bound §; and a lower bound §_, the ANN will be

considered to have learned that pattern if the constraints

Output > (T} — 6-)
Output < (T + 64)

3
1))

are satisfied. Since it is possible to specify tolerable levels of
discrepancy for every pattern, this procedure can be extended
to include all the patterns used to train the ANN. Therefore,
learning can be posed as an inequality constraints satisfaction
problem.

B. Constraints for Higher-Order ANN’s

The work presented in this paper concentrates on higher-
order ANN’s of the type shown in Fig. 1. Multiple versions of
these ANN’s have been introduced in the literature for solving
pattern recognition problems [12], including power system
security assessment [14], [21]; adaptive control and plant
identification [22]; rotation and translation invariant character
recognition [15]; and problems of academic interest [3], [4],
[9]. Work showing that these ANN’s can be considered a
class of universal approximators [6] has also been reported
[13]. Although centered on higher-order ANN’s, the analysis
is extendible to other architectures.

In the most general sense, the mapping from feature space
to output space synthesized by an ANN like the one shown in
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Fig. 1, can be expressed as

Om = g(nety,) (59)
K-N

E Wifnhi(.E') + Om

i=1

N
net, = ZVijF; +

=1

(5b)

where O,, is the mth output, g(-) is the output neuron’s
activation function, 8,, is the output neuron’s threshold, Wi,
is the connection weight from the ¢th feature to the mth output
neuron, F} is the jth element of the original N-D feature
vector F', and hi(-) represents the ith higher-order feature
expansion function. The nonlinear functions h*(-) could also
be replaced, for example, by the output of additional neurons
of an extra intermediate layer, the connections from the input
layer to this layer being fixed.

To simplify the analysis, the original feature vector F'-
can be concatenated with the nonlinear, higher-order feature
expansions, to form the K—D vector F. Hence, the mth output
function is given by

K
Om=g|Y WimF;+6m

=1

(50)

Note that this mapping function resembles one learned by
a single-layer ANN with a K—D feature vector [23].

Consider the particular case of a higher-order ANN trained
with P pattemns of K features (including the higher-order
feature expansions), and one output. Extension to include any
number of outputs is immediate. The information contained
in the patterns can be captured in a P x K matrix (F) with
the P expanded feature vectors, and a P—D vector (') with
the corresponding P desired outputs. The ANN is capable
of learning this information with the desired accuracy if and
only if there exists at least one K-D vector W, and a scalar

e

where §, and §_ are the upper and lower bound tolerance
P-D vectors respectively, g~1(-) is the output neuron’s acti-
vation function inverse, 8 is the output neuron’s threshold, W
is the K-D weights vector, and 1 is a P-D vector with all
its entries equal to 1.

According to (6), the learning process should lead to the
satisfaction of a set of linear inequality constraints. Should
the set of solutions be non-empty, there will be at least one
connectivity for the ANN which solves the learning task with
the desired performance accuracy.

1
1

= (6

|:S 9-1(I+ §.+)
>gHT+8.)

III. LINEAR PROGRAMMING FORMULATION

A system of linear inequality constraints can be solved
through the application of linear programming (LP) techniques
[2], [11]. Algorithms which solve LP problems operate in
two steps. In the first step, it is determined whether the
constraints have a non-empty set of feasible solutions; if so, an
iterative search for an optimum solution in the set of feasible
solutions is carried out in the second step. The search is
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guided by an objective function which consists of minimizing
or maximizing a linear function of the variables included in
the constraints.

A. Establishing Task Learnability

Algorithms for solving LP problems require that all vari-
ables be restricted to take only nonnegative values. A variable
which has no sign restrictions must be expressed as the
difference of two nonnegative variables [11]. Taking this into
account, the constraints of (6) can be captured in the following
LP formulation

T +84) }

Pl e ] -

where W ,, W 5 are K-D vectors of nonnegative variables
such that W, — Wy = W, and 84,0p are nonnegative
variables such that 4 — g = 6.

