
228 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 16, NO. 3, JUNE 2000

Design Lessons for Building Agile
Manufacturing Systems

Wyatt S. Newman, Member, IEEE, Andy Podgurski, Member, IEEE, Roger D. Quinn, Frank L. Merat, Member, IEEE,
Michael S. Branicky, Member, IEEE, Nick A. Barendt, Member, IEEE, Greg C. Causey, Erin L. Haaser,

Yoohwan Kim, Jayendran Swaminathan, and Virgilio B. Velasco, Jr.

Abstract—This paper summarizes results of a five-year, multi-
disciplinary, university-industry collaborative effort investigating
design issues in agile manufacturing. The focus of this project is
specifically on light mechanical assembly, with the demand that
new assembly tasks be implementable quickly, economically, and
effectively. Key to achieving these goals is the ease of equipment
and software reuse. Design choices for both hardware and software
must strike a balance between the inflexibility of special-purpose
designs and the impracticality of overly general designs. We review
both our physical and software design choices and make recom-
mendations for the design of agile manufacturing systems.

Index Terms—Agile manufacturing, automated assembly, flex-
ible automation, rapid-response manufacturing, robotic assembly,
workcell.

I. INTRODUCTION

T HIS paper is based on results obtained and lessons learned
over five years of recent multidisciplinary research in

agile manufacturing at Case Western Reserve University
(CWRU) [1]–[14], [34]. Our effort has included mechanical
engineering, electrical engineering, and computer science in a
collaboration between industry and academia with a common
goal of achieving rapid implementation of automation for light
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mechanical assembly applications. This paper reviews our
progress, particularly beyond that reported earlier in [3].

We note that the definition of agile manufacturing varies
widely in the literature (see, e.g., discussion in [3]). In the
present context, we refer to flexible manufacturing as the
ability to reconfigure a system quickly and cheaply to assemble
a varying part mix. Conventionally, flexibility is restricted to
a suite of previously (possibly laboriously) developed applica-
tions. To incorporate agility, we invoke a design philosophy that
promotes hardware and software reuse, enabling rapid redesign
for entirely new applications. Agility of this type offers the
promise of achieving responsive, economical automation of
batch production or short life-cycle product manufacturing by
reusing generic production software and equipment.

The CWRU experimental workcell is shown in Fig. 1. The
work described here has been implemented on commercially-
available components within this workcell to validate our as-
sumptions and proposed concepts within an industrially appli-
cable system.

Our experimental workcell includes four robotic worksta-
tions, a flexible material handling system, two machine vision
systems, flexible parts feeders, eight cameras, and more than
200 digital input/output (I/O) signals. In our experience, this
system is sufficiently complex to illuminate the challenges and
evaluate the solutions in agile manufacturing system design.
While the work described here is on-going research, the lessons
learned have immediate applications.

Many philosophical choices in the design of an agile manu-
facturing system have implications for its usability. As the de-
tail and complexity of the system can be large, it is important
to choose the appropriate levels of abstraction for interaction
and organize the system itself to encapsulate much of the com-
plexity. Lessons learned from our research are condensed here as
design guidelines for agile manufacturing systems and grouped
into two categories. The first category is a collection of hardware
design techniques that enable reuse and rapid reconfiguration.
Thesecondcategoryconcernssoftwaredesignrecommendations
for an agile manufacturing control system that is maintainable,
reusable, and extensible. While the hardware and the control
software are inherently coupled with respect to global optimiza-
tion, we have deliberately prescribed modularity and interfaces
of the hardware and software to permit encapsulation of details,
promoting decoupling of design constraints as much as possible.
Optimization is thus with respect to ease of redeployment, rather
than with respect to performance within a specific application.

1042–296X/00$10.00 © 2000 IEEE
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Fig. 1. CWRU agile manufacturing cell.

II. HARDWARE DESIGN TECHNIQUESENABLING RAPID

RECONFIGURATION

Robots are representative of an ideal element of agile man-
ufacturing systems. They can perform a variety of manipula-
tion functions with little or no hardware changes, and they offer
the possibility of rapid reprogramming for new applications.
These two features (equipment reuse and rapid redeployment)
are consistent with our requirements for agile manufacturing.
However, robots are just one component of an agile manufac-
turing system. In general, one also needs parts feeders, grip-
pers and fixtures, intra-workcell transportation, sensors, and as-
sembly-specific hardware.

