
An agile manufacturing workcell design

ROGER D. QUINN1, GREG C. CAUSEY1, FRANK L. MERAT2, DAVID M. SARGENT2,
NICK A. BARENDT2, WYATT S. NEWMAN2, VIRGILIO B. VELASCO JR2, ANDY PODGURSKI3,
JU-YEON JO3, LEON S. STERLING3 and YOOHWAN KIM3

1Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
2Department of Electrical Engineering and Applied Physics, Case Western Reserve University, Cleveland, OH 44106, USA
3Department of Computer Engineering and Science, Case Western Reserve University, Cleveland, OH 44106, USA

Received October 1995 and accepted August 1996

This paper introduces a design for agile manufacturing workcells intended for light mechanical assembly of products made from
similar components (i.e., parts families). We de®ne agile manufacturing as the ability to accomplish rapid changeover from the
assembly of one product to the assembly of a di�erent product. Rapid hardware changeover is made possible through the use of
robots, ¯exible part feeders, modular grippers, and modular assembly hardware. The division of assembly, feeding, and unloading
tasks between multiple robots is examined with prioritization based upon assembly time. Rapid software changeover will be
facilitated by the use of a real-time, object-oriented software environment utilizing graphical simulations for o�-line software
development. An innovative dual VMEbus controller architecture permits an open software environment while accommodating
the closed nature of most commercial robot controllers. These agile features permit new products to be introduced with minimal
downtime and system recon®guration.

1. Introduction

1.1. De®nition of agile manufacturing

Agile manufacturing is a term that has seen increased use
in industry over the past several years. The de®nition of
`agile', however, is not clear, nor is it consistent: ``Agility:
The measure of a manufacturer's ability to react to sud-
den, unpredictable change in customer demand for its
products and services and make a pro®t'' [1]; ``Today
factories are coming on line that are agile at tailoring
goods to a customers requirements, without halting
production . . .'' [2]; ``Agile manufacturing assimilates the
full range of ¯exible production technologies, along with
the lessons learned from total quality management, `just-
in-time' production and `lean' production'' [3]. The only
common thread among the various de®nitions is the
ability to manufacture a variety of similar products based
on what may be rapidly changing customer needs.
A de®nition of `agile' manufacturing has been adopted

that applies to light mechanical assembly of products
made from components in parts families: Agile manu-
facturing is the ability to accomplish rapid changeover be-
tween the manufacture of di�erent assemblies. Rapid
changeover, further, is de®ned as the ability to move from
the assembly of one product to the assembly of a similar
product with a minimum of change in tooling and soft-
ware. A corollary of this de®nition of agility is that agile
manufacturing should also allow for the rapid introduc-

tion of new parts. Agility in manufacturing opposes the
prevailing mass-production, Fordist [4], paradigm, char-
acterized by the methods championed by Henry Ford:
high-volume production of low-cost, standardized prod-
ucts. This contemporary paradigm shift is motivated by
the ever increasing competition seen in all industries and
by a more demanding customer base.
Many researchers are focusing on the management and

organizational aspects of agile manufacturing. Before
agile manufacturing can have an appreciable e�ect,
however, the capital equipment must be up to the chal-
lenge: ``How agile a manufacturing enterprise can be is in
direct proportion to the dexterity of its machines. In
general, a company's people are more adaptable to
change than its manufacturing machine tools'' [5]. Rapid
changeover enables assembly hardware to be ¯exible as
well as to make the production of small lot sizes eco-
nomic. This is accomplished through the use of robust,
reusable software; quick-change grippers for the robotic
manipulators; modular worktables; and parts feeders that
are ¯exible enough to handle several types of part without
needing mechanical adjustment. These feeders use vision,
in place of hard ®xturing, to determine the position and
orientation of parts. Generic, reusable pose estimation
vision routines permit new parts to be added to the sys-
tem with a minimum of e�ort.
A testbed implementation of an agile manufacturing

workcell has been developed (Fig. 1) that includes me-

0740-817X Ó 1997 ``IIE''

IIE Transactions (1997) 29, 901±909



chanical manipulators, ¯exible part feeders, a vision sys-
tem (cameras, frame grabber, and a library of image
processing routines), as well as a limited number of
dedicated sensors and actuators. A workcell controller
integrates and synchronizes the operation of the indi-
vidual components.

