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I. INTRODUCTION

The recognition of objects given a complete or partial set of
features is inherent in human intelligence. The fields of pattern
recognition and artificial intelligence, among others, have
addressed this topic with a variety of models which lack
consistency and generality. Thus, it is the goal of this paper to
set forth a generalized model for object recognition
(classification).

System models utilizing neural networks have been
suggested for category perception. There are many publications
dedicated to the fundamentals of neural networks and parallel
distributed processing (1], [2], [6}, [7], (8], [10), [11], [12).
The most popular of the neural based models is the multi-layer
perceptron [12], capable of recognizing non-linear class
boundaries. However, such a model when applied to pattern
recognition has manifested poor generalization capabilities for
inputs significantly separated in feature space from any of the
training patterns [9]. All of these models lack three very
important properties; simplicity, generality for use in a variety
of applications, and training ease. The concept of a probability
based recognition system has been proposed by several
researchers [1], [2], [12]. Given an object(s) for recognition,
the presence or lack of features in the input provides the basis
for a probability weighted decision on the classification.
Following this reasoning, the proposed system is based on the
principles of probability. We refer to this architecture as the
GCPM (Generalized Category Perception Model.)

II. FORMULATION

The function of the GCPM is-to establish the presence of an
object in an input feature set. For an object to be present in the
input it must be supported by a set of features found in the
input. If they are not present in the input, there is a low
probability that the feature set was a result of that object. The
term "feature" refers to a characteristic of an object that is
measurable or the confidence in the presence of a non-
measurable feature.  Measurable features are inherently
quantifiable (e.g., geometric measurements). Non-measurable
features are a confidence value in the interval [0,1] which
represent the probability that a feature is present in the input
(e.g., topology, structure, geometric primitives, ...).

There is an association between the value of a
measurable feature, or the presence of a non-measurable
feature, and the probability of the presence of an object. Given
an object, it is expected that all measurable properties will be
(approximately) constant between appearances of the object.
This suggests the existence of a probability density function
between measurable feature values and the presence of object
classes. Likewise, the presence of non-measurable features
should be consistent. Combining both sets of features, an
object can then be identified by the confidence in non-

0-7803-1901-X/94 $4.00 ©1994 IEEE

measurable features and the evaluation of measurable features
This concept is the basis for the GCPM.

A. Discrete Probabilities for Measurable Features

Assume that n is the maximum number of features that may
appear in the input, and there are at most p possible objec
classes. Let the input be the feature set

x={x|'x2""ax,,}9 (¢))

where all members of x are continuous valued if the feature i:
measurable and in the interval [0,1] if non-measurable
Additionally, let the outputs corresponding to the feature inpu
be described by

0={0,,0,.-,0,}, @

where all elements of o are in the interval [0,1]. These outputs
0;, can be physically interpreted as the relative probability tha
the input feature set, x, was due to presence of object class i.
Similar to [13], each object class has an associated se
of features. Letting x; be the set of features for object class
they define the entire set of features under consideration as

F=uZ,X;. ©)

F is the union of the feature vectors for every possible objec
class. The measurable features must be transformed into :
probability in the interval [0,1] for each object class in order t
make a probability weighted decision on the feature vecto
classification. One method for determining these probabilit:
density functions, in the supervised learning mode, is presente:
below.

Using a sample of objects (training patterns) from eac)
class where the features in F are known, a discrete value:
probability density function may be determined. Consider tha
a measurable feature from F, is under consideration. A
discrete values of the feature the training set shows how man;
of each object class appear in a region of support (ROS) aroun
the value. Thus, given the ROS, the probability of each objec
class can be directly determined.

For each measurable feature in F let range and ROS b
defined as:

range= max_ value - min_ value @
ROS =[y—-K‘*B*nge,y+K2*p*range] (5)

where B , x|, and x, are determined by

1

o o X +K, =1 6
Training Points 1 ©
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and y is the discrete value of the feature under consideration.
Proper selection of these parameters allows application specific
knowledge to be incorporated into the perception process.
Once ROS is obtained for each measurable feature in F, the
probabilities of membership at these points can be computed.
The discrete points obtained in this process can be the basis for
estimating a continuous approximation to the probability
density function for each class using an artificial neural
network (ANN).

B. Probability Density Function Approximation

It has been proven that an ANN with one hidden layer, and an
input and output layer is sufficient to approximate any
measurable function and thus can be used as a universal
function approximator [4], [S]. A schematic representation of
the three-layered ANN architecture is shown in Figure 1. The
input to each network is a measurable feature value, and the
output is the probability for each object class.