The formulation of (7) is appropriate to find out whether
the training patterns can be learned with the desired level of
accuracy. If they can, the solution will be a connectivity which
satisfies all the constraints; otherwise, it will be concluded that
no feasible solution exists.

)]

B. Identifying Non-Learnable Patterns

The optimization criterion can be used to identify those
patterns the ANN is capable of learning. With the formulation
of (7), the existence of any non-learnable pattern will cause the
algorithm used to solve the problem to stop before a search for
the optimal solution is initiated. Hence, this formulation must
be modified to obtain the identity of the non-learnable patterns.
The modification should be such that the constraints are always
found to have a non-empty set of solutions. This can be done
by providing the constraints with a default feasible solution by
introducing a pad variable for each training pattern, as shown
in (8)

F 11 _vg'_A : gV—B _ (< (T +4y) @)
F 1 I|{* Pl T 2T -5
S, - Sp

where I is the P x P
nonnegative variables such that S; = S4;
ith pad variable.

The default solution is obtained by making W and 6 equal
to zero, and assigning each pad variable a value which falls
in the range corresponding to the satisfactory learning of its
associated training pattern. The patterns whose associated pad
variables are different from zero in the optimum solution form
the smallest set of patterns that preclude learning. Therefore,
the objective function should minimize the number of nonzero
pad variables. This can be stated as

identity matrix, and Sg4;, Sp; are
— Spi, with S; the

P
Objective Function = min » _ h(S;) )
i=1
with
_J0; if|z|=0
h(z) = {c; otherwise (10)

where ¢ is any positive real number.
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The function h(x) is nonlinear but can be implemented by
introducing integer 0/1 variables (variables allowed to take
only the values 0 and 1) and including an extra constraint for
each pad variable S;, as indicated in (11)

|Si] — LiH; <0 an
where L; is a sufficiently large upper bound for |S;|, and H;
is the integer 0/1 variable used to test whether S; is different
from zero.

To satisfy (11), H; is forced to take the value 1 whenever
|S;:| # 0. If |S;| = 0, H; can be either 0 or 1. This ambiguity
disappears once the optimization criterion is written in terms
of the integer variables

P
Objective Function = Min Z H;.
i=1

12)

Since the optimization criterion consists of minimizing the
sum of the integer variables, H; will always take the value 0
whenever |S;| = 0. Thus, no ambiguity exists and H; behaves

according to
0;
m= {0

In the solution of an LP problem, whenever a variable
without sign restrictions is expressed as the difference of two
nonnegative variables, at least one of the nonnegative variables
is always zero [11]. Thus, the absolute value of S; can be
expressed as |S;} = S4; + Sp,. Taking this into account (13)

becomes
0;
Hi - {1;

Hence, an LP formulation whose solution indicates which
patterns cannot be learned is given by

if |8i] = 0

otherwise a3

if S43+Sp; =0

otherwise 14)

P
Objective Function = Min Z H;
=1

subject to

F 1 10 0

F 1 I 0 0

0 00 I -L
W, - Wg
64 — 0B <g' (T+4y)

x |84 - Sp|= >y‘1 (I—é_) (15)
S4 + Sp <0
H

The solution of this LP formulation provides with the

following information:

» It indicates whether the ANN is capable of learning the
training pattems with the desired level of accuracy. If
all the integer variables in the LP solution are equal to
zero then from (13) all the pad variables S; will also be
zero. Consequently, (7) will be satisfied and, for every
pattern, the actual output will fall in the tolerance range
associated with the pattern.
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o If the structure is appropriate for learning the training
patterns, the solution of the constraint satisfaction prob-
lem validates a given connectivity which corresponds to
satisfactory learning. Since (7) is satisfied, it is guaranteed
the connectivity defined by W and @ is such that the
output for every training pattern falls within the range of
tolerance.

