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Abstract

A 3-D object recognition system for parts designed with
a form feature CAD is presented. Objects are modelled as
organized compositions of instantiated form primitives.
Because of this, the burden of part recognition is shifted
from matching the scene to the part database to matching
the scene to the primitive database, which is usually a
significantly smaller database. In this paper, we briefly
review our approach to primitive and object representation,
the architecture of the system, hypotheses generation, and
primitive indexing. Results obtained with both synthetic
and actual range images are presented.

1. Introduction

Increased production efficiency and quality are the
fundamental promises of Computer Integrated
Manufacturing (CIM). These promises have prompted
massive research initiatives into the different aspects of
CIM, among them concurrent engineering [7,8], automatic
program generation [4], and autonomous manufacturing
[5]. The growing interest in CIM has also made an impact
on the philosophy of object recognition for manufacturing,
since the use of CAD descriptions for automatic object
modelling leads to considerable time savings in the
development of vision systems [1, 2].

In this paper, an ongoing research effort to develop a 3-
D object recognition system for CAD form features, e.g.
hole, slot, pocket, etc., will be discussed. The heart of the
approach resides in modelling objects as collections of
inter-related manufacturing primitives. This allows the
main recognition task to be broken down into less stringent
ones of qualitative primitive identification. A hybrid neural
net/rule-based expert system is being developed to perform
this feature recognition.

In section 2, we introduce the primitives currently
supported by the recognition system, and the representation
schemes used to model these primitives and objects.
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System architecture is briefly described in section 3, while
hypotheses generation and verification are presented in
sections 4 and 5. Results for synthetic and actual range
images are shown in section 6, with conclusions in section
7.

2. 3D form Feature Modelling

Central to the design of a recognition system is the scheme
adopted for object modelling. Model representation plays
a fundamental role in database organization, choosing
search and matching algorithms, processing the original
image data, and in the specification of the overall flow of
information and control. In this research, objects are
constructed from the combination of a selected set of form
manufacturing primitives. In the following sections, these
primitives and their modelling scheme are introduced.

2.1. Manufacturing Primitives

The topological/geometrical primitive representation is
examined in the context of a selected, reduced set of
manufacturing primitives. Nine form manufacturing
primitives were chosen: through hole, blind hole, boss, rib,
through slot, step, step to shoulder, pocket, and edge cut.
Their variety is sufficient for designing a substantial
number of different parts, thus validating recognition
methodology; nevertheless, they are simple enough to
facilitate implementation and testing. Surface connectivity
graphs for these primitives appear in Figure 1.
Primitives are modelled at two levels:
topological arrangement, and surface geometry.

surface

2.2. Topological Modelling

In this research, a viewer centered approach is taken to
represent the form primitives. This representation is,
nevertheless, topological in nature. Contrary to most
vision systems which restrict aspect views —or aspect, for
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FIGURE 1. The CAD manufacturing primitives.

short—to be purely edge constructions, our approach
introduces a topological representation graph for each
primitive aspect. An aspect is topologically described by a
combination of surfaces with specific unary and binary
relational properties.

At the topological level, the only unary feature included
is the shape of the surface patch. To generate the topological
graph representation of an aspect, three binary relations are
extracted for every pair of surfaces: their relative
orientation, spatial proximity, and geometric equivalence.

Since relative orientations are local, intrinsic properties,
they are frequently used as features for 3D modelling. The
relative orientation between two surfaces is given by the
angle formed by their orientation vectors. For this purpose,
the orientation of a planar surface is given by its normal; for
a cylindrical surface, it is given by the axis direction.
Because of the characteristics of the selected primitives, we
classify the orientation relations as parallel, perpendicular,
or oblique.

In terms of spatial proximity, we are interested in
establishing whether the surfaces are physically adjacent.
The condition of adjacency requires the surfaces to share at
least a portion of their physical boundaries; the shared edge
is either concave or convex. Geometric equivalence refers
to those cases in which non-contiguous surfaces exhibit the
same geometric characteristics. A summary of the
topological features which can exist between any two
surfaces for the selected primitives is given in TABLE 1.

Representative examples of topological relational
graphs for two aspects are shown in Figure 2. It should be
emphasized that the simplicity of the selected primitives
makes compact topological graphs possible. For primitives
involving complex surface parametrization, such as
splines, the representation of topological properties would
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TABLE 1. Topological Features

FEATURE Orientation

Adjacency Equivalence

PEC

®
FIGURE 2. One of the asg)ects and topological graphs

for (a) a blind hole, and (b) a boss. Thick, dark links In
the graph indicate a LIC topological relation; thick
light links Indicate a LEC relation; and thick, dashed
links indicate a LID relation.

