Proceedings of the 1997 IEEE
International Conference on Robotics and Automation
Albuquerque, New Mexico - April 1997

A Flexible Software Architecture for Agile Manufacturing

Yoohwan Kim!, Ju-Yeon Jo!, Virgilio B. Velasco Jr.}, Nicholas A. Barendt?,
Andy Podgurskif, Gultekin Ozsoyoglu!, and Frank L. Merat*
tComputer Engineering & Science Department
!Electrical Engineering & Applied Physics Department
Center for Automation and Intelligent Systems Research
Case Western Reserve University
Cleveland, Ohio 44106

Abstract

The flexibility required of an agile manufacturing system
must be achieved largely through computer software. The
system’s control software must be adaptable to new prod-
ucts and to new system components without becoming un-
reliable or difficult to maintain. This requires designing the
software specifically to facilitate future changes. As part of
the Agile Manufacturing Project at Case Western Reserve
University, we have developed a software architecture for
control of an agile manufacturing workcell, and we have
demonstrated its flexibility with rapid changeover and in-
troduction of new products. In this paper, we describe the
requirements for agile manufacturing software and how our
software architecture addresses them.

1 Introduction

For our purposes, agile or flexible manufacturing facility is
one which supports the following capabilities:

¢ rapid changeover between products
o rapid introduction of new products
¢ unattended operation

To reduce costs and delays, an agile manufacturing sys-
tem should be designed so that hardware changes are min-
imized. Agile manufacturing requires the use of technolo-
gies that can adapt to a variety of products without ex-
tensive retooling. These technologies include computers,
general-purpose robots, machine vision systems, sensors,
conveyors, and flexible parts-feeders. Integration and over-
all control of an agile manufacturing system are embodied
in computer software, and this software provides a large
measure of the system’s flexibility. To the extent possible,
product changeover is reduced to loading appropriate soft-
ware, and introduction of new products is accomplished by

0-7803-3612-7-4/97 $5.00 © 1997 IEEE

modifying software. Thus, the control software for an agile
manufacturing system must undergo frequent modification.
Although software is typically more malleable than hard-
ware, changes can gradually degrade its structure, so that it
becomes unreliable and difficult to maintain. To avoid this,
software must be designed specifically to facilitate mainte-
nance.

As part of the Agile Manufacturing Project at Case
Western Reserve University (CWRU) [1, 2], we have devel-
oped a flexible and robust software architecture for work-
cell control. Object-oriented design techniques were em-
ployed to facilitate rapid changeover and rapid introduction
of new products. The architecture identifies fundamental
objects and operations of agile manufacturing, and it de-
scribes their relationships in terms of design patterns [3].
Hardware and software dependencies have been isolated as
much as possible. To support unattended operation, a hier-
archical framework has been developed for error handling.
The architecture has been implemented using the Ct pro-
gramming language and a commercial real-time operating
system (VxWorks) conforming to the POSIX standard. The
flexibility of the architecture has been demonstrated by
rapid changeover between current products and by intro-
duction of new products.

2 CWRU Workecell Overview
2.1 Workcell Hardware

A testbed implementation of an agile manufacturing work-
cell has been developed at CWRU for light mechanical
assembly applications. It includes multiple Adept SCARA
robots mounted near a central conveyor system. These are
augmented with flexible parts feeders, a vision system, sen-
sors, and limited special purpose hardware. All of these
are controlled by the workcell software. Each robot does
partial assembly work, and subassembilies are placed in fix-
tures on conveyor pallets for transportation to other robots.
Parts are fed to robots on belt conveyors which terminate at

3043

Figure 1: Workcell Hardware

an underlit window. Part position and orientation are iden-
tified by the vision system. Rapid changeover is achieved
through the use of multipurpose grippers, modular wrist
tool-change connectors, and modular worktables. Figure 1
shows the overview of the agile workcell.

2.2 Controller

The entire workcell is controlled using a dual VMEbus ar-
chitecture, where robot motion control and vision process-
ing are assigned to an Adept MV controller and all other
operations, such as assembly sequencing and I/O, are per-
formed by third-partyboards in a non-Adept VMEbus. This
innovative, open architecture allows us to exploit the MV
controller’s advanced vision and robot control capabilities
without adopting Adept’s proprietary V¥ programming lan-
guage and operating system as our principal software devel-
opment platform. The workcell is controlled primarily by a
C** program running under the VxWorks real-time oper-
ating system (RTOS) on the non-Adept VME bus. The two
VMEbuses are connected by a reflective memory network,
in which changes made to a memory module on one bus
are automatically reflected on the other bus. Requests from
the primary control program for vision and robot motion
services are made to a vision server and command server,
respectively, that run on the non-Adept bus. These are lo-
cal proxies that service requests by communicating them
to the Adept system via reflective memory. Their function
is to isolate dependencies on the Adept system. We are
currently moving responsibility for vision processing to the
non-Adept side as well.