If the ANN is not capable of learning all the pat-
terns, one or more of the integer variables will remain
nonzero. From (13), the pad variables corresponding to
the nonzero integer variables will be also different from
zero. Therefore, from (8), the patterns associated with the
nonzero pad variables will be incompatible with the ANN
structure. They form the smallest set of patterns which
cannot be learned with the desired level of accuracy.

C. Optimizing Feature Space

Once it has been established that a particular ANN structure
is appropriate for learning the information contained in the
training patterns, the next step is to identify those features, if
any, which can be eliminated from the feature space without
diminishing the ANN’s performance.

Suppose the jth feature can be eliminated; then, the jth
connection weight W can be made equal to zero, which means
that

|WJ| = WA]' + WBj =0. (16)

Integer variables J; can be introduced to test whether W;
can be made equal to zero with a procedure similar to the
one used to test pad-variables. The objective function in this
case is the minimization of the number of connection weights
remaining different from zero in the optimum solution. This
leads to the formulation

K
Objective Function = Min z Q;
Jj=1
subject to:
F 10 o0 —VGKA B %B
F 10 o0 A - B
0 Q 1 -L EA + EB
Q
5971 (I+Q+)
=|>¢7" (T-8)| an
<0

where @ and L are K-D vectors of integer variables and
constant values, respectively.

D. Remark

Note that this technique does not work for perceptrons with
binary outputs, since there g~1(-) would not be defined. For
optimal learning in such systems, methods from ‘quadratic
programming have already been reported in the literature [16].
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TABLE I
PATTERNS FOR THE PARITY-3 PROBLEM

Pattern Features Desired
Number X1 X2 X3 Output

1 0 0 0 0.1

2 0 0 1 0.9

3 0 1 0 09

4 0 1 1 0.1

5 1 0 0 0.9

6 1 0 1 0.1

7 1 1 ] 0.1

8 1 1 1 09

TABLE II

SUMMARY LP SOLUTION FOR PARITY-3 PROBLEM WITHOUTFEATURE EXPANSION

Variable | Value Jj Variable | Value § Variable | Value || Variable [ Value
H, 0 Hg 0 S; 0.0 Sg 0.0
H, 0 Hy 0 Sy | 2192 W, | 43044
H3 0 HS 0 S5 -2.1972 W2 4.3944
Hy 1 3, 0.0 S 0.0 Wy 4.3944
HS 1 52 0.0 S, 0.0 ] -2.1974

IV. EXAMPLES

The, approach has been tested with the LINDO (Linear In-
teractive aNd Discrete Optimizer) programming package [18].
This program uses the Simplex Method Algorithm and allows
the simultaneous introduction of both real and integer variables
into the LP formulation. Two representative examples are
presented in this section.

Example 1: This example corresponds to the well-known
Parity-3 Problem. Its purpose is twofold: on the one hand, the
simplicity of the task facilitates presenting the optimization al-
gorithm in operation; on the other hand, a closed-form solution
for the Parity-3 problem with a higher-order ANN has been
reported in the literature, which makes comparisons between
the algorithm and the results reported by other researchers
readily possible.

The three input features are denoted as X1, X2, and X3.
The desired outputs were 0.1 for patterns with even parity
and 0.9 for patterns with odd parity. Only one constraint was
imposed upon each pattern: patterns with desired output 0.9
had no upper bound constraint, while patterns with desired
output 0.1 had no lower bound constraint. The upper and
lower levels of tolerance were set to 0.0 for all patterns. The
activation function was the logistic function

1

9(@) = 1+ exp(—x)’ (18)

The training pattern information is shown in Table 1.

The algorithm was first tested with no higher-order expan-
sion. The solution of the LP problem is summarized in Table II.
It indicates training would be unsuccessful, a minimum set of
incompatible patterns being patterns 4 and 5. The LP solution
also indicates the following connectivity produces an optimum
solution: W1 = W2 = W3 = 4.3944, and § = —2.1972.
These results agree with those reported in the literature [12],
[21].
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f(x1,x2,x3) 6 =-2.1972
wl=w2=w3= 4.3944
wd=w5=wh= -8.788
w7 =17.577

x3 xIx2  x1x3 x1x2x3

X2

x1 x2x3

Fig. 2. Neural network structure for solving the Parity-3 problem.