In designing the automation elements to meet these require-
ments, there is an inevitable tradeoff. On the one hand, there
is the appeal of designing clever, high-speed and/or low-cost
components to handle specific parts. On the other hand, there is
the desire to make each element of the agile system completely
general and reusable. The former approach is used convention-
ally in design of high-volume automation systems, but it is not
agile (i.e., it requires extensive change to the system when a new
product is introduced). The latter approach can lead to imprac-
tically complex and expensive components. Our recommenda-
tions for reconciling these competing viewpoints are presented
below.

A. Agile Parts Feeding

Parts feeding in industrial automation is typically performed
with vibratory bowl feeders. Such feeders are custom designed
for each new part to be fed, and the design effort invested in each
bowl feeder can only be recovered over the life of the one part it
was designed to present. In addition, the design of bowl feeders
typically requires months, and this design process cannot begin
until a sufficient quantity of the parts to be fed is available for
experimentation. Thus, the lead time for design of bowl feeders
cannot be accommodated in simultaneous product and process
development.

At the other extreme in parts feeding is the generic
bin-picking problem [15], [16]. In this very general approach,
one uses three-dimensional (3-D) sensing, pattern recognition
in cluttered scenes with overlapping parts, 6-DOF manipu-
lation, and sophisticated approach and grasp planning. As a
consequence, the result is expensive, difficult to program and
maintain, and unreliable.

Recently, an agile alternative—a compromise between
the specificity of bowl feeders and the generality of bin
picking—has been promoted. “Flexible parts feeders” have
been described in [17]–[33]. We advocate this approach for
agile manufacturing. In our own system, we have constructed
a form of flexible parts feeder that relaxes some of the restric-
tions of previous feeders (see, e.g., [3]). In this system, parts
conveyors are used to present parts to an underlit surface. A
vision system identifies parts that are easy to recognize and
easy to grasp robotically, and the corresponding coordinates are
communicated to a robot for acquisition. Parts that are hard to
identify or hard to grasp (e.g., due to overlapping) are recycled
to the conveyor system for repeated presentation trials.

Our system permits a larger feed volume and can accommo-
date larger parts than similar commercially-available systems
(e.g., Adept Technology’s FlexFeeder [33]). In addition, our
feeder (with variations currently in progress) can be adapted to
accommodate rolling parts. Our feeder has been tested success-
fully on a wide variety of part shapes, including plastic disks,
plastic snap-rings, cup-shaped objects, hex nuts, washers, caps,
and plastic sockets. At present, the feeder speed (including time
for robot acquisition) is up to 30 parts/min (depending on part
size and geometry). We have validated the system in feeding
trials of 750 000 parts, including a 400-h unattended continuous
run, demonstrating high reliability. (Further detail on our flex-
ible feeder design and performance is given in [6] and [34].)

Our flexible parts feeder is agile, since it can handle a wide
variety of part shapes by merely reprogramming the part-recog-
nition vision code. Based on our observations of reprogramma-
bility, flexibility, reliability, and throughput, we conclude that
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this approach to parts feeding is appropriate for agile manufac-
turing.

B. Agile Grippers and Fixtures

Another example of competition between dedicated solutions
and general solutions in agile manufacturing is in the design of
grippers and fixtures. The most common robot gripper in prac-
tice is the simple parallel-jaw, which is suitable for handling
objects with parallel planar faces. More frequently, part shapes
are marginally graspable between parallel planes, resulting in
frequently dropped parts and imprecisely manipulated parts. In
contrast, there exist very general anthropomorphic hands [35].
While these devices are capable of a much broader range of
grasp alternatives, they are expensive, relatively fragile, and dif-
ficult to program and maintain.

To date, nearly all of the grippers used in our agile man-
ufacturing system have been custom designed and machined,
which does not satisfy our criteria for agility. (We do, however,
use some conventional techniques, such as quick connectors
and rotary wrists, and design some grippers to handle multiple
parts.) To address the need for agility in grippers and fixtures, we
have proposed and demonstrated a compromise approach that
achieves high performance with low cost and quick implementa-
tion. Our concept is to utilize a standard parallel-jaw mechanism
with custom-designed fingers, where the finger shapes are de-
signed and fabricated automatically via CAD/CAM. (Note that
this CAD/CAM process is decoupled from the rest of the system
design, is performed off line, and results in a gripper that, with
respect to the control software, is functionally indistinguishable
from a parallel-jaw gripper.) Our approach, which is detailed in
[9] and [10], is summarized as follows.

We presume the existence of a CAD description of the parts to
be handled. We start with a default shape for the gripper fingers
defined as solid blocks, represented in a compatible CAD de-
scription. The part to be handled is used to define the equivalent
of a ram-EDM (electronic discharge machining) tool, and this
postulated tool is advanced (computationally) into the faces of
the default finger blocks, producing cavities comprising a shape
complementary to the part to be grasped. This computational
geometry operation produces a CAD description of fingertips
that nearly envelop the desired part.