1.2. Scope and importance of work at Case Western

Several companies have implemented what may be con-
sidered `agile' manufacturing. For example, Motorola has
developed an automated factory with the ability to pro-
duce physically di�erent pagers on the same production
line [6]. At Panasonic, a combination of ¯exible manu-
facturing and just-in-time processing is being used to
manufacture bicycles from combinations of a group of
core parts [7]. Against the backdrop of such work, the
Case Western Reserve University (CWRU) workcell is
innovative in several ways. The use of vision-guided,
¯exible-parts feeders is one example. Another is the object-
oriented design of the software. The over-arching design
philosophy of quick changeover, however, is what makes
this workcell particularly novel. The CWRU workcell has
been designed to be a versatile production facility, ame-
nable to a wide range of light manufacturing applications.

2. Workcell hardware

The agile workcell developed at CWRU consists of a
Bosch ¯exible automation system, multiple robots, as
many as four ¯exible part feeders per robot, and an
Adept MV controller with an AdeptVision System. Small
Adept robots were chosen for their cost e�ectiveness. The

robots are mounted on pedestals near the conveyor sys-
tem. Pallets with specialized parts ®xtures carry assem-
blies throughout the system. Finished assemblies are
removed from the pallets by an unloading robot. A safety
cage encloses the entire workcell, serving to protect the
operator as well as providing a structure for mounting
overhead cameras.

2.1. Conveyor system

The conveyor system used in the CWRU workcell is a
Bosch model T2. Pallets are circulated on two main
conveyor sections. These sections are straight and parallel
to each other, operating in opposite directions. Pallets are
transferred between these two sections by means of lift
transfer units (LTUs). These allow for the circulation of
pallets around the conveyor system and the capability to
`shu�e' or re-order the pallets.
Each of the pallets in the system has a unique iden-

ti®cation number, allowing the system to track and direct
their progress. Stops are mounted at critical points on the
conveyor to control the ¯ow of the pallets.
An innovative design feature is the short `spur line'. A

spur line (see Fig. 3) is simply an extension of the con-
veyor, perpendicular to the main line (analogous to a
railroad spur), which is used to remove pallets needed at
an assembly station from the main conveyor. This allows
the ¯ow of the main conveyor line to be maintained while
a robot performs an assembly at the spur. Owing to space
constraints, optical proximity sensors are used to detect
the presence of a pallet on a transfer station instead of the
standard rocker and inductive proximity sensors.

2.2. Assembly stations

Each assembly robot is surrounded by two modular, re-
movable work tables and two ®xed feeding tables (Fig. 2).
The modular tables are easily exchangeable, allowing for
specialized assembly hardware to be placed within the
robot's work envelope (Fig. 3), and contain pneumatic
actuators and electrical sensors with quick connectors
allowing for the rapid change of any specialized tooling
required for a given assembly. As part of the rapid
changeover procedure, the modular work tables are reg-
istered in the robot's world coordinate system by an arm-
mounted camera. The feeding tables are ®xed, and the
horizontal parts-feeding conveyors are mounted to them.
One drawback of the conveyor/spur system is the time

required to exchange a full pallet for an empty one
(approximately 15 seconds). During this time the robot
could conceivably be inactive. An elegant solution to this
problem is a mini-warehouse: a ®xture is located on the
modular portion of the work table to hold a few com-
pleted assemblies. During a pallet swap, the robot can
continue the assembly operation, placing the completed
assemblies in the mini-warehouse, while the incoming

Fig. 1. Agile workcell.

902 Quinn et al.



pallet arrives. After the incoming pallet is transferred to
the spur, the vision system registers the pallet in the same
manner as the modular work tables (i.e., an arm-mounted
camera). The robot then places the current assembly (still
in its gripper) on the pallet and then proceeds to move the
completed assemblies from the mini-warehouse to the
pallet.
Several workcell layouts were examined, varying in

their placement of the robot relative to the spur (and

thereby the pallet). The ®rst layout examined, shown in
Fig. 3, places the robot facing the spur with the pallet
centered in its work envelope. The parts feeders enter the
work envelope of the robot from the rear on both sides.
The second layout examined (Fig. 4) placed the robot
next to the spur, with the robot facing away from the
main line of the conveyor. The pallet was located to the
right side of the robot's work envelope with the feeders
located to the front and left side of the robot. The ®nal
layout examined (Fig. 5) placed the robot in front of the
spur (as in the ®rst layout) but rotated by 90°. The pallet
would be located on the right side of the work envelope,
the feeders would be placed to the left side of the work
envelope, and the assembly area would be directly in
front of the robot.

