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Abstract

A new associative memory model composed of random vector enhancement followed by

association is proposed. The Moore-Penrose pseudoinverse is employed to obtain the least-

squares optimal solution; a gradient-descent type approach could also be used to obtain a near

optimal solution. Computer simulations are performed to evaluate the model. Comparison of the

proposed model with real domain backpropagation neural networks is presented. Simulations

show that the proposed model can be trained orders of magnitude faster than real domain

backpropagation neural networks.

I. Introduction

An associative memory associates one set of input vectors with another set of output

vectors. The output vectors are usually user-specified.  When the input and output vectors are

different, the associative neural memory is called heteroassociative; when the input and output

vectors are the same, the associative memory is called autoassociative. An associative memory

can be implemented as electrical networks, optical filters or neural networks. There have been

many associative neural memory models proposed during the last twenty years [1, 2, 3, 4].

These neural memories differ in terms of architectures, learning algorithms, recall mode, etc. The



mapping performed by the autoassociative memory is apparent: it simply reproduces the input

as an output. However, the autoassociative memory has a very distinct feature. It can correct for

noisy and distorted inputs, and can accurately retrieve the input pattern even when the given

input is partly missing.

II. Linear Associative Memory

Let (xi, yi) be the i-th associated pair of patterns where

      
xi i i in

T
x x x= [ ]1 2, ,...,   and

      
yi i i im

T
y y y= [ ]1 2, ,..., ,

T denotes the matrix transpose, and i=1,...,p, where p is the total number of pattern pairs. The

patterns are linearly transformed by the relation

y Mxi i=  for i=1 , ... , p (1)

where M is an m by n matrix. In terms of the key vector matrix X of size n by p (with the xk as

its columns) and the recollection vector matrix Y of size m by p (with the yk as its columns), the

associative memory must satisfy Y = MX. Generally X is not square, and the Moore-Penrose

pseudoinverse is used [5]

M = YX+. (2)

If X is square and nonsingular, the solution becomes M = YX-1.



III. Random Vector Enhancement

In a linear associative memory, the memory capacity and recall accuracy is limited by the

pattern dimension and linear independence among patterns. Moreover, Minsky and Papert

demonstrated that the linear neural network model can not solve even simple nonlinear problems

[6], e.g., the XOR problem. Kohonen discusses various preprocessing methods to increase the

orthogonality among patterns [7]. Various approaches have been proposed in the form of higher

order neural network models [8]. One can also use products between pattern elements to enhance

the input to the net. This was used in early versions of the functional link net [9]. Sutherland also

used the same method to improve recall accuracy and increase the storage capacity of the

holographic neural net [10]. Nonlinear mapping using polynomials is used in the complex domain

nonrecurrent associative memory model [11]. These approaches are problem-dependent and not

systematic solutions.

Random vector enhanced versions of the functional link net were proposed by Pao [12].

Random vector enhancement is a systematic way of increasing the pattern dimension, or

including higher order information in the pattern sets. The random vector enhanced functional link

net is easy to use, and was proved to be a universal function approximator [13]. This same type

of approach is applied to the random vector enhanced phasor neural network (RV-PNN).

Suppose that there are n original attributes (features, or elements) and j enhanced

attributes in the pattern x. For the enhanced attribute xi, the attribute is defined as

xi = ei    for i = n+1, ... , n+j (3)



where ei  = ai1x1 + ... + ainxn  = ai
T x

ai = [ ai1   ai2   ...   ain ]
T

x = [ x1   x2   ...   xn]
T

and ai is the random vector. The elements of the vector ai are randomly generated on the real

interval [-Ω, Ω].

IV. Transformation into Complex Domain

The complex domain is used to model physical processes in electrical circuits, optics,

quantum mechanics, etc. Since a single complex domain neuron can capture more information than

a similar real domain neuron, the complex domain representation may yield more realistic neural

models, e.g. modeling phase differences in the arrival of signals at the neuron. There are also many

signal processing applications involving complex valued data in which phase information is an

important feature. This is evident when using the output of the Fourier transform. The proposed

model can represent information in the complex domain and is suitable for these application

areas, as well as problems entirely in the real domain.

Usually, neural net inputs and outputs are represented by real numbers. Therefore, a

mapping from the real number domain to the complex number domain is needed. The real number

domain is typically unbounded (i.e., from -∞ to +∞). The real numbers can be converted into

complex numbers by simply assigning phase angles and unit magnitudes. The resultant vectors

are bounded by the unit circle on the complex plane (phasors). This mapping can be represented



by

x → eiθ. One way to assign a phase angle θ is to use the Z-score

θ π
µ

σ

=
+

−
−

2

1 e
x

(4)

where µ and σ are, respectively, the  mean and standard deviation of the input key vectors.

Equation (4) converts unbounded real values into phase angles from 0 to 2π.

After the enhancements, XE (enhanced key vector matrix) and Y (recollection vector

matrix) are transformed to the complex number matrices XEc and Yc, respectively. The

pseudoinverse of XEc can then be calculated to form the memory matrix M, by equation (2).

For the complex number input patterns, complex number random vectors are generated

over a magnitude range which avoids saturation of the transfer function. After the enhancement

by equation (3), these patterns are fed into a sigmoidal transfer function like

tanh(real(x)) + i tanh(imag(x)). As described before, these enhanced complex patterns and the

recollection vectors (complex domain) then form the memory matrix M by equation (2).