3 Design Goals

o Design for change: The software must accommodate
future changes and its reconfiguration process must be
quick. The scenarios of possible changes must be
studied and necessary modification procedures should
be well planned and documented.

o Design for lower complexity: We expect our soft-
ware will grow continuously as new products are added
and structural changes are applied to the workcell. Be-
cause complex systems are less maintainable, control-
ling complexity was another goal in our design.

¢ Design for reuse: Another factor in reducing soft-
ware cost is reuse. It is easier and faster to use exist-
ing software components rather than developing them
from the scratch. Well-defined software components
are also less error-prone because they usually undergo
thorough unit testing and are field-tested by users.

4 Software Engineering Methodology

Developing maintainable software entails anticipating
changes in requirements and encapsulating design deci-
sions within software modules, so that modifications can be
localized. Encapsulation or information hiding is a funda-
mental principle of object-oriented software design and pro-
gramming. Object-orientation is based on the observation
that the fundamental objects of a system are typically more
stable than its features or functions. The common proper-
ties of a set of related objects are characterized by defining a
class, which is a software module that provides a set of ser-
vices (operations) to other classes called clients, but which
encapsulates the implementation of these services. Thus, a
class has a public interface and a private implementation.
Solutions to important design problems can be expressed as
design patterns, which are “descriptions of communicating
objects and classes that are customized to solve a general
design problem in a particular context” [3]. Design pat-
terns capture the important relationships between objects
and classes in an object-oriented design. Both classes and
design patterns can be reused in new designs.

5 System Structure

The primary source of change in an agile manufacturing
system is the introduction of new products. Another impor-
tant source of change is the introduction of new workcell
components such as robots, conveyors, and vision proces-
sors. Our software architecture encapsulates these sources
of change within classes. The architecture defines a hierar-
chy of servers, ranging from high-level agents that control

3044

Behavioral "
Part Workeell | Toy [Telephone || Clock --#» Creates
Manager © Assembler l'Assemmer Assembler
i L
o ! O HAS-A
B
i ' ' ;_ _________________ i I
B et N ; o Muiple
v
v . . .
Parcel Part
Transporter Suppler Assembleri‘—’. Suppler
— |
| E ‘ TS
N : o
----- s St B Bt
| |
v
’__Q_‘ L] '
Transfer | Conveyol Robot .‘I’_"a%"“; Feeder | |Locator
SSlation ! J
.| Gripper Pendulur |Switch | |Button
Implementation | ©"™%| foepOng ladepsso || T | el | Locator
Part

Figure 2: Simplified Class Diagram

entire subsystems down to simple objects that provide an
interface to physical devices. At the top of this hierarchy
is the Workcell Manager, which initiates operation of the
workcell by instantiating its objects. Immediately below it
are the agents which control the principal subsystems of the
workcell. These agents are Assemblers, Suppliers, and
the Transporter. Their interactions define the workeell’s
high-level operation. We now describe each of these objects
in more detail:

e The Workcell Manager is a supervisory agent that
creates Assemblers, Suppliers, and the Transporter
and allocates necessary resources to them. It starts or
shuts down workcell operation and communicates with
the operator. It also orchestrates all the other activities
that require cooperation between other agents, such as
erTor recovery.

e An Assembler is responsible for making partial or
complete assemblies. Partial assemblies made by one
Assembler are completed by another. An Assembler
requests parts and subassemblies from Suppliers. It
encapsulates an assembly sequence and directly or in-
directly employs a robot, vision system, parts feeders,
and possibly special purpose hardware.

e A Transporter provides general purpose transporta-
tion of parts, assemblies, or other material around the
workcell. It services requests from Suppliers. In the
current system, there is one Transporter, which uses
a Bosch conveyor to move pallets of partial or com-
plete assemblies between work stations. However, the
Transporter interface hides the actual transportation

mechanism, so that different ones may be used without
affecting the rest of the system. A Transporter may
need to route or to store parcels between their source
and destination, although this is unnecessary with the
current workcell, whose conveyor forms a simple loop.

o A Supplier services request for parts or assemblies.
There are two basic kinds of Suppliers: Part Sup-
pliers and Parcel Suppliers. A Part Supplier pro-
vides the coordinates of a part or subassembly to an
Assembler. Some Part Suppliers invoke a flexible
parts feeder and the vision system to locate a part.
Others request a parcel of subassemblies from a Par-
cel Supplier, which obtains the subassemblies from
an Assembler and invokes the Transporter to move
them to where they are needed.