Output
o) O(k) O(p)

Output Layer

() Hidden Layer

=1 Input Layer

Feature Input

Fig. 1. Architecture of a three-layered ANN

III. NEURAL NETWORK MODEL

The complete ANN model for solving this problem is shown in
Figure 2. For each measurable feature in the feature set, layers
1 through 3 represent an instance of the three-layered network
described in Figure 1. Figure 2 (a) provides a schematic
representation of this architecture. The dotted lines of layer 4,
in Figure 2 (a), not associated with a node in layer 3 are for the
effects of the non-measurable features on the final class
probabilities. These inputs are described in Figure 2 (b). For
each non-measurable feature, there is a uni-directional link
between layers 1 and 3, without layer 2 (the hidden layer of
Figure 1). Each neuron is labeled with an S or L indicating the
node has sigmoidal or linear activation.

The output of layer 3, in Figure 2 (a), represents the
probability that the measurable feature value was associated
with each object class. Note that for each feature, there are p
output nodes in layer 3 (one per object class). Layer 3 inputs,
in Figure 2 (b), are uni-directional connections between the
input confidence value and all object classes. The weights
between layers 3 and 4, in both Figures 2 (a) and (b), have the
important

»et(O1)

net(02)

©

Fig. 2. Complete neural network model (a) Measurabk
Feature Model  (b) Non-measurable Feature Model (c
Structure of the output layer

role of combining the evidence from all features in the featurt
vector to obtain the final class probabilities, 0.

The output layer, shown in Figure 2 (c), has as input:
the output probabilities o, and a dynamic classificatior
threshold, T. The output layer contains lateral inhibitory
connections [1] which create competition between the objec
classes. Depending on the selection of v, the system wil
operate in a single object or multi-object recognition mode
The outputs, ¢/ to cp, represent the final classifications for eacl
object class. In both the single and multiple object modes, any
output which is greater than zero corresponds to the objec
being extant in the input feature set.

B. Dynamic Behavior of the System

The system is completely feedforward in its operation until the
excitation of the output layer. A feature vector is input into the
system and transformed through the weights of layers 1 througt
4 to relative object class probabilities. These probabilities are
used as an initial bias to layer 5. The net input to node a ir
layer 5 is
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o(a) t=0

p )]
c(a)t-l - bzleabc(b)t-l t>0

net(a), =

where €, are the link weights for the lateral connections in
layer 5 from node b to node a, and c is the final classification
output of Figure 2 (c). The output, c(a), for node a is a non-
linear function of the net input and the dynamic classification
threshold, T, and can be written as

c(a)t =—g.[m)_'.]_ (8)

P
Elg[net(b)t]

where v is the link weight of the threshold, and

8= {3 o ::; ®
T, is given by
f=—— (10)
2 fle®n]+e
with
floy= {:) :t:e?wise (n

Note in equation 8 that the output c(a) is normalized by all
other outputs which results in the sum of all the outputs being
equal to 1 at each time instant. The function g has the role of
eliminating all output classes which are not above the dynamic
threshold, 7. The threshold, at any time, is slightly less (due to
p ) than 1 divided by the number of output classes still in the
competition. Proper selection of parameters v,e, and p will
allow for operation in single object and multiple object
recognition modes.

IV. SYSTEM TRAINING

There are 4 sets of weights to determine; layers 1 to 3 of Figure
2 (a), layers 1 to 3 of Figure 2 (b), layers 3 to 4 for both
measurable and non-measurable features, and the weights of
the output layer. [Each are discussed in the following
subsections.

A. Learning of the Weights for Measurable Features

The weights in layers 1 to 3 of Figure 2 (a) are determined
during a supervised training process utilizing the back-
propagation of error algorithm [1] [2]. Training patterns are
obtained by using the methodology described in Section II.
Given all the weights and thresholds for each ANN it is

possible to obtain the probabilities of class membership given
any measurable feature value in F.

B. Selection of the Weights for the Non-Measurable Features

The weights in layers 1 to 3 of Figure 2 (b) are chosen to
associate a non-measurable feature input with every object
class. In other words, each of the weights is set to unity. Not
every feature is a member of the feature set for every object
class. Thus a filtering process must be performed to only excite
an output node if the input feature is associated with the class.
This will be discussed in detail in the next subsection.