V. Iterative Learning

Greville�s theorem [14] provides the recursive formula for computing the pseudoinverse

of a matrix. The idea is to partition the original matrix into columns and combine them one at a

time, thereby computing the pseudoinverse of the new submatrix  from the already computed

pseudoinverse of a smaller submatrix and the new column. However, the same effect can be

approximately obtained by using



Mnew = Mold + α(Y - Mold X)X* (6)

where * is the conjugate transpose, and α  is the learning rate (a small positive number). By

equation (6), it is possible to construct the pseudoinverse based M matrix iteratively. This

learning rule is similar to the complex LMS algorithm [15].

Since the learning is achieved by a linear approach, finding the global minimum by using

the gradient is guaranteed. With this scheme, it is necessary to present the pairs (x1, y1), (x2, y2),

... (xP, yP) several times in order to achieve a desired error level. Thus, equation (6) represents a

gradient-descent type iterative learning algorithm. The pseudoinverse approach may not be

suitable for a real-time neural based system. In this situation, equation (6) can be used as a

generalized, iterative solution.

VI. Computer Simulations

1. XOR Test

This is the most famous neural network test example.  For this test, the conventional

backpropagation neural network has 2 hidden nodes, and the RV-PNN has 4 enhancements. The

backpropagation neural network was trained until the mean squared error reached 10-4, using the

Quickprop algorithm [16]. The RV-PNN was trained using the iterative algorithm described in

section V, until the mean squared error reached 10-4. Both were trained 10 times with the results

shown in Table 1.



Average Epochs Std. Dev.

Backpropagation
Neural Network
(2 hidden nodes)

102.6 58.1

RV-PNN
(4 enhancements)

13.9 7.3

Table 1. Comparison of XOR test

2. SONAR Test (Classification)

Gorman and Sejnowski [17] published an early realistic example of sonar signals bounced

off a metal cylinder (111 signals) and a roughly cylindrical rock (97 signals). The signals consist

of energy measurements in each of 60 wavebands. Twelve-thirteenths of the data was used as a

training set. Classification error rates of 12-15% were obtained using a real domain

backpropagation neural network with 6-24 hidden nodes. The comparison between the RV-PNN

and the classical neural network model is summarized in Table 2. All backpropagation neural

networks were trained using the Quickprop algorithm until the mean squared error reached 10-4.

The RV-PNN was trained using the iterative algorithm described in section V, until the mean

squared error reached 10-4. Both models were trained and tested 10 times. Training times were

measured on an HP 9000 712/60 workstation.



% Right
(Training)

% Right
(Test)

Std. Dev
(% Right)

Training
Time
(sec)

Std. Dev.
(Training

Time)

Real Domain 6 Hidden Nodes 100% 84% 3.74 98.3 129.7
Backpropagation 12 Hidden Nodes 100% 85% 2.43 74.2 37.3
Neural Network 24 Hidden Nodes 100% 87% 3.02 163.7 156.5

RV-PNN
(300 enhancements)

100% 90% 1.4 3.5 0.6

Table 2. Performance comparison between backpropagation neural networks and the RV-PNN

3. Complex Domain XOR Test

This is the counterpart of the real domain XOR problem.  The complex domain

backpropagation neural network has 4 hidden nodes, and the RV-PNN has 10 enhancements. The

complex domain neural network was trained until the mean squared error reached 10-2, using

backpropagation. The RV-PNN was trained using the pseudoinverse described in section II. Both

were trained 10 times. Training times were measured on a 486DX/33MHz PC.

Input 1 Input 2 Output Input 1 Input 2 Output
i i 0 1 1 0
i 1+i 1 1 1+i i

1+i i 1 1+i 1 i
1+i 1+i 0 1+i 1+i 0
0 i i 0 1 1
0 1+i 1+i 0 1+i 1+i
1 i 1+i i 1 1+i
1 1+i i i 1+i 1

Table 3. Complex domain XOR inputs and outputs for the neural networks



Training Time (sec) Std. Dev.

Complex Domain
Backpropagation Neural Network

(4 Hidden Nodes)
73.7 29.2

RV-PNN
(10 enhancements)

0.18 0.02

Table 4. Comparison of complex domain XOR test

4. Autoassociative Memory using RV-PNN

Geometric shapes can be  represented by Fourier boundary descriptors in the complex

domain [18]. Typical sample shapes used in this test are shown in Figure 1 and Figure 2. The

shape boundaries were described by 140 to 240 samples, and transformed by FFT. Sixty-four of

the transform coefficients were used as a Fourier boundary descriptor. The noise-free boundary

descriptors from Figure 1 were recorded using the RV-PNN autoassociative memory with 64

enhancements. Next, the noisy descriptors from Figure 2 were used to test the autoassociative

memory. The outputs from the autoassociative memory corresponding to the noisy inputs of

Figure 1 are shown in Figure 3. This autoassociative memory shows excellent noise filtering

characteristics suitable for many pattern recognition applications.

Figure 1. Simple geometric shapes



Figure 2. Noisy geometric shapes

Figure 3. Geometric shapes filtered by RV-PNN autoassociative memory

VII. Conclusions

An associative memory model using a random vector enhanced phasor neural network

(RV-PNN) has been described and compared with classical real domain backpropagation neural

networks using computer simulations with various data. The RV-PNN performs as well as

classical neural networks in the examples tested, and the training speed is orders of magnitude

faster. Since the model can represent information in the complex domain, it is especially suitable

for complex domain problems such as invariant pattern feature detection and signal processing.

The RV-PNN can also be used to solve problems involving only the real domain.
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