IASTED International Conference on Robotics and Manufacturing, 1998, Banff, Canada

A DISTRIBUTED, OBJECT-ORIENTED ARCHITECTURE
FOR PLATFORM-INDEPENDENT MACHINE VISION

Nicholas A. Barendt
Dept. of Electrical Engineering and Applied Physics
Case Western Reserve University, Cleveland, Ohio, USA

Andy Podgurski
Dept. of Computer Engineering and Science
Case Western Reserve University, Cleveland, Ohio, USA

ABSTRACT

This paper describes the design of a client/server
architecture for machine vision. The server is constructed
as a virtual machine, permitting client software to be
platform-independent. The client architecture consists of
a number of proxy classes that hide the details of server
communication, simplifying the construction of client
applications. Serializable objects are used for
communication between clients and the server. Both
TCP/IP sockets and POSIX message queues are currently
supported for client/server communication. The server is
implemented under VxWorks, a real-time operating
system (RTOS), executing on a Motorola processor. It
currently supports hardware developed by Imaging
Technology, Incorporated. Client software is
implemented under VxWorks, LynxOS, another RTOS,
and Linux, executing on both Motorola and Intel
processors.

Keywords: Machine Vision, Distributed Systems,
Open Systems, Client/Server

1 INTRODUCTION

Machine vision systems are becoming more
prevalent in manufacturing environments as their
associated costs continue to drop and processing speeds
continue to increase. The advent of low-cost, high-
performance DSPs has initiated a whole new generation
of sophisticated machine vision hardware. A large
number of vendors now offer turnkey machine vision
systems, greatly simplifying the integration of machine
vision into manufacturing.

Machine vision is an enabling technology for agile
manufacturing in particular, allowing specialized
hardware required for a particular component to be
replaced by a camera and machine vision software. The
CWRU Agile Manufacturing Workcell is such an
example [1]. Specifically, agile manufacturing is “the
ability to accomplish rapid changeover between the
manufacture of different assemblies utilizing essentially

Frank L. Merat
Dept. of Electrical Engineering and Applied Physics
Case Western Reserve University, Cleveland, Ohio, USA

Edward Blanchard
Dept. of Electrical Engineering and Applied Physics
Case Western Reserve University, Cleveland, Ohio, USA

the same workcell” [1]. Agile manufacturing often uses
robotics to allow a wide variety of tasks to be performed
by a single workcell. Flexible part feeding systems, for
example, supply a wide variety of parts in random
positions and orientations to a robot. Machine vision is
used to accurately determine the pose of parts so that they
can be assembled by a robot [2].

In recent years, the automation market has been
moving towards “open systems” designed to allow the
customer to integrate products from different vendors into
a control system. Open robot controllers (e.g., Cimetrix),
allow the system integrator to control a wide variety of
robots with a common software interface. This is in
contrast to older systems that were closed and not
extensible. In particular, the software and development
environments of these older systems are typically
proprietary, forcing customers to learn an arcane language
or Application Programming Interface (API).

This paper describes the design and development of
a platform-independent software architecture for machine
vision. A client/server model is used, allowing a large
number of concurrent vision tasks as well as remote
clients. The architecture uses object-oriented design
(OOD) to encapsulate vendor specific hardware and
software, allowing applications to be written using a
generic machine vision API.

2 PRIOR RESEARCH EFFORTS

While there has been a great deal of research in the
field of machine vision, relatively little has been done in
the specific areas of platform-independence and
client/server architectures. Two exceptions to this are the
“DataCube Server” and the DeVious project. Kahn et al.
[3] developed the “DataCube Server” to simplify the
programming of machine vision hardware produced by
DataCube, Inc. Their reasons for creating the server were
twofold: (1) only a single process on a single “host”
machine could access the expensive DataCube hardware
and (2) pipelined programs are difficult to write. Its

single vendor design and narrow application domain
limited the DataCube Server.

In the DeVious project [4], Romig et al. developed a
distributed environment for computer vision, allowing
machine vision operations to be performed in parallel
using a loosely-coupled network of workstations. The
motivations for this were to take advantage of the
computational capacity of a network of computers and to
investigate distributed systems for the specific area of
machine vision. An important aspect of the DeVious
project was that the software was designed to operate in a
heterogeneous environment, on both Sun and Digital Unix
workstations, taking advantage of accelerated hardware
when available.