By construction, the resulting finger cavities are guaranteed
to permit collision-free opening and closing of the gripper fin-
gers with respect to the part (analogous to the parting line of a
casting mold). Once the CAD description of the gripper fingers
is prescribed, it can be fabricated automatically by any compat-
ible CAM process. Since the computed finger cavities are guar-
anteed to have outward-facing surface normals, the cavities are
guaranteed to be machinable with a 3-axis mill (with one setup).
Our experimental approach to fabricating the custom gripper
fingers has been to use laser cutting in a sheet-based rapid pro-
totyping system, details of which can be found in [36] and [37].

We have shown that it is possible to define and fabricate
multifunction grippers by repeating the computational geometry
process multiple times on the same finger blocks. For a rela-
tively small number of distinct parts (we typically feed no more
than four part shapes at each robotic workstation), one can pro-
duce a composite finger cavity shape by treating each of the de-

(a)

(b)

Fig. 2. Experimental multifunction finger design. (a) Workpieces used in
evaluation. (b) Fabricated fingers grasping a plastic socket.

sired parts as a separate virtual EDM tool. If each virtual EDM
operation (computationally) erodes part of the candidate multi-
function gripper finger, and if each such erosion operation con-
tributes significantly to the resultant shape of the finger cavity,
then the resultant fingers are strong candidates for achieving
form closure [38] (or at least frictional form closure [39]). Can-
didate shapes thus computed can be tested computationally to
determine if they would be successful gripper fingers with re-
spect to each of the parts to be handled, e.g., using the methods
described in [40]. A simple, experimental example of this ap-
proach is shown in Fig. 2. Three parts (two sizes of hex nuts
and a plastic socket), as shown, are all graspable in frictional
form closure by our example computed and fabricated gripper
fingers. Experiments showed that this gripper manipulated these
three parts with greater precision than simple parallel-jaw fin-
gers [10].

We note that our technique for automated gripper design and
fabrication is also applicable to automated design and fabrica-
tion of fixtures. If a gripper actuator is mounted to ground rather
than to a robot’s wrist, then it can perform the function of a
custom, actuated fixture.

In the above CAD/CAM automated process for gripper de-
sign and fabrication, we achieve a compromise between the re-
strictions of a simple parallel-jaw gripper and the expense and
complexity of a more general, anthropomorphic gripper.

The gripper fingers we propose to fabricate are, in fact,
special-purpose designs to a high degree; they are computed
to handle a specific, small number of part shapes. Agility is
achieved by computing and fabricating the fingertip shapes
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automatically. This process offers the potential for high perfor-
mance with low cost and quick response.

C. Agile Special-Purpose Tooling

While robots are capable of a wide range of tasks, some man-
ufacturing operations are better performed by special-purpose
equipment. For example, we have employed pneumatic presses
to engage injection-molded parts in tight-fitting assemblies. The
forces required for this operation exceed the capacity of our
lightweight assembly robots. While the press operation could
be performed by a stronger robot, substituting a larger robot
would be more expensive, slower, and would consume more
floorspace. Pneumatic presses for this operation are relatively
inexpensive, compact and effective, making it seemingly irre-
sistible to use them. However, the introduction of such spe-
cial-purpose equipment clashes with the philosophy of agility.
Such equipment would be dedicated to a single production op-
eration, and it would not be reprogrammable for reuse in subse-
quent tasks.

Our approach to reconciling this conflict, introduced in [3],
is to modularize and “encapsulate” the use of special-purpose
equipment. This concept is borrowed from software engineering
philosophy, as discussed further in Section III. By analogy, we
emulate the “plug-and-play” paradigm of the computer industry
to incorporate alternative special-purpose hardware into an oth-
erwise generic system. A conventional example of this approach
is the use of robot wrist quick connectors, which define a stan-
dard physical engagement interface, including power and signal
interfacing, between custom grippers and a generic wrist plate.

For special-purpose equipment, we employ this philosophy
by defining modular work tables. Work tables install in our
workcell via a specified mechanical, signal, and power interface.
The footprint of a work table is standardized, including fasteners
and bolt pattern. Power (pneumatic and electric) and signal in-
terfacing is defined in terms of standardized connector plugs. As
a result, work tables can be swapped rapidly with no new ma-
chining, wiring, or plumbing. Upon installation, overhead cam-
eras recognize calibration features on a work table, compute the
precise installed position and orientation of the work table, and
adjust robotic pick-and-place coordinates automatically to ac-
commodate the work table’s actual position.