Fig. 2. Overhead of a workstation.

Fig. 3. Workstation layout.

Fig. 4. Layout concept 2.

Fig. 5. Layout concept 3.

Agile manufacturing workcell design 903



After evaluating several features of each option, in-
cluding the placement of the robots relative to the con-
veyor, the orientation of the robots, the impact of feeder
placement relative to the robot work envelope, and the
robot motions necessary for a generic assembly given a
particular envelope layout, it was determined that the ®rst
layout would best suit our needs. This layout yielded the
best use of the robot's work envelope while also reducing
the amount of motion for a generic assembly. We de®ne a
generic assembly as a series of movements between vari-
ous parts feeder locations, assembly locations, and pallet
locations that would typify an assembly task.

2.3. Assembly procedure

Currently, we are testing the system by using a small
assembly consisting of four plastic components (Fig. 6).
In our case, the ®rst component, part A, is used as the
base to which the other three components are attached.
Part B is snapped onto the exterior of the base compo-
nent. The A/B subassembly must then be inverted. The
last two components, part C and part D, are inserted into
the bottom of this sub-assembly, with a special guide
being used to insert the last component. This process
typi®es the type of `light' assembly task for which our
workcell was developed.
Several concepts were generated for the assembly

procedure. For this assembly, consisting of only four
parts, we assumed that no more than two robots would
be used. One factor examined was the division of labor.
For example, in case 1, each robot could perform an
entire assembly task or, in case 2, the robots could each
perform part of the task. We also examined a third case in
which one robot would be dedicated to parts feeding and
another robot would be dedicated to assembly.
Examining the example assembly, a natural division of

labor would be to split the job in halves: one robot could
attach part B to part A, then a second robot would take
this sub-assembly and insert parts C and D. To test this
concept we programmed an Adept SCARA robot to

emulate the motions necessary for an assembly. For case
1, the time required for each assembly move was recorded,
and the time required for gripper changes was estimated.
Because four parts were to be manipulated in case 1, a
gripper change was necessitated. For case 2, the assembly
was simulated as two separate subassembly tasks and the
larger of the two sub-assembly times was used as the as-
sembly cycle time (i.e., the time between assembly out-
puts). In this case, no tool change was required as each
robot only handled two parts. Two grippers on a single
rotary wrist (Fig. 7) let the robot handle the two parts
without a gripper change. We found that two robots
working in tandem could produce lower overall cycle
times than two robots working independently. This re-
sulted mainly from the time required to perform a tool
change when the robots operated independently as well as
the added motion required to grasp parts from both the
left and right side feeders. Thus, lower cycle times can be
achieved by using two robots working in tandem.

Fig. 6. Example assembly.

Fig. 7. Multiple grippers on a rotary wrist.

904 Quinn et al.



A third case, wherein one robot would be used for parts
feeding and another would be dedicated to assembly, was
also examined. However, this approach was rejected be-
cause space constraints on the pallet ®xtures would limit
throughput and increase cycle times.

2.4. Flexible parts feeders

In keeping with the goal of rapid changeover, the parts
feeders need to present a wide variety of parts to the
workcell with a minimum of mechanical alteration.
Currently, most feeding for automated assembly is per-
formed by using vibratory bowl feeders. Although this is
e�ective, it lacks the ¯exibility needed for agile manu-
facturing. Reliability is also an important issue: ``Studies
show that custom vibratory feeders are responsible for as
many as half of all failures in automation systems'' [8]. In
an attempt to overcome these problems, we have designed
a novel parts feeder.
The ¯exible feeder design consists of three conveyors