The current work uses many of the concepts
developed for the DataCube Server and the DeVious
project. Specifically, the remote method invocation
(RMI) system developed for the DataCube Server
inspired the one used in our architecture. The use of
object-oriented programming to simplify the
programming of pipelined machine vision hardware of the
DataCube Server has been developed into a platform-
independent virtual machine vision processor, further
simplifying the programmer’s model of the vision system.
The DeVious project’s ability to take advantage of
available hardware was the inspiration for this
architecture’s use of a virtual vision processor. Finally,
the distributed nature of both architectures guided the
construction of the client/server communication.

3 DESIGN GOALS

Analysis of the machine vision needs of the CWRU
Agile Manufacturing workcell led to the following design
goals for this architecture:

1. To preserve the functionality of the AdeptVision
system currently in use while providing a more
flexible, extensible architecture

2. To achieve platform-independence permitting
applications to be ported between different
vendors’ systems, without sacrificing
performance

3. To support multiple, local and remote
concurrent machine vision tasks, across
heterogeneous platforms

4. To wuse Object-Oriented Design (OOD)
techniques to facilitate development and
maintenance without incurring unacceptable
overhead

The impetus for embarking on the development of a
new machine vision system grew out of experience with
the AdeptVision [5] system. The AdeptVision System [1,
6] satisfied many of the basic requirements of the CWRU
workcell, providing a basic toolset for industrial machine
vision.

Client Application

]

Vision Server

Client Application |PC Mechanism

Virtual Vision
Vision Hardware [«—»| P
Client Application rocessor

FIGURE 1: ARCHITECTURE OVERVIEW

AdeptVision supports a number of basic machine
vision operations, including image acquisition, binary
analysis (e.g., connected-component labeling), inspection
tools (e.g., “rulers” and edge-finders), and, most-
importantly, camera calibration, allowing vision-guided
robot motion. Like most machine vision systems,
however, AdeptVision is closed and proprietary, limiting
extensibility and portability.

Our software architecture needed to support a wide
range of machine vision hardware while being open and
extensible. There is a great variety of machine vision
hardware available from simple frame-grabbers to high-
end, multiprocessor systems. The architecture should be
capable of taking full advantage of accelerated hardware,
without rewriting existing application software.

The CWRU Agile Manufacturing Workcell requires
a number of vision tasks for operations like parts feeding.
A client/server model is useful because it is a natural way
of sharing limited resources among a number of tasks. In
addition, the client/server model permits support for
remote tasks (clients).

Object-oriented (OO) software has become the
standard for many new systems. OO design principles
assist the software developer in producing clean,
maintainable software. C++ and other OO languages,
however, tend to be less efficient than their procedural
brethren (e.g., C) in both CPU and memory usage.
Although modern computer systems make these
efficiency problems less important, dynamic memory
allocation can still be a major problem. The creation and
destruction of objects in a real-time system must be done
carefully, if at all. A well-designed system can eliminate
the run-time use of dynamic memory through static
objects and pre-allocation.

4 ARCHITECTURE

A client/server model was chosen (see Figure 1) to
both promote efficient usage of limited resources as well
as assist in the creation of a platform-independent system.
Platform-independence was achieved by constructing the
server as a virtual machine, allowing client applications to
be written to a generic interface. Object-Oriented Design
(OOD) was used, programming in C++, to facilitate
design, development, and maintenance of the architecture.

One of the important design decisions for this
architecture was how to model a generic machine vision
system. One way to model a vision system is through its
hardware: frame grabbers, arithmetic-logic units (ALUs),
frame buffers, cameras, etc. This approach is attractive
because it models the system from the bottom up, starting
from the hardware. Another view is that the model
should simplify the system to its most primitive elements:
sensors, images, and operations on images. This abstract
view of the system is also attractive because it reduces the
perceived functionality of a system to its core. This
architecture employs both models since both are useful
under certain circumstances.

4.1 SERVER

The vision server’s architecture is based upon a
hardware-subsystem model of a machine vision system
which models the server as a collection of hardware
components such as frame grabbers, cameras, and frame
buffers. This allows the major subsystems that are found
in a typical machine vision system to be encapsulated in
object-oriented classes and results in a straightforward
OO model of this system. The server also includes a
number of classes for managing system resources and
communicating with clients.