Within the confines of our work-table interface requirements,
a designer is otherwise unconstrained in the use of special-pur-
pose equipment, and the resulting design is guaranteed to be
compatible with the remainder of the workcell. By making the
interface constraints clear, the designer can focus on the spe-
cialty equipment without having to simultaneously consider the
myriad implications of interacting with the rest of a complex
system.

D. Agile Material Handling

The conflict between generality and specificity occurs in
material handling as well. The most general material transport
system is an autonomous mobile robot (or, somewhat more
restrictive, an autonomous guided vehicle). At the other ex-
treme is an indexer with workstations at fixed points along the
line. We considered the former approach to be too expensive,

complex, and error-prone for our application domain (light
mechanical assembly). The latter approach is relatively well
developed, robust, and inexpensive, but it should be modified
for greater agility.

In conventional conveyor systems, a belt moves constantly
along a track and pallets are halted at workstations under com-
puter control via pneumatic stops. (While a pallet is halted, the
conveyor belt continues to move, resulting in frictional slip be-
tween the pallet and belt.) Sensors at each workstation detect the
presence of a pallet (and, optionally, its identity). Interfacing be-
tween automation equipment and the material handling system
typically consists of a simple binary handshake, including noti-
fication (by the conveyor) that a pallet is present and an eventual
response (from the equipment at the workstation) that the pallet
may be released. Also conventionally, coordination of sensors,
actuators, and I/O between the conveyor and workstation equip-
ment is performed in a low-level (e.g., ladder-logic) program on
a programmable logic controller (PLC).

Such a conveyance approach is appropriate and successful in
high-volume automation systems. For agility, several variations
are desirable. First, agile systems should use conveyors that are
constructed from modular components. An example of this is
the Bosch modular flexible material handling system, which we
have employed in our workcell design1 [3]. Use of modular
components permits extensibility in response to changing re-
quirements while minimizing rework on the remainder of the
system.

As described in [3], we advocate the use of modular “spurs”
as additions to a flexible conveyor system. This addition re-
lieves problems of blocking material flow at workstations and
occluding significant reachable workspace of a manipulator by
the conveyor. Rather than halt pallets at workstations along the
track, we utilize lift/transfer modules to shunt pallets to work-
stations off the main track. Operations can then be performed
by a robot with better utilization of workspace. When the work
station operations are completed, the pallet is transferred back
onto the main conveyor.

Fig. 3 shows a workstation within our cell exploiting use of a
spur. The figure illustrates how the workspace surrounding the
pallet on the spur is fully utilized (by work tables and flexible
parts feeders), yet additional pallets may continue to pass this
station while robotic operations are in progress.

E. Agile Sensing

The conflict between the desire for generality and the need
for economy and robustness occurs in the area of sensing as
well. To achieve robust, dependable operation, an automated
manufacturing system typically requires a large number of sen-
sors for automated error detection and correction. Common er-
rors include attempted assembly of flawed parts, dropped parts,
jammed parts, misfed parts, and accidental acquisition of nested
parts. In each case, there are a variety of simple and effective
sensors that can detect the identified type of error. Options in-
clude: optical thru-beam or optical reflection sensors, eddy-cur-
rent sensors for conductive parts, magnetic sensors for ferrous

1Bosch Automation Technology, Racine, WA. [Online] Available:
http://www.boschautomation.com
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Fig. 3. Assembly station layout.

parts, contact sensors (e.g., microswitches), ultrasonic sensors,
capacitive sensors, and others. For a specific error condition
with specific parts, it is tempting to select a sensor that is rela-
tively inexpensive and robust for detecting that error. However,
such specific choices would not be adapted easily to new appli-
cations. An example of a general sensor for detecting part-han-
dling errors is 3-D machine vision. However, 3-D vision is ex-
pensive, difficult to program, and error-prone.

Our approach to resolving the conflicting objectives for agile
sensing is to use a simplified version of machine vision for
a low-cost, relatively simple, general-purpose sensor. In this
approach, we utilize a CCD image array and perform image
subtraction with respect to a snapshot of a representative suc-
cessful situation. This approach has been tested using conven-
tional CCD cameras and frame grabbers. In continuing work,
the camera sensor is being reduced to a low-cost system with
local image subtraction. The resulting output is simply a bi-
nary good/bad signal based on the difference image. The oth-
erwise relatively complex and expensive components in a ma-
chine vision system can be reduced to a compact sensor unit
with a cost rivaling industrial special-purpose sensors. Program-
ming the agile sensor consists of taking a snapshot of a suc-
cessful state, taking snapshots of example error conditions, and
adjusting a quality-of-fit parameter on the difference images
consistent with flagging all of the errors. Note that the binary
output of this sensor merely indicates success or failure. While it
is tempting to analyze the images further to deduce what type of
error has occurred, this would be inconsistent with agility. The
expert vision programming time required to accomplish more
sophisticated image processing would conflict with our goal of
quick and easy reapplication of the agile system to new tasks.
Restricting image processing to the operation of image subtrac-
tion (on region(s) of interest) makes the agile sensor more gen-
eral than conventional dedicated sensors, yet less general than
generic machine vision. We anticipate the use of constellations

of inexpensive, vision-based agile sensors, enabling detection
of a myriad of errors and permitting reuse of these sensors with
relatively low effort and expertise.