These agents are designed with as few assumptions
about the overall workcell structure as possible, so they
are not sensitive to changes in that structure. The interac-
tion between Assemblers, Transporters, and Suppliers
defines an important pattern of behavior that is present in
most agile manufacturing applications. We call this the
Assembler-Transporter-Supplier design pattern.

Figure 2 shows a simplified version of class structure
in Rumbaugh et al’s OMT notation [4].

Some notable auxiliary objects include Robots,
Feeders, and Part Locators:

¢ A Robot provides an interface to a physical robot. The
Robot class interface contains operations common to
most robots, such as move to, open gripper, and close
gripper. Subclasses of Robot are defined for each
type robot used in the system, e.g., AdeptOne and
Adept550. Robots are employed by Assembilers.

o A Feeder controls a flexible parts feeder to bring parts
under the view of a camera. Feeders are employed
by Part Suppliers.

e A Part Locator determines the location and orienta-
tion of a part, using the vision system. Part Locators
are employed by Part Suppliers.

6 Error Handling

To achieve the goal of unattended operation, an agile man-
ufacturing system must incorporate robust error handling.
This can add considerable complexity to the control soft-
ware. It is not unusual for error handling code to make up
80% of conventional control programs. To simplify error
handling in the CWRU agile workeell, we have developed
a hierarchical framework for error handling. In this frame-
work, errors are handled locally if possible. If they cannot

3045

be handled locally, then responsibility for handling them
is passed up to higher-level agents. For example, if a part
cannot be found by a Part Locator, it can attempt to adjust
parameters of the vision system to obtain a better image. If
this does not work, it reports failure to the Part Supplier
that invoked it. If that Supplier can obtain the part else-
where, e.g., from another Feeder, it will do so. Otherwise,
it must report failure to the Assembler that invoked it. If
another Supplier exists for the part, the Assembler will
try it; otherwise the Assembler will report failure to the
Workcell Manager, which could bypass the Assembler
or notify plant personnel.

We are currently working to enhance the error han-
dling capabilities of the CWRU agile workcell. This in-
volves incorporating additional sensors and redundant sub-
systems.

7 Implementation Issues

7.1 Software Development Platform

The control software for an initial prototype of the agile
workcell was implemented with Adept’s V* programming
language and operating system. A number of problems
were revealed during this effort. Being proprietary, V*
does not lend itself to an open system. The V¥ program-
ming language and software development environment are
rather primitive, and they do not support object-oriented
programming. Finally, the V¥ operating system does not
offer the task-management facilities of a full-fledged RTOS.
It was concluded that V* was unsuitable for our purposes,
which are not typical of current robotic applications. In-
stead, the bulk of our control system was implemented in
the ANSI C*+ programming language, using the POSIX-
compliant RTOS VxWorks. By choosing a standardized
programming language and operating system interface, we
obtained a significant measure of platform independence.
Moreover, advanced software development tools are avail-
able for use with C** and VxWorks.

The current software was developed on Sun work-
stations under the UNIX operating system. The Revision
Control System (RCS) was used for configuration manage-
ment. The software is currently composed of about 40
classes and its size is roughly 8,000 lines of C** source
code.

7.2 Concurrent Programming

The active agents of the system, such as Assemblers, Sup-
pliers, and the Transporter, operate concurrently and are
implemented as RTOS tasks. However, this is invisible to
clients, which interact with the agents through their C*+

class interfaces (Ct* does not directly support concur-
rency). Clients need not make RTOS system calls to create,
schedule, synchronize, or communicate between tasks; this
is done by the class implementation. Priority scheduling
has proven unnecessary for the current system, because
mechanical operations introduce considerable slack time.
Presently, 18 tasks run concurrently in round-robin fashion
with 20 ms time slots.

7.3 Data Logging

System status is logged using commands provided by Vx-
Works. Logged items include: commands sent to the robot
motion servers; the assembly status for each robot; trans-
portation status, etc. Data is logged with time-stamps, then
analyzed in real-time by the Agile Database Server [5] for
performance measurements or to answer remote queries.