The server is designed as a virtual machine
responsible for efficiently allocating limited machine
vision resources between a large number of concurrent
tasks (clients). The server’s responsibilities include:
communicating with clients, allocating frame buffer
resources, acquiring images, and performing machine
vision operations using the hardware in the system.

To support the increasingly heterogeneous controller
environments found in industry, a distributed architecture
is important. Unlike other distributed machine vision
systems [4] this architecture’s distributed nature is
designed for flexibility, not for the parallelization of a
single task on multiple computers in an effort to decrease
execution time. Distributed in this case means that
remote clients may use the operations supported by the
server.

The server is made up of several component classes

ClientRegistry

ServerMsgPort server tasks

! l ,

[FrameManager} {FrameGrabber} E}rayScaleProcessoJ [BinaryProcessor}

VisionHardware

FIGURE 2: SERVER ARCHITECTURE

(see Figure 2). A number of these classes perform
machine vision operations, using the services of the
virtual vision processor, encapsulated in the
VisionHardware class. Clients do not deal directly with
the VisionHardware class, but rather with intermediary
classes (e.g., FrameManager, FrameGrabber,
GrayscaleProcessor, and BinaryProcessor). The client
interface and communications mechanisms are
encapsulated in the intermediary classes, simplifying the
implementation of the VisionHardware class. The
VisionHardware class, in turn, encapsulates all machine
vision operations implementing them in hardware or in
software, depending on the available resources.

VisionServer Class

A composite class, VisionServer, contains all of the
required components necessary to provide services to
clients. The VisionServer constructor is responsible for
creating all server objects (i.e. ClientRegistry,
FrameManager, FrameGrabber, BinaryProcessor,
GrayscaleProcessor, and VisionHardware) and spawning
the server tasks.

Vision Server Tasks

The vision server employs a number of threads to
listen for client requests. The vision server tasks are
responsible for accepting client requests, binding the
request to the correct server object, invoking and
executing the requested method, and returning any results
to the client. For flexibility the architecture uses a generic
datagram communication which may be implemented
using many different types of inter-process
communication (IPC), including POSIX message queues
and TCP/IP sockets. The vision server currently uses an
iterative server design [7, 8], although it would not be
difficult to adapt it to a concurrent design.

The ClientRegistry

As its name suggests, the ClientRegistry is
responsible for maintaining registration information for
all active clients of the server. To reduce the amount of
communications between clients and the server, the server
maintains state information about all active (registered)
clients. This state information decreases the amount of
data the client needs to send to the server, particularly for
often used parameters (e.g., binary threshold values).

The FrameManager

A frame is a structure that contains image data (i.e.
pixels). The FrameManager object is responsible for the
allocation of frame buffers to clients. This includes
physical frame buffers, located on frame grabbers, as well
as RAM on the host machine that has been allocated for
image storage. In order to provide flexibility for
application developers and promote efficient resource
usage, the architecture allows frames to be dynamically

attached and detached (i.e. reserved and released).
Various types of frames are available: 1-bit, 8-bit, and
graphical display in the current implementation.

The FrameGrabber

The FrameGrabber is an abstract representation of a
physical frame grabber with few operations. It converts
incoming video data from a camera into quantized pixel
values in a discrete array. The FrameGrabber class allows
clients to acquire images into frames.

The Grayscale and Binary Processors

After an image has been acquired, it may be
processed using the methods of the GrayscaleProcessor or
the BinaryProcessor. These classes are responsible for
performing all image processing and machine vision
operations in the system. The GrayscaleProcessor
handles all grayscale images, including thresholding
operations, which produce binary images. The
BinaryProcessor is responsible for all operations on
binary images which includes connected-component
labeling and “blob” analysis. Only a limited set of these
methods has been implemented at to date. In future
implementations, these two classes will provide the
majority of the extensibility of the system, allowing new
machine vision algorithms and operations to be added to
the architecture.

VisionHardware Class

One of the tenets of this architecture is that a virtual
vision processor can be constructed, along the lines of the
Java Virtual Machine (VM). This allows applications to
be ported to new platforms easily since only the VM
needs to be ported. The VM in this architecture is the
VisionHardware class, which represents a virtual vision
processor, providing an interface for common machine
vision operations. This class is an abstract class,
subclasses of which provide implementations suitable for
particular hardware configurations.

4.2 CLIENT

The client architecture consists of the software
required to build applications for use with the server
architecture, including a library containing machine
vision and communication classes. The design of the
client API is based upon an abstract functionality model
of a vision system that has two major classes of objects:
cameras and images. A camera is used to acquire data
from the real world creating an image stored in a
computer. Operations can then be performed on the
image to extract useful information.