(Fig. 8). The ®rst conveyor is inclined and lifts parts from
a bulk hopper. The second conveyor is horizontal and
transports the parts to the robot. An underlit translucent
conveyor belt presents part silhouettes to the robot's vi-
sion system, which then selects parts that are suitably
oriented for pickup. An array of compact ¯uorescent
lights is installed within each of the horizontal conveyors
to provide a lit background on which the parts produce a
clean binary image. The third conveyor returns unused or
unfavorably oriented parts to the bulk hopper. Proper
functioning of the feeders depends on the parts' being
lifted from the bulk hopper in a quasi-singulated manner.
Many factors in¯uence the e�ectiveness of the inclined
conveyor; i.e., the angle of the conveyor with respect to
the horizontal, the belt properties (e.g., coe�cient of
friction), the type of belt (cleated, magnetic, vacuum),
and the linear speed of the belt.
When the feeder is to be used for a di�erent part (i.e.,

there is a changeover) the bulk hopper is emptied and
®lled with the new part. If the parts are of similar ge-
ometries, no changes to the feeding system are typically
needed. Some parts, such as circular or cylindrical ones

(i.e., parts that would roll back down the incline) may
require a di�erent belt surface (e.g., one with cleats) or a
di�erent angle of inclination for the inclined conveyor.

2.5. Vision system

One essential function of the vision system is to determine
the position and orientation (pose) of parts in the ¯exible
parts feeders, eliminating the need for conventional me-
chanical feeders (e.g., bowl feeders). Pose estimation is
performed by using built-in functions of the AdeptVision
software, and must be fast enough not to degrade the
assembly cycle-time. Parts on the feeder belts are exam-
ined with binary vision tools. First, the vision system
determines if a part is graspable (i.e., the part is in a
recognized, stable pose and enough clearance exists be-
tween the part and its neighbors to grasp it). Secondly,
the pose of the part in the robot's world coordinates is
determined. This pose, and the motions associated with
acquiring the part, are checked to make sure that they are
entirely within the work envelope of the robot. A sec-
ondary function of the vision system is to register pallets
and modular work tables to a robot's world coordinate
system, avoiding the need for alignment hardware and
facilitating rapid changeover. Although not a part of our
current work, we plan to use vision for error recovery,
whereby the cameras can be used to inspect critical points
in the system, or assemblies in process.
The vision processing is currently performed on an

AdeptVision processor. The vision system uses eight
standard CCD cameras, mounted above the ¯exible parts
feeders and on the robot arms. It would be possible to use
one arm-mounted camera at each assembly station for all
parts feeding and pallet and modular table registration.
However, this would have a detrimental e�ect on work-
cell throughput and feeder e�ciency. Also, varying focal
lengths and f-stops would require the use of a servo-
controlled zoom lens if only arm-mounted cameras were
used. Because this would incur substantial penalties in
both cost and robot payload limitations, the decision to
use multiple cameras was made. Because the number of
camera inputs to the AdeptVision system is limited to
four, a low-cost custom video multiplexer was developed,
utilizing a monolithic MAXIM441 video-switcher that
allows up to four cameras to be attached to each video
system input.
The AdeptVision System can process only one image at

a time. Any con¯ict between multiple vision operations
causes image corruption, so a vision scheduler that is
responsible for all vision operations was developed. To
best utilize the AdeptVision resources, requests for vision
processing are queued by the vision scheduler by using a
multi-scan queuing mechanism. The scheduler inspects
the request queue whenever the vision processor becomes
available. If multiple requests are queued, the visionFig. 8. Flexible parts feeding system schematic.

Agile manufacturing workcell design 905



scheduler selects the most critical one for service. For
example,

let Q denote the request queue and let the `critical
robot' be that which has the longest estimated time to
completion for its current assembly. The vision sched-
uler examines the request queue in the following
manner:

If Q contains only one entry, service it immediately.
Q is inspected in the following order, with requests from
the `critical robot' receiving priority:
(1) pallet/worktable registration requests;
(2) locate next part for assembly requests;
(3) other requests.

If a vision operation fails, it is retried. After the maximum
number of retries has been reached, the request is re-
queued as a request from a `non-critical robot', lowering
its priority, and allowing other requests to be serviced.
In keeping with the quick-changeover philosophy, the

vision routines are designed to be reusable; i.e., a given
routine may be used to locate several di�erent but similar
parts (e.g., similar symmetries/asymmetries, topology).
This approach has many advantages, including mini-
mizing the number of software routines. In addition, this
reusability allows for software modularity and `agility'
[9]. For example, by parametrizing the features that a
routine searches for, a software vision recognition routine
can be applied to parts that have a similar pro®le but are
of di�erent sizes. This means that parts with geometries
similar to those already in the software library can be
added to the system by simply modifying the inspection
procedures that call these lower-level, reusable routines.
This approach readily lends itself to object-oriented
programming techniques wherein a general recognition
routine may be de®ned as an object class.