III. SOFTWARE DESIGN TECHNIQUESENABLING RAPID

RECONFIGURATION

In agile manufacturing applications, system reconfigura-
bility, rather than speed of operation, is the metric of greatest
interest to the system designer. The software architecture used
to control an agile manufacturing system is what enables rapid
reconfiguration. In part, reconfigurability can be achieved by
simply following the practices of object-oriented design and
programming, especially encapsulating design details within
objects with well-defined interfaces (see, e.g., [41] and [42]).
To enhance reconfigurability, it is necessary to go further by
identifying the essential components of an agile manufacturing
system and their interrelationships; that is, it is necessary to
identify the essentialdesign patterns[43], [44] of an agile
manufacturing system. These components and relationships
should be specified in such a way that the constraints on how
components are actually implemented are minimized. In this
way, an architecture is obtained that can be adapted to different
applications and environments and that can be implemented
by a variety of lower-level elements. It is the responsibility of
the software architect to anticipate the range of requirements
that might arise within a family of agile manufacturing appli-
cations and to devise an architecture that is general enough to
accommodate them.

We note that, in this work, planning for purposes of reconfig-
uration is performed offline with human intervention. A natural
extension is to incorporate increasingly sophisticated levels of
self adaptation into the agile system. At this point, however, we
have focused on the lower level of how to decouple hardware
changes from software changes. This is accomplished by de-
signing the control software with the presumption of change in
the associated hardware, and to constrain the hardware changes
to obey prescribed interface specifications. Both hardware
changeovers and high-level replanning are performed offline
with human intervention, but these tasks are made easier by the
modular design of both the hardware and software.

Fig. 4 summarizes the architecture that has been adopted to
control our workcell in terms of a simplified version of our
class structure in Rumbaughet al.’s object modeling technique
(OMT) notation [47].

OMT is one of several standard graphical notations used to
represent object-oriented software contructs and their inter-
relationships. Each class is represented by a small rectangle
containing the class name, with various arrows indicating how
classes are related to each other. The direction of the arrow is
significant. The class doing the pointing has the relationship
specified by the arrow type with the class being pointed to. For
ease of discussion, we will call the pointing class ‘A,’ and the
class being pointed to ‘B.’ The presence of a large dot at the
tip of the arrowhead signifies that A may have the specified
type of relationship with multiple instances of B. A dashed
arrow indicates that A creates an instance of B. Per Fig. 4, the
WorkcellManager creates one instance of the Transporter, and
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Fig. 4. System class diagram in OMT notation.

one or more instances of ParcelSuppliers, PartSuppliers, and
Assemblers.

There is a significant difference between theusesandhasre-
lationships shown in Fig. 4. When AusesB, it is using an inde-
pendently created object. When Ahasa B, it uses an object that
it created for itself and that is an essential part of its definition
and implementation—B is a part of A. A ParcelSupplier, for ex-
ample,usesa Transporter to move pallets around the workcell,
but it hasits own Calibrator to assist in registering pallets when
they arrive.

Fig. 4 shows the separation of software components into two
categories, implementation components and behavioral compo-
nents, which we describe in the following two sections.

A. Low-Level Hardware Control Objects

At the lowest levels,onehas thegreatestopportunity forencap-
sulating details that would otherwise inhibit code reuse. In some
cases, taking advantage of modular hardware design is enough
to ensure that higher-level software constructs can use various
hardware components without requiring modification. In others,
the implementation of agents which run as concurrent threads
within a real-time operating system (VxWorks™ in our imple-
mentation) provide a buffer between those lowest-level objects
that interact directly with the hardware and the rest of the system.
In either case, the development of a sufficiently functional, yet
generic, interface is the real challenge. If the interfaces of either
the objects or the mediating agents are composed correctly, then
the design of higher-level software can safely restrict attention
to what tasks need to be performed, rather thanhow.