The client architecture (see Figure 3) contains
classes to perform machine vision operations using the
services of the vision server. The API is designed to be
intuitive, making application building straightforward.

The most important tool for providing a simple and
intuitive interface in the client architecture is the Proxy
design pattern [9]. This design pattern permits the details
of the client/server communication to be hidden,
simplifying the job of the application developer.

Camera Proxies

Cameras acquire image data into frame buffers.
Clients deal with camera proxies that support the same
operations as the physical cameras in the system. The
CameraProxy class takes care of all client/server
communication, including parameter marshalling and
remote method invocation. For instance, the
acquire_still() method performs the operations necessary
to acquire a single image from a camera associated with
the camera proxy into a specified frame buffer.

Frame Proxies

Frame proxies provide a client representation of a
frame that exists within the server. They provide all of the
services required in building machine vision applications,
from copy operations through connected-component
labeling to inspection tools. Frames proxies may
dynamically attach/detach to/from server frames.
Deadlocks are prevented using a form of Two-Phase
Locking [10].

4.3 COMMUNICATION ARCHITECTURE

A communication class, MsgPort, encapsulates the
details of particular [IPC mechanisms through its send()
and receive() methods. Proxy classes in the client
architecture use Command classes to send requests to the
server. An enumerated method type in the Command
header specifies the method requested, allowing the server
to quickly bind the request to the appropriate object. The
command classes are serialized, sent through the
MessagePort, and received by the server. Using the
enumerated method type, the server queries each of the
main server objects (i.e. ClientRegistry, FrameManager,
FrameGrabber, GrayscaleProcessor, and BinaryProcessor)
to see which object the requested method belongs to. It
then invokes the requested method, using a standard
interface provided by each of the server objects.

ﬁ' IPC Mechanism
k.

ClientMsgPort

FrameProxy

SubFrameProxy

FIGURE 3: CLIENT ARCHITECTURE

Abstract Socket (MessagePort)Class

The Abstract Socket class is a pure abstract base
class which provides send() and receive() methods for the
transmission of datagrams. Subclasses of this class
provide concrete implementations of these functions for
particular communication, such as TCP/IP sockets [11],
shared memory, or POSIX message queues [12]. The
advantage of using a pure abstract base class is that a
number of different communication mechanisms can be
supported with no modifications to client software.

Command Class

The Command class is a design pattern [9] that
encapsulates a request as an object. A Command class,
MsgPacket, is used in this architecture to encapsulate
requests and replies between the clients and server.
Clients specify the requested operation to a server by an
enumerated type. These Command classes have
serialization methods (which use XDR [13]), allowing
their data state to be captured, transmitted, and
reconstituted in another process space or on another
machine, independent of the machines architectures (e.g.,
big-endian vs. little-endian).

Remote Method Invocation

To support distributed processing, tasks on one
machine need a mechanism for invoking operations on
other machines. A client in a client/server application
needs to invoke functions residing on a server. Remote
Procedure Calls (RPC) are one way of doing this, making
a server request look like a function invocation.

The object-oriented analogy of RPC is Remote
Method Invocation (RMI). The RMI system used for this
design makes heavy use of the Command class (Section
0) to encapsulate the request and binding operations. A
similar remote method invocation system was used with
the DataCube Server by Kahn et al. [3].

S RESULTS

The architecture’s infrastructure has been designed,
implemented, and tested. The client architecture provides
a full interface for the capabilities of server. The server
currently contains operations for basic image processing,
and includes two implementations of the virtual vision
processor class, VisionHardware: Itex15040 and
SoftwareVision. Itex15040 provides the hardware
specific software required in using the Imaging
Technology 150/40 VME-IMA vision board. The
SoftwareVision class emulates vision hardware in
software, providing the same results as the Imaging
Technology hardware, albeit much slower.

The minimum round-trip client/server transaction
time for the POSIX Message Queues and TCP/IP sockets
was approximately 0.4ms and 2.7ms, respectively, for
local clients. A number of experiments involving a large

number of clients [14] demonstrated that the overhead of
the architecture for local POSIX Message Queue clients
was very small and that the maximum latency for remote
TCP/IP socket communication varies with network load
but the average is fairly constant.