2.6. Introduction of new parts

New assembly operations involving previously used parts
require only software modi®cations of existing assembly
routines. However, modifying an assembly procedure to
incorporate a new part involves a few well-de®ned tasks.
First, a vision routine that determines the pose of the part
must be developed, utilizing the library of reusable vision
routines. If the new part has characteristics that appear
nowhere else in the parts library, new reusable routines
may need to be added to the software library. Secondly, if
the part has not been designed for use on the generic parts
feeders (e.g., it has few or no stable poses, as in the case of
a cylinder), the feeders may require a di�erent belt or a
change in the angle of inclination for parts with multiple
stable poses. Thirdly, a new gripper design may be nec-
essary to manipulate the new part. To minimize special-
ized hardware and avoid tool changes during assembly,
this last step should be performed concurrently with the

gripper designs for all other parts to be assembled at a
given robot. For instance, if a given operation requires
both part A and part B to be assembled at the same
robot, the gripper designer should take this into account.
The grippers for a given assembly would ideally also be
designed concurrently with the components, allowing
both designs to be iteratively re®ned to optimize perfor-
mance and reliability. Concurrent engineering as well as
other recent technologies, such as rapid prototyping and
solid modeling CAD systems, facilitate agile manufac-
turing from the design stage all the way through pro-
duction and quality control [10,11].

2.7. Computer hardware/controller design

The current software has been developed entirely in the
proprietary V+ programming language and operating
system, on Adept's MV controller. For most industrial
applications, this programming environment would be
su�cient; however, it lacks the power and ¯exibility
needed to support rapid software development and
changeover, i.e., agility. This is largely because V+ lacks
features that are standard in other languages and oper-
ating systems, such as user-de®nable functions in the
manner of C/C��, standard data structures, and a well-
developed shell script language.
To circumvent these limitations, a more extensive

controller interface design is under development that will
allow the system to support C and C��, and provide a
friendlier and more ¯exible user interface. In addition, it
will allow the use of a commercial real-time operating
system, thus simplifying software development and fur-
ther increasing agility.
This new controller interface will use a second VME-

bus in addition to the standard MV robot controller
VMEbus (Fig. 9). This second VMEbus houses I/O
boards and dedicated single-board computers (SBCs),
running under a commercial real-time operating system.
C and C�� programs running on the SBCs are respon-

Fig. 9. System architecture.

906 Quinn et al.



sible for all high-level control and assembly sequencing
(e.g., conveyor control, pneumatic operations, specifying
robot destinations), whereas the MV controller is used
exclusively for low-level robot motions (e.g., servo con-
trol and trajectory generation) and some machine vision
routines. The combination of VME, a commercial real-
time operating system (RTOS), and C��, being de facto
standards, helps to provide the workcell controller with
an open architecture [12]. A second vision-processing
board can also be used on the second VMEbus, aug-
menting the AdeptVision system.
The two buses are connected by a re¯ective memory

network consisting of two memory cards, one on each
bus, which can be connected by either a cable or a ®ber-
optic link. Changes made to memory on one board are
automatically re¯ected on the other, thus allowing com-
mands and data to be transmitted between the two buses
[13]. The SBCs can place robot and vision commands on
the re¯ective memory network to be read by a set of
command servers running on the MV controller (i.e.,
utilizing shared memory). The servers execute the com-
mands and, where applicable, return the results via the
same network. A testbed version of this architecture has
successfully controlled components of the workcell. A full
implementation is expected to be completed in the near
future.

3. Workcell software

The ¯exibility of an agile manufacturing system is pro-
vided largely by its software. However, this ¯exibility
does not come without careful design. Although software
is inherently easier to change than hardware, the structure
of a software system can degrade after repeated modi®-
cation, leading to poor reliability and increased mainte-
nance costs. In designing the workcell control software
we have employed software engineering methods and
tools that support the principle of design for change. In
particular, our software is object-oriented, that is, it is
based on identifying the objects of the system, which are
those entities having a state and a behavior. Physical
devices, abstract data structures, and entire subsystems
are modeled as objects that provide a well-de®ned set
of services whose implementation is encapsulated and
hidden.