C. Selecting Weights for the Combination of Evidences

The link weights from layers 3 to 4 for the GCPM are next to
be determined. They have the important role of combining all
the evidence from each of the features in the input feature set,
F. Four parameters, v, —v,, determine the importance of a
feature { in recognizing object class m. v, is a uniqueness
measure, v, creates weight distribution, v, is a user defined
consistency measure, and v, associates features to object
classes. Thus,

W (0., f;)=N; (12)

Vo (0, f) =€ m 41,0 (13)

V3(0p» ) = C (0, ;) (14)
1 iffeX,

v4(0...,f.-)—{0 iffex, 15)

where ~, is the number of object classes to which feature i
belongs, # X, is the number of features in the feature set for
object m, and C is user-defined. v, may be viewed as having
the same functionality as a switch, If the feature is associated
with an object class, the switch is closed allowing the effect of
the feature to be transmitted to layer 4. If the feature is not
associated with an object, the switch is opened and the
influence of the feature is removed.

The final importance of any feature i to object o, is
written as

(0w £)= 1193 (0. ) (16)
I

If a perfect feature set for an object is input to the system, the
output probability for that class should be fully activated. This
requires the weights for a feature i going from output m of laye
3 to output m of layer 4 be chosen as

v f) an
Zlv(om'fj)
j=

mi

To avoid full activation of two object class outputs when on¢
has a feature vector which is a subset of another feature vector
the actual selection of the weights are modified as
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‘V+ iv(om'fj)
j=1

where y is a constant. Additionally, layer 4 nodes have a
linear activation implying that the output value is simply equal
to the net input.

D. Selection of the Weights in the Output Layer

The final weights to be determined are those in the dynamic
output layer. Layer 4 provides the final relative probabilities
that the input feature set was created by each of the output
classes. The role of layer 5 is to take those probabilities and
finalize the classification process. As described, recognition
can be accomplished in the single or multiple object recognition
mode. With the proper selection of v, €, and p , described in
equations 7 through 11, both modes of operation can be
accomplished. In the single mode, it is known a priori that
only one class may appear in the input at one time. Thus, the
role of the output layer should be to simply select the maximum
output of layer 4, and suppress the other outputs. This can be
achieved by choosing the parameters to realize the MAXNET
configuration [1]. In some instances, the input feature set may
have been composed by the superposition of many objects.
Combining the effects from both modes of operation, €, , the
inhibitory weight, is chosen as

€ if X,eX,: fora#b
€, =3(1-v)e if a#zb (19)
0 otherwise

and the classification threshold weight, v, is

1 multiple object recognition mode
= (20

1o single object recognition mode

The value of p in equation 10 is chosen to avoid the
recognition of objects which don't exist in the input. A logical
approach in classification is to eliminate many object classes
early in the competition. This requires a threshold which is
(relatively) the largest when many object classes are in the
competition, and decreases as object classes are eliminated.
Thus p is written as

§(§—I[C(b)‘l)
p=ebsl @1

€ andy (equation 18) are usually optimized simultaneously
during system training. This concept is presented in Section V.
When a stable condition is reached only the object classes
present in the input will have final output classifications greater
than zero. In the multi-object mode, like the single object
mode, a stable condition is reached as the time step approaches
infinity.
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V. EXPERIMENTAL RESULTS

The GCPM has been tested with two different experiment
utilizing the process presented. The first experiment tests th
validity of the non-measurable model and the second th
measurable model. In the first stage of both experiment:
training patterns were presented to the network and appropriat
learning and selection of weights was performed. At th
completion of the learning stage, the system was tested fc
recognition capabilities. This section describes each of th
experiments and discusses the significance of the results.

The first experiment consisted of six non-measurabl
features with four possible output classes. The 6-bit featur
vectors are shown in Table I. The complete neural networ
model is similar to Figures 2 (b) and (c) with 6 inputs, 24 node
in layer 3 (4 per feature), 4 nodes in layer 4 (one per outpt
class), and 4 nodes in layer 5. The binary vectors wer
randomly chosen with the exception of the fourth object clas
which was purposely chosen as a subset of object 2. The value
represent the confidence levels in the presence of nor
measurable features (e.g., binary pixel values). The values ¢
v3 and € were chosen as 1.0 and 0.1, respectively. Parameter:
y and { were optimized using the Guided Evolutionar
Simulated Annealing (GESA) algorithm [14] which is a hybri
of simulated annealing optimization [15]. The values of y
and { which yielded the best results were 0.52 and 0.88.