6 CONCLUSIONS AND FUTURE WORK

The architecture has demonstrated its distributed
nature by porting client applications to several UNIX
platforms (e.g. VxWorks, SunOS, and Linux).
Performance has not suffered greatly with the
introduction of several layers of abstraction (i.e. client
proxies, server, abstract vision hardware classes): typical
operations incurred a small amount of overhead, on the
order of a few milliseconds. This can be attributed to the
work involved in serialization/deserialization of
Command objects, IPC, and binding requests to the
appropriate object. For many applications, this is not too
large a performance hit given the flexibility and
portability that the architecture provides.

For this architecture to be useful for more than
trivial processing, a number of operations still need to be
implemented, including connected-component labeling,
geometrical feature extraction (i.e. blob analysis), and
basic inspection tools (e.g. line and arc finding). Once
these tools are in place, higher-level operations required
for a robotic workcell, such as camera calibration, can be
constructed.

In the future, we plan to port the system to new
vision hardware to test the architecture’s flexibility.
Without this acid test, it will be difficult to judge the
success of the virtual vision processor model. The
application of the architecture to other problem domains
besides agile manufacturing will be necessary to
determine its generality.

The inclusion of a “hardware” thread within
subclasses of the VisionHardware class could also
improve performance. This thread would exist within the
VisionHardware object and would be tailored to particular
vision hardware. Clients of the VisionHardware class
need to know nothing about this thread; the thread is
hidden within the class’s implementation. The classes
public interface would queue up requests to the vision
object instead of directly invoking operations (i.e. a
proxy). These requests could then be scheduled by the
“hardware” thread to take advantage of the concurrency
supported by the vision hardware. In multiprocessor
systems, it may be useful to have a number of “hardware”
threads, even with a single vision board, so that even the
operations that have no hardware support can be executed
in parallel.

7 ACKNOWLEDGEMENTS

This work was funded through the generous support
of the Center for Automation and Intelligent Systems

Research (CAISR), the Cleveland Advanced
Manufacturing Program (CAMP), and industrial sponsors.

10.

11.

12.

13.

14.

REFERENCES

Quinn, R.D., et al Design of an Agile
Manufacturing Workcell for Light Mechanical
Applications. In IEEE International Conference
on Robotics and Automation. 1996. Minneapolis,
MN: IEEE. p. 858-863.

Causey, G.C., et al. Design of a Flexible Parts
Feeding System. In IEEE International

Conference on Robotics and Automation. 1997.
Albuquerque, NM: IEEE. p. 1235-1240.

Kahn, R.E., M.J. Swain, and R.J. Firby, The
DataCube Server, 1993, University of Chicago:
Chicago.

Romig, P.R. and A. Samal, DeViouS: A
Distributed Environment for Computer Vision.
Software-Practice and Experience, 1995. 25(1):
p. 23-45.

Adept Technology Incorporated, AdeptVision
VME Reference Guide. Version 11.0 ed. 1993.

Merat, F.L., et al Advances in Agile
Manufacturing. In IEEE International
Conference on Robotics and Automation. 1997.
Albuquerque, NM: IEEE. p. 1216-1222.

Nichols, B., D. Buttlar, and J.P. Farrell, Pthreads
Programming: A POSIX Standard for Better
Multiprocessing. 1996, Sebastopol, CA: O'Reilly
and Associates.

Stevens, W.R., UNIX Network Programming.
Second ed. Vol. 1 Networking APIs: Sockets
and XTI. 1997, Upper Saddle River, NI:
Prentice-Hall.

Gamma, E., et al., Design Patterns: Elements of

Reusable Object-Oriented Software. 1994,
Reading, Massachusetts: Addison-Wesley.

Tannenbaum, A.S., Modern Operating Systems.
1992, Upper Saddle River, NJ: Prentice-Hall.

Stevens, W.R., UNIX Network Programming.
First ed. 1989, Englewood Cliffs, NJ: Prentice-
Hall.

Gallmeister, B.O., POSIX.4: Programming for
the Real World. 1995, Sebastopol, CA: O'Reilly
& Associates, Inc.

Sun Microsystems Incorporated, XDR: External
Data Representation Standard, 1987.

Barendt, N.A., A Distributed, Object-Oriented
Software Architecture for Platform-Independent
Machine Vision, in Department of Electrical

Engineering and Applied Physics1998, Case
Western Reserve University: Cleveland, Ohio.