The implementation of the software controlling gripper ac-
tivation is an excellent example of how modular hardware de-
sign can be used to facilitate the development of generic control
software. Physical grippers are connected to a robot’s flange
using a generic connector with a fixed number of pneumatic
channels that control the gripper’s behavior. Manipulating dig-
ital signals trigger solenoids, which supply or deny air to the
pneumatic channels. The software used to control gripper op-
eration is written generically, depending on a specified set of
constant values to perform the correct action. In our implemen-
tation, a physical gripper usually has several software represen-
tations, one for each tool presented during the assembly process.
While this may seem repetitive, each tool presentation requires
a different translation to ensure that the robot is aware of the
respective gripper tip location relative to the end of its flange.
Switching grippers is easy as far as the software is concerned;
it switches several times during the assembly process while the
same physical gripper is attached to the robot. At initialization
time, the Assembler will create all of the grippers it needs, ini-
tializing a generic gripper object with the appropriate signal
values as they are read from a file, loaded from a central repos-
itory, or gathered from a database.

Encapsulationofdetail for robotmotioncommands isalsonec-
essary. To accomplish this, we have defined a robot motion server
to abstract the services performed by robots. Ideally, one would
program robots in terms of the desired behavior, e.g., that a part at
aspecifiedpositionandorientationshouldberelocated toanother
specifiedpositionandorientation. At this level ofabstraction,de-
tails of a robot’s programming language, operating system, and
indeed its kinematics should be irrelevant to its clients.
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Fig. 5. Proxy abstraction of a generic (virtual) robot.

Preceding efforts at unifying robot control include the robot
independent programming language (RIPL) from Sandia Labo-
ratories [41] and the open architecture control specification from
Cimetrix [45]. In our experimental system, we utilize three dif-
ferent robot controllers: an AdeptOne MC controller, a dual-arm
Adept 550 MV controller, and a Cimetrix controller retrofit to an
AdeptOne arm. We utilize a reduced command set—essentially
a subset of the Cimetrix OAC specification—to command all
robots with a common language, as per the philosophy of RIPL.
Our reduced command set consists exclusively of task-space
commands. By avoiding use of joint-space commands, the mo-
tion server can be independent of what type of robot is being
used, and in this way the motion server hides information re-
garding implementation details, including robot kinematics.

Implementation of our motion server requires hardware-spe-
cific interfacing for each robot controller type, as well as instal-
lation-specific details of robot and workspace calibration. Our
approach, illustrated in Fig. 5, is to write a simple program in the
native language of each robot controller that communicates with
higher levels via a defined physical and syntactical protocol. It
receives motion requests from a higher level, invokes the spec-
ified (task-space) motion on the control platform, and reports
status back to the higher level. For the AdeptOne/MC system,
our local server program is written in V+ and communications
is via a serial port. For the dual-arm Adept MV controller, two
V+ server tasks control the two Adept 550 arms, and commu-
nications with higher levels is via a reflective memory network
card installed on the MV’s VME bus. The Cimetrix server pro-
gram is written in “C,” and it communicates with higher levels
via Ethernet, TCP/IP, and Unix sockets. These details are hidden
from higher levels, which interact with robot objects providing
a generic interface, and by robot “proxies” [44], which encap-
sulate the details of communicating with a remote robot.

With our motion server approach, nonessential differences
between robots are abstracted away. The only relevant behavior
from the viewpoint of the clients is that the requested motions
of parts take place. The fact that the requested service is per-
formed with a particular robot is irrelevant to the client. We note

that the effectiveness of this approach is coincident with the ob-
jectives and barriers of offline robot programming. Specifically,
robot calibration (including gripper and tool calibration) is a
critical requirement for success of programming in task-space
coordinates. Since our system depends heavily on the use of vi-
sion-based manipulation, we have already accepted the burden
of robot calibration. Having performed such calibration, we reap
additional benefits in terms of practicality of task-space motion
server capability as well as offline programming capability.

Our second major low-level object is the vision server. In our
machine-vision software design, it is necessary to anticipate
change (e.g., adding new image-processing hardware), to
hide implementation details (e.g., vendor-specific languages
and hardware details), and to enable resource-sharing while
minimizing the corresponding complications imposed on the
application programmer.

Our vision server addresses these needs using a client-server
architecture to implement abstractions of machine-vision func-
tionality. Itcanprocessimagesfrommultiplecamerainputs, itcan
perform generic image-processing operations (e.g., threshold,
segment, label, centroid computation, etc.), it can utilize avail-
able hardware resources (ranging from host-processor compu-
tations to image-processor-specific hardware acceleration capa-
bilities), it can serve clients from multiple platforms (tested to
date with clients on Unix, Linux, LynxOS, and VxWorks with
Intel, Motorola, and SunMicrosystems processors), and it can
service asynchronous requests from multiple clients.