8 Maintainability

To illustrate the maintainability of our software architecture,
we now consider how it is affected by the introduction of a
new product or a new hardware component.

o New product

One or more new subclasses of Assembler must be
defined to assemble the product. If multiple subclasses
are used, each is responsible for part of the assembly.
New subclasses of Gripper and Work Table may have
to be defined to interface with new robot grippers and
modular worktables. If the product contains new parts,
new subclasses of Locator must be defined to find
them using the vision system. This can usually be done
with standard vision routines. Finally, a new Workcell
Manager is necessary to instantiate new classes and
start workcell operation. In our experience, only about
600 lines of code must be written to accommodate a
new product; this can be done in a day or two, although
more time is necessary for testing.

e New hardware component
We consider two examples of new hardware:

1. New robot: This entails implementing a new
subclass of Robot. This subclass provides the
same operations as other Robot subclasses like
AdeptOne and Adept 550, but its implementa-
tion is different.

2. New transportation mechanism: If the back-
bone conveyor is replaced with a radically differ-
ent system, e.g., mobile robots, new classes must
be developed for controlling the new hardware,
and the implementation part of Transporter must

3046

be changed to use these classes. However, the
interface of Transporter is unchanged, so clients
are not affected. Transporter and its associated
classes currently comprise about 1,000 lines of
code.

9 Related Work

Several applications of object-oriented design to manufac-
turing systems have been described previously in the liter-
ature: Miller and Lennox [6] describe layered software in
which physical objects are organized into class hierarchies;
Adiga and Cogez [7] define a hierarchical software archi-
tecture for conventional manufacturing; Buschmann and
Meunier [8] apply the Model-View-Controller design pat-
tern in the design of a material handling system. However,
these papers do not address the issues of agile manufactur-
ing.

10 Conclusions

Quickly reconfigurable software is crucial for the success
of agile manufacturing. At CWRU, we have developed
an extensible software architecture for controlling an ag-
ile manufacturing workcell and we have demonstrated its
flexibility. This architecture is intended to support light
mechanical assembly, but it should be applicable to other
agile manufacturing applications as well. We hope that it
will contribute to the development of one or more standard
architectures for this important family of applications.

11 Acknowledgements

This work was supported by the Cleveland Advance Manu-
facturing Program (CAMP) through Center of Automation
and Intelligent Systems Research (CAISR) and the Case
School of Engineering. :

References

[1] R.D. Quinn, G.C. Causey, F.L. Merat, D.M. Sargent,
N.A. Barendt, W.S. Newman, V.B. Velasco Jr., A.
Podgurski, J.Y. Jo, L.S. Sterling, Y.H. Kim, “Design of
an Agile Manufacturing Workceell for Light Mechani-
cal Applications,” Proc. of IEEE International Confer-
ence on Robotics and Automation, 1996, pp.858-863.

R.D. Quinn, G.C. Causey, F.L.. Merat, N.A. Barendt,
W.S. Newman, V.B. Velasco Jr., A. Podgurski, Y.H.

(2]

3047

(3]

(4]

(5]

(6]

(7]

(8]

Kim, G. Ozsoyoglu, J.Y. Jo, “Advances in Agile Man-
ufacturing,” Proc. of IEEE International Conference
on Robotics and Automation, 1997.

Gamma, E., Helm, R., Johnson, R., and Vlissides,
J., Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley, 1994,

J. Rumbaugh, M. Blaha Gamma, W. Premerlani, F.
Eddy, and W. Lorenson, Object-Oriented Modeling
and Design, Prentice Hall, Englewood Cliffs, NJ,
1991.

Sungkil Lee, et al., “A Database Server for an Ag-
ile Manufacturing System with or without Time Con-
straints,” Conference on Agile and Intelligent Manu-
Jacturing Systems, Troy, NY, October, 1996.

David J. Miller and R. Charleene Lennox, “An Object-
Oriented Environment for Robot System Architec-
tures,” I[EEE Control Systems, Feb. 1991, pp.14-23.

S. Adiga and P. Cogez, “Towards an Object-Oriented
Architecture for CIM Systems,” Object-Oriented Soft-
ware for Manufacturing Systems, Chapman & Hall,
1993.

Frank Buschmann and Regine Meunier, “Building a
Software System,” Electronic Design, February 20,
1995, pp.132-144.