During the recognition stage of the experiment, th
feature confidence values were contaminated with uniforml
distributed noise which varied from 0.0 to each of the nois
levels between 0.0 to 0.5. Table II contains the results of th:
experiment for the recognition of the four objects in the singl
mode of operation. The data was collected over a sample «
1000 runs of the algorithm at each of 6 noise levels. Note th:
for all the objects 100% recognition was obtained even at nois
levels of 0.4 except for 0.2% misclassification of object 2 at
noise level of 0.4. During this experiment robust recognitic
was possible even at noise levels of 0.5 and below for operatic
in the single object mode.

Table III contains the portion of the results for tt
recognition of the objects in the multi-object mode when on!
single objects were presented at the input. Three classes
results are indicated in Table III; "True", "False", and "Extra
True is defined as recognizing only the objects which wel
contained in the input feature vectors. False implies that som
other object(s) were identified other than those contained in tt
input. Finally, extra means that the correct objects we
recognized along with another object(s). Nearly 100
recognition of the objects up to noise levels of 0.3 is possib
without the identification of extra objects when object 4
excluded. The recognition of extra objects along with tt
correct object becomes increasingly prevalent at noise leve
beyond 0.4. This is because the lack of confidence in ti
presence (or absence) of features creates enough support for ti
extra objects to be identified.

Table IV shows the results using the GCPM whe
superposed objects of Table I are input in the multi-obje
mode. The results show excellent recognition capabilities fi
superposed objects up to noise levels of 0.3. The percent
extra and false objects identified also increases over inpu



which were created by the contamination of single object
feature sets. This is because multiple objects superimposed
upon each other create feature sets which closely resemble
feature sets from other object classes. This data suggests that
multi-object recognition for superposed objects is robust up to
noise levels of 0.3. Situations where the combinations of
objects results in a feature set which contains other objects as
subsets should be avoided to eliminate excessive recognition of
extra or false classes. In reality, this will be a rare occurrence
in implementing the GCPM.

TABLEI
FEATURE VECTORS FOR EXPERIMENT 1
Object 1l P B f p f5
1 1 0 0 1 1 0
2 1 1 0 0 1 1
3 0 1 1 0 1 0
4 1 1 0 0 1 0
TABLE Il
SINGLE MODE RECOGNITION
Noise Percent Correct Recognition
Object 1 | Object 2 | Object 3 | Object 4
0.0 100 100 100 100
0.1 100 100 100 100
0.2 100 100 100 100
03 100 100 100 100
04 100 99.8 100 100
0.5 100 95.4 100 93.0
TABLE III

MULTI-OBJECT MODE - SINGLE OBJECTS

Object Noise Level

1 0.0 0.1 0.2 0.3 0.4 0.5

True 100.0 | 100.0 | 100.0 | 100.0 92.8 85.7
False 0.0 0.0 0.0 0.0 0.0 0.0
Extra 0.0 0.0 0.0 0.0 1.2 14.3

2 0.0 0.1 0.2 0.3 04 0.5

True 100.0 | 100.0 | 100.0 { 100.0 99.6 94.5
False 0.0 0.0 0.0 0.0 0.0 0.0
Extra 0.0 0.0 0.0 0.0 0.4 55

3 0.0 0.1 0.2 0.3 04 0.5

True 100.0 | 100.0 | 100.0 99.9 93.4 81.6
False 0.0 0.0 0.0 0.0 0.0 0.0
Extra 0.0 0.0 0.0 0.1 6.6 184

4 0.0 0.1 0.2 0.3 04 0.5

True 100.0 | 100.0 | 100.0 76.8 49.4 26.5
False 0.0 0.0 0.0 0.0 0.0 6.4
Extra 0.0 0.0 0.0 23.2 50.6 61.1
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TABLEIV
MULTI-OBJECT MODE - SUPERPOSED OBJECTS

Objects Noise Level

1&2 0.0 0.1 0.2 0.3 0.4 0.5

True 100.0 | 100.0 99.8 93.2 82.7 70.5
False 0.0 0.0 0.0 0.0 0.1 0.7
Extra 0.0 0.0 0.0 0.0 0.0 0.0

1&3 0.0 0.1 0.2 03 04 0.5

True 100.0 | 100.0 | 100.0 889 74.4 571
False 0.0 0.0 0.0 0.6 5.0 174
Extra 0.0 0.0 0.0 3.5 7.1 5.5

1&4 0.0 0.1 0.2 0.3 04 0.5

True 100.0 | 100.0 99.9 93.3 84.2 62.2
False 0.0 0.0 0.0 0.0 0.0 57
Extra 0.0 0.0 0.0 0.0 0.0 0.5