TABLE Il
TRAINING PATTERNS FOR FUNCTION F'(x)

Pattern Desired Pattern Desired

Number Feature X Qutput F(x) | Number Feature X Output F(x)
1 0.00 0.80 10 0.45 0.32
2 0.05 0.72 11 0.50 0.41
3 0.10 0.62 12 0.55 0.51
4 0.15 0.52 13 0.60 0.58
5 0.20 0.41 14 0.65 0.60
6 0.25 0.32 15 0.70 0.56
7 0.30 0.25 16 0.75 0.51
8 0.35 0.22 17 0.80 0.50
9 0.40 0.25 18 0.85 0.56

The complete third-order outer product expansion hav-
ing the features X1,X2, X3, X1X2, X1X3,X2X3, and
X1X2X3 was also tested. Sobajic [21] reported this level
of expansion is sufficient to obtain appropriate learning.
For this expansion, the connectivity synthesized from the
solution of the LP problem defines the ANN shown in Fig. 2.
This connectivity is exactly as that one given by Sobajic’s
closed-form solution [21].

Example 2: This example was taken from Klassen et al. [8].
Its main purpose is to examine the ability of the optimization
technique at identifying unnecessary features in the feature
space. The task consists of learning a representation for
an unknown, one-variable function with the only available
information being the sample patterns listed in Table III.

Klassen et al. [8] have reported enhancements of the func-
tional expansion type with the features sin(wz),cos(nz),
sin(27z), cos(2nz), and sin(4wz) are sufficient to train an
ANN to solve this task. To test the optimization algorithm, an
LP formulation for this enhancement was developed according
to (15). Upper and lower discrepancies of 0.015 were allowed
for all patterns, which corresponds to specifying an acceptable
error E=1.125E-4. The activation function was the logistic
function given in (18). The LP solution showed that the expan-
sion is indeed sufficient for satisfactorily training the ANN.

In another test, the formulation was modified according to
(17), keeping the same tolerance levels as before. The results
showed that the feature cos(7x) is not necessary to achieve the
desired performance and, therefore, it can be eliminated from
feature space. This later result was confirmed by training an
ANN with the reduced set of features. The mapping function
obtained with the LP solution appears in Fig. 3, and the
corresponding ANN is shown in Fig. 4.
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Desired output

O Actual output

08

Qutput
f(x)

0.4
Feature
(x)

0.6 0.8

Fig. 3. Training pairs and outputs estimated using the LP solution.

fx) wl= 1828
w2 =-5.899
wil = (1039
wid =-1.644
wh = (.565
6 = 2.939
X sin(rx) sin(2mx)  cos(2nx) sin(4mx)

Fig. 4. Reduced ANN architecture obtained from the LP solution.

These results show the specification of an adequate objective
function leads to identifying the input vector terms necessary
and sufficient to produce an ANN which solves the task with
the desired level of accuracy.

V. CONCLUSION

A simple technique for assessing the learning capability of
an ANN and optimizing the feature space has been presented.
Although the technique is formulated based on the architecture
of a higher-order single-layer ANN, it is extendible to include
other architectures. It takes advantage of the implicit accuracy
tolerance associated with every training pattern in supervised
learning. This tolerance is used to show that supervised
learning can be posed as an optimization problem in which
inequality constraints capture the information contained in
the training patterns and the degree of accuracy required
from the ANN. The solution of the appropriately defined
optimization problem indicates whether the structure of the
ANN can effectively learn the patterns, and if so, it gives
a connectivity which corresponds to satisfactorily learning;
it also indicates which features, if any, can be suppressed
from feature space without deteriorating performance. If the
structure is not appropriate for learning the task, the solution
identifies the minimum set of training patterns precluding
learning.
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