3.1. Operating system

The initial versions of the workcell control software were
implemented with the V+ operating system and pro-
gramming language provided with the Adept MV con-
troller. Although V+ provides adequate facilities for
many robotic applications, a more advanced operating
system and programming language was necessary to
support our software design philosophy and the goals of

agile manufacturing. In general, workcell control involves
the management of a number of concurrent tasks
with real-time constraints. An RTOS with facilities for
task scheduling, communication, and synchronization is
necessary.

3.2. Software architecture

The workcell control software is designed as a hierarchy
of servers. At the highest level, the workcell controller
services requests from the human operator for crates of
®nished assemblies. In performing the task it communi-
cates with subordinate servers. In general, servers are
designed with as few assumptions about the overall
workcell structure as possible, so that they are not sen-
sitive to changes in that structure. Where appropriate,
servers operate concurrently.
Error handling is also hierarchical. If a server en-

counters an error condition, it ®rst tries to resolve it loc-
ally, e.g., by making additional requests to subordinate
servers. If this fails, the server indicates to its client that it
was unable to provide the requested service. The client
then tries to resolve this error condition. The unresolved
error continues to rise up the hierarchy to servers with
increasing spheres of in¯uence. In the absence of redun-
dant servers for the unresolved error in question, the
controller will inform the operator of a problem requiring
human intervention.

3.3. Workcell simulation

As the software development progressed concurrently
with the construction of the hardware system, it became
evident that an emulation of the expected hardware sys-
tem would be extremely useful. We began development of
a comprehensive simulation that would permit the
workcell control code to be developed and tested without
using the actual hardware and debugged without halting
the production of a functioning workcell.
Graphical simulation was also used (Fig. 10) to facili-

tate visualization of the hardware operation. This
was especially useful for investigating various workcell
layouts.
The conveyor system has been successfully simulated,

and detailed simulations of the robots and vision system
are under development. The simulation code mimics the
inputs and outputs of the workcell, allowing for trans-
parent use of the simulation. In other words, the code
used to control the simulated workcell is the same code
that is used to control the actual workcell. This is a
powerful tool for software design, because there are no
inconsistencies between the simulation control code and
the actual control code, eliminating possible porting
problems in moving from the simulation to the actual
control platform.

Agile manufacturing workcell design 907



4. Conclusions

This research successfully validates the critical issues for
the design of an agile manufacturing system. Flexible
parts feeders, machine vision, modular hardware, a so-
phisticated controller interface, online error correction,
graphical simulations and modular software are all es-
sential elements of an extensive implementation. The di-
vision of tasks between workcell robots is shown to have
a signi®cant e�ect on assembly times, and using multiple
robots in tandem to perform subassemblies is shown to be
advantageous in a typical assembly task. Results show
that the test assembly can be performed in approximately
20 seconds. Several thousand parts have been assembled
in the workcell and assembly errors have been recorded
and analyzed. Concepts for Design for Manufacture and
Assembly (DFMA) are being developed as guidelines for
future products to facilitate automated assembly.
In continuing work, our system is being expanded to

include increased use of modular vision routines, the use
of a real-time operating system and object-oriented pro-
gramming, and extensive error detection and recovery.
Product design for manufacturing and assembly will also
play a key role in facilitating feeding, assembly, and pose
estimation.

Acknowledgements

This work was supported by the Cleveland Advanced
Manufacturing Program (CAMP) through the Center of
Automation and Intelligent Systems Research (CAISR)
and the Case School of Engineering.

References

[1] Noaker, P.M. (1994) The search for agile manufacturing. Manu-
facturing Engineering, 113, 40±43.

[2] Comerford, R. (1993) The ¯exible factory: case studies. IEEE
Spectrum, 30, 28±29.

[3] Goldman, S. and Nagel, R. (1993) Management, technology and
agility: the emergence of a new era in manufacturing. International
Journal of Technology Management, 8(1/2), 18±38.