2&3 0.0 0.1 0.2 0.3 04 0.5

True 1000 | 100.0 99.7 93.6 80.7 73.6
False 0.0 0.0 0.0 0.0 03 1.2
Extra 0.0 0.0 0.0 0.0 0.0 0.0

3&4 0.0 0.1 0.2 0.3 04 0.5

True 1000 | 100.0 99.7 94.7 83.1 583
False 0.0 0.0 0.0 0.0 0.0 6.8
Extra 0.0 0.0 0.0 0.0 0.0 0.9

In the second experiment, the task was to solve the
real problem of determining the number of spheres (circles
associated with any region in an image. A version of the imag
utilized in the test is provided in Figure 3. The problem i
based
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Fig. 3. Overlapping spheres utilized for experiment 2

on the decomposition of overlapping particles in the study o
fluid motion using seed particles. The image contains fou
different sized spheres at various levels of overlap an
orientation. Overlapping can only occur with spheres of the
same size and no more than three spheres can be present in an;
one region. Thus, there are 3 possible output classes. The to]
four rows were used for training, and the bottom four fo
verification. The features used for recognition are measurabk
features. Specifically, the circumference divided by the radiu
of the sphere, and the major axis of the bounding ellipse [3
divided by the radius is contained in the feature vector for al
three classes. The complete system model is similar to Figure
2 (a) and (c) with 2 inputs (1 per feature), 24 nodes in layer :



(12 hidden nodes per measurable teature), 6 nodes n 1ayer 3 (3
per feature), and 3 nodes in layers 4 and 5 (1 per output class).

During the learning stage of the experiment, discrete
values of the features in the feature vector were extracted and
used for learning the continuous probability density functions
as described in Section II. The parameter B was chosen to be
0.15 because a fairly small amount of training points were
utilized. If a larger amount of patterns had been used, this
parameter could have been decreased. Additionally, a self-
imposed goal was to ensure misclassification always occurred
to the class with the least number of spheres per region. For
example, if a two sphere region were to be misclassified, it
should be recognized as a single sphere region and not a triple
sphere region. By selecting parameters x; and k, to be 0.7
and 0.3, respectively, such selective misclassification can be
obtained. This demonstrates one of the most powerful aspects
of the GCPM, control over the classification of bounding
regions with measurable features. v3 (consistency measure)
was chosen to be 1.5 for the normalized circumference, and 1.0
for the normalized major axis feature. The circumference of a
region is an exact measurement, while the major axis is an
approximation to the bounding ellipse. Thus, the
circumference can be considered to be a more consistent
measure than the major axis, and is therefore given additional
weighting in the final classification. Once again, the
utilization of this parameter provides the user with powerful
control of the recognition process.

The recognition task involved extracting the feature
vectors from the verification set, inputting them into the neural
network system, and determining the final region classification.
Because only one class may be present per region, single mode
operation was used during recognition (v = 0). The results
from this experiment are shown in Table V. The percent
correct classification was expected to decrease as the number of
spheres per region increased. This is because a triple sphere
region may look like a double or single sphere region if there is
a great deal of overlap. Likewise, a double sphere region could
appear to be a single sphere region if the spheres were 100%
overlapped. A greater percentage of the double and triple
sphere regions could have been correctly identified if selective
misclassification were not utilized (x; =k, =0.5).

TABLEV
RESULTS FROM EXPERIMENT 2

Spheres Per Region Recognition Results
1 100.0
2 97.5
3 80.0

VI. DISCUSSION AND CONCLUSIONS

A generalized model for learning object classes has been
presented and the associated neural network model discussed.
In developing the paradigm, learning rules for determining the
weights for both measurable and non-measurable features are
derived. The GCPM has many strong points which allow for
robust perception in the presence of noise. First, it provides an
effective way of dealing with both measurable and non-

MCASUIYDIC 1C4LUICS. A DUAIEIL 1UIWAIU appiuavis e gussg
from feature values to the probabilities of class memberships is
inherent in the system. Second, the user is given control over
selective misclassification using parameters x, and x,, which
can bias the probability density functions. Additionally, the
user's experience can be utilized in the appropriate selection of
the consistency measure of a feature, v;. Third, the capability
to operate the system in both single and multiple object
recognition modes is provided. Both modes of operation
exhibit robust classification, even with significant amounts of
noise on the input feature vectors. This ability was
demonstrated in experiments 1 and 3. By accounting for each
of these situations, the GCPM can truly be categorized as
general.
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