From the viewpoint of the client, only the behavioral aspects
of the vision server are important, independent of how they
are implemented in hardware. In the abstract, a machine vision
system contains three things: sensors (or cameras), frames (or
images), and operations on frames. Cameras are used to acquire
images into frames. These frames then understand how to per-
form operations on their images to extract information. By de-
signing programs using these operations, developers can build
useful machine vision tasks without being concerned about how
the operations map onto a particular vendor’s hardware. By in-
terposing an idealized virtual machine between the implemen-
tation of the abstract-functionality model and the actual vision
hardware, the task of porting the abstract model to a new hard-
ware platform is radically simplified. Since such a change would
be restricted to local modules, no client objects would require re-
programming, and the applications programmer would not need
to learn changing vendor-specific hardware or software details.
For further details on the vision-server design, see [11] and [46].

A third major component of our software architecture is an in-
termediate-level agent, thetransporter. The transporter, which
is responsible for control of the Bosch conveyor system,2 is in-
dicative of the agent design challenges. It is designed as a server,
in stark contrast to the conventional approach of using a PLC
with a dedicated ladder-logic program to control a material-han-
dling system. The transporter accepts requests to move pallets
of partial or completed assemblies between workstations. From
the viewpoint of its clients, it is irrelevant how the transporter
satisfies requests; it is only necessary to know which services

2Bosch Automation Technology, Racine, WA. [Online] Available:
http://www.boschautomation.com
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are available, how to request a service, and how to interpret the
status information associated with a service that has been per-
formed (e.g., the identity and coordinates of a pallet that has
been delivered). The clients do not need to be aware of any of
the details of the wiring, I/O address assignments, nor timing of
potentially hundreds of sensor and actuator signals. Addition-
ally, while the conveyor is a shared resource, details of how this
resource responds to multiple, asynchronous service requests is
hidden from the clients, thus decoupling the design constraints
considered at the higher levels. Although our conveyor con-
sists of a single conveyor loop, this intermediate-level agent
could encapsulate significantly more complexity, including re-
sponsibility for any necessary parcel routing or storage between
sources and destinations, as well as encapsulation of more so-
phisticated physical means of transport, such as AGV’s. Such
extensions would not affect the higher-level software.

Finally, ourpart-supplieris also an intermediate-level agent,
conceptually similar to the transporter. A part-supplier interacts
with two types of low-level objects: feeders, which command
the servo controllers of the flexible-parts-feeder conveyors, and
locators, which in turn encapsulate interactions with the ma-
chine vision system. From the viewpoint of clients, only the be-
havioral aspects of a part-supplier are important: what parts it is
capable of supplying, how to request a service, and how to in-
terpret the result (position and orientation of the requested part).

B. Higher-Level Control Objects

Having defined the low-level control objects, objects at the
higher levels can interact with those at lower levels through
interfaces describing their abstract behaviors, without regard
to implementation details. Our higher-level classes interact as
clients of the intermediate- and lower-level agents: Transporter,
PartSupplier, MotionServer, and VisionServer.

The WorkcellManager is at the top of the control hierarchy,
but its role is fairly limited. It is a supervisory agent that cre-
ates all of the Assemblers, Suppliers, and Transporters needed
by the workcell, and allocates resources to them. The Workcell-
Manager starts and shuts down workcell operation, communi-
cates with the operator, and orchestrates activities that require
cooperation between agents in exceptional circumstances, such
as error recovery.

If a registry, text file, database, or other resource is used to
configure workcell components, the WorkcellManager would
be responsible for performing the necessary steps to retrieve the
required information from that resource, even if that means the
instantiation and manipulation of another object. For the initial-
ization of our system, the contents of a file containing config-
uration data in textual form is read and placed in a hierarchical
registry that is queried when objects are instantiated.

The assembly of a product involves a particular sequence
of steps. Some specialized equipment, such as robot grippers
and modular work tables, is typically needed to execute this se-
quence. Some specialized software components, such as device
drivers and part recognition strategies, are also needed. Since the
assembly process is one of the most variable aspects of an agile
manufacturing system, it is essential to encapsulate it. There-
fore, the main control agent in our software control architecture
is the Assembler.

An assembler object requests parts from a part supplier,
requests and yields pallets from/to a parcel supplier (which
uses the “transporter”), requests motions of one or more robot
proxies, and (optionally) requests specialized services from
work tables.