[4] Burgess, T. (1993) Making the leap to agility: de®ning and
achieving agile manufacturing through business process redesign
and business network redesign. International Journal of Operations
and Production Management, 14(11), 23±34.

[5] Koepfer, G. C. (1995) Agile: it's about machines too. Modern
Machine Shop, 67, 10.

[6] Strobel, R. and Johnson, A. (1993) The ¯exible factory: case
studies. IEEE Spectrum, 30, 29±32.

[7] Bell, T.E. (1993) The ¯exible factory: case studies. IEEE Spec-
trum, 30, 32±35.

[8] Boehlke, D. (1994) Smart design for ¯exible feeding. Machine
Design, 66, 132±134.

[9] Sargent, D.M. (1996) A framework for computer vision in agile
manufacturing. Master's thesis, Case Western Reserve University.

[10] Japikse, D. and Olsofka, F.A. (1993) Agile engineering accelerates
design. Mechanical Engineering, 115, 60±62.

[11] Tracy, M.J., Murphy, J. and Denner, R. (1994) Achieving agile
manufacturing in the automotive industry. Automotive Engi-
neering, 102, 19±24.

[12] Wright, P.K. (1995) Principles of open-architecture manufactur-
ing. Journal of Manufacturing Systems, 14, 182±202.

[13] May, S. (1992) Using re¯ective memory to build highly interactive
real-time multiprocessing systems. VMEbus Systems, 9(3), 13±30.

Biographies

Roger D. Quinn is an associate professor in the Mechanical and
Aerospace Engineering Department at CWRU. His research specialties
include agile manufacturing, dynamics and control, and biologically
inspired robotics. He received his Ph.D. degree in Engineering Me-
chanics from VPI&SU.

Frank L. Merat is an associate professor in the Electrical Engineering
and Applied Physics Department at CWRU. He specializes in com-
puter vision, neural network signal processing, computer-aided in-
spection, simultaneous engineering, and manufacturing. He received
his Ph.D. degree in Electrical Engineering from CWRU.

Wyatt S. Newman is an associate professor in the Electrical Engi-
neering and Applied Physics Department at CWRU. He served as di-
rector of the Center for Automation and Intelligent Systems Research
(CAISR) for ®ve years. He specializes in robotics, agile manufacturing
and rapid prototyping. He received his Ph.D. degree from MIT.

Andy Podgurski is an associate professor in the Computer Engineering
and Science Department at CWRU. He specializes in program analy-
sis, software reliability and software for agile manufacturing. He re-
ceived his Ph.D. degree from UMass.

Leon Sterling joined the Computer Engineering and Science Depart-
ment at CWRU in 1985. He served as director of the Center for Au-
tomation and Intelligent Systems Research (CAISR) for two years. His
research includes expert systems and meta-programming for intelligent
systems. He is currently Professor of Computer Science at the Uni-
versity of Melbourne.

Fig. 10. Workcell simulation.

908 Quinn et al.



Gregory C. Causey is a Ph.D. candidate in the Mechanical and Aero-
space Engineering Department at CWRU. He received an M.S.M.E.
degree from CWRU. His research specialties include agile manufac-
turing assembly and hardware, ¯exible parts feeding and robotics.

David M. Sargent received an M.S. degree in Electrical Engineering
from CWRU. His research specialties include machine vision and
generalized vision routines. He currently works in industry.

Nicholas A. Barendt is pursuing an M.S. degree in the Electrical En-
gineering and Applied Physics Department at CWRU. His research
includes machine vision and robotics.

Virgilio (Dean) B. Velasco, is a Ph.D. candidate in the Electrical En-
gineering and Applied Physics Department at CWRU, from which he

also obtained an M.S. degree. His research activities include robotics,
controller hardware and intelligent grasping techniques.

Ju-Yeon Jo is a Ph.D. candidate in the Computer Engineering and
Science Department at CWRU. Her research activities includes de-
veloping a simulation of the agile manufacturing workcell and control
software.

Yoohwan Kim is a Ph.D. candidate in the Computer Engineering and
Science Department at CWRU. His research includes developing
software for the agile manufacturing workcell.

Agile manufacturing workcell design 909


	Abstract
	Introduction
	Workcell hardware
	Workcell software
	Conclusions
	Acknowledgements
	Biographies