An assembler does not need to interact directly with the vi-
sion server; at its level of abstraction, the use of vision is an
implementation means for obtaining coordinates of interest. A
part supplier utilizes machine vision, but it informs its assembler
client of a part’s location/orientation coordinates. These coordi-
nates are, in turn, specified by the assembler in its request to a
robot proxy for motion service. Similarly, the parcel supplier in-
vokes use of machine vision to obtain accurate coordinates of a
delivered pallet, and it informs a client assembler of the presence
and coordinates of the requested parcel. Thus, the assembler has
no direct need for vision services.

An intermediate class is defined to assist in interactions be-
tween the part supplier and the vision server. The vision server
accepts low-level image-processing commands. This level of in-
teraction is necessary for programming recognition of specific
parts, as the sequence and parameters of low-level image-pro-
cessing operations must be identified for each new part. How-
ever, such programming detail is too implementation-specific
relative to the level of abstraction of the suppliers. We thus in-
troduce the “locator” class, which includes objects that are con-
structed to recognize specific parts. The part supplier can re-
quest the services of locator objects to obtain coordinates of
named parts. This organization encapsulates the programming
of part-specific image-processing routines within objects that
insulate such details from affecting the rest of the control soft-
ware.

The interactions described here among assemblers, trans-
porters, and suppliers constitute ourassembler-transporter-sup-
plier design pattern, which we postulate is inherent in agile
manufacturing applications in the context of light mechanical
assembly.

C. Implementation Issues

Our current object-oriented control software is comprised
of roughly 30 000 lines of C++ source code defining about
90 classes. It executes under the real-time operating system
(RTOS) VxWorks™. The active agents of the system, the
assemblers, suppliers, the transporter, and the vision and
motion servers, operate concurrently as separate tasks. This
concurrency is invisible to the clients (C++ does not directly
support concurrency, but intertask communications can be
implemented with details hidden within C++ class interface
modules). Clients need not make RTOS system calls to create,
schedule, synchronize, or communicate between tasks; this
is done by the class implementations. Presently, 20 tasks run
concurrently in round-robin priority with 20-ms time slices,
which is well within our timing requirements.

We have experimented with rapid response to change, both
in terms of introducing new assembly tasks on new products
and in terms of adding hardware to the system. Our class defini-
tions succeeded in promoting reusability of code. In our experi-
ence, we have observed better than 90% code reuse in program-
ming new assembly applications. Further, we can add control
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of an extra robotic workstation by merely composing the cor-
responding workstation objects and editing details within the
transporter object to accommodate the new spur. (If the new
robot uses a new controller type, then it will also need a mo-
tion server task composed in its native language, and a corre-
sponding robot proxy must be built.) Such additions require no
revisions to our overall software architecture, and none of the
remaining functioning control code would require changes.

IV. CONCLUSIONS ANDFUTURE WORK

In this overview of our agile manufacturing research, we have
offered some simple lessons for the design of agile manufac-
turing systems.

Our hardware recommendations are as follows:

• use vision-based flexible part feeders;
• use rapid, automated CAD/CAM fabrication of custom

grippers and fixtures;
• use encapsulation of special-purpose equipment on work

tables with standard interfaces;
• use lift/transfer units and spurs for interfacing worksta-

tions to conveyor systems;
• use low-cost vision sensors to emulate simple, dedicated

sensors.
Our software recommendations are as follows:

• use object-oriented programming;
• run concurrent tasks within a real-time operating system;
• use encapsulation or information hiding (particularly with

respect to low-level implementation details);
• make a clean separation between behavior and implemen-

tation;
• utilize client/server interactions for generic vision, mo-

tion, transportation, and part-feeding services;
• restrict attention to an appropriate target range of flexi-

bility (e.g., light mechanical assembly);
• identify recurring design patterns applicable to the chosen

context (e.g., the assembler-transporter-supplier design
pattern).

Detailed results of our work can be found in [1]–[14] and [34].
In future work, we recognize the need for extending investiga-
tions in the following areas:

• flexible parts feeding—faster and cheaper designs, and ex-
tensions to handle rolling parts;

• automated gripper design—extensions to optimization
with respect to sliding contacts guiding parts into precise
alignment;

• work-table development—interface extensions for auto-
matic plug-and-play mechanical, electronic, and software
configuration;

• agile sensors—reduction to practice of low-cost, special-
ized vision sensors;

• vision programming—software tools for reducing the re-
quired technical expertise for programming new vision ap-
plications;

• error detection and recovery—identification of appro-
priate modularity, encapsulation, and design patterns for
automated error detection and correction;

• assembly server—extensions of motion server to respond
to sensed forces and moments of interaction to guide parts
mating.

Although considerable work is called for in continuing to
uncover principles, lessons, and techniques for agile manufac-
turing, results to date are already useful for immediate applica-
tion to design of practical agile manufacturing systems.
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