2.3. Boundary Modelling

Boundaries are used to complete surface modelling by
detailing geometry. In this research, we use boundary
modelling as a tool for verifyingfrejecting primitive
hypotheses. The geometric descriptions include the type of
surface and any available boundary information. Faces are
qualitatively described by construction of relational edges
or boundary groups, since it is considered that attempting
the detection of loops might be an unnecessarily expensive
task.

Surface geometric descriptions can be done by tracing
the edges identified through the application of classical
edge detectors or by detecting the transitions from one
surface patch to another. Because of the difficulties in
dealing with edge detectors, this later approach is
preferred.

2.4. Part Modelling

In the part database, each part is described as an organized
aggregate of instantiated manufacturing primitives. A
primitive is instantiated by indicating the dimensions of its



characteristic parameters, and its location in the part with
respect to a global reference frame.

The characteristic parameters are instantiated following
the convention shown in Figure 3. For example, a through
hole is characterized by its radius and the orientation of its
axis. The Z axis of the local frame runs along the axis of the
hole, pointing out of the material, while the origin is located
at the opening of the hole.

(2) (b)

FIGURE 3. Primitive geometric parameters and
definition of local reference frames. (a) A through hole
is completely characterized by Its radius and the axis
orlentation. (b) The geometry of the step is defined by
the dimensions of the cut.

To instantiate the location of a primitive, a global
reference frame which remains available throughout the
fabrication of the part, is first chosen. The pose of a primitive
is given by the rotation matrix between the global and local
reference frames, and the position vector which goes from
the origin of the global reference frame to the origin of the
local reference frame.

The model of a part has four slots. The first slot identifies
the part with an ID number and a descriptive label. Next, the
second slot gives the dimensions of the stock, while the third
one indicates the types of primitives present in the part.
Finally, the last slot lists the instantiated primitives
organized as follows: the primitive type, the number of
occurrences of that primitive type in the part, and the full
description of the primitives. This description includes an
identification number and two vectors, one with the
geometric parameters and the other with the pose. Figure 4.
shows the model of a vise jaw created with two steps and a
through hole. This information can be readily obtained from
the standard output of a form feature CAD system [6].

It is important to emphasize that, with this modelling
style, the part database becomes a collection of compact,
simple linguistic descriptions. Even more, the addition of
new models to the database does not involve any
modifications to the structure of the recognition system
itself. This is so because, for recognition purposes, indexing
specific items from the part database first requires the
identification of the primitives present in the image.

model(part_id(1,vise_jaw),

stock(0.5,0.2,0.3),

primitives([step,th_hole]),

description([step(2, [(1,param([0.2,0.2,0.2]),
pose([0,1,0],[-1,1,0](0,0,1),(0.3,0.2,0.1])),

(2,param([{0.2,0.2,0.2)),
pose([0,-1,0},[1,0,01,{0,0,1 1,/0.2,0,0.1))D,
th_hole(1, [(1,param([0.03]),

pose{[1,0,0,(0,1,0],[0,0,1},(0.25,0.1,0.3))D])-

(©)

FIGURE 4. A part and its composite primitive
description. (a) Dimensioning for a vise aw; ﬁ)
location of the global reference frame XYZ, and the
local reference frames for every primitive; (c) symbolic
description of the part as a conglomerate of
instantiated primitives.

Primitive indexing is described in the following sections.

3. System Architecture

A block diagram for the architecture of the recognition
system appears in Figure 5. The system has five major
modules: an expert system, a bank of neural networks, static
and dynamic databases, and an image segmentation module.
Brief descriptions of these modules are given next.

P -. S gy

!

Segmentation
outines

finege

FIGURE 5. Object recognition system organization.



The expert system operates as the central controller of
data flow and interpretation, carrying out deductive
functions and generating hypotheses. Primitive aspect
models (topological and geometric), and object models are
stored in three static databases. All intermediate hypotheses
and the results of their verification routines are kept in
dynamic databases. Hopfield neural nets are used for graph
matching in hypotheses pruning tasks. Surface and edge
segmentation are neural based [9].

4. Topological Primitive Indexing

As it was mentioned before, the core of recognition by
components is the detection and identification of instances
of form primitives in the image data. In this section, we
present the primitive indexing paradigm in detail.

4.1. Topological Graphs

An undirected, attributed graph G is used to describe the
topological relations between the surfaces of a segmented
image. Each surface visible in the segmented image is
assigned a node in the graph, and for any two adjacent
surfaces, there is a link connecting their corresponding
nodes. Nodes are labeled according to the type of the
associated surface, while links are labeled according to the
topological relations of the surfaces interactions. The
dictionary of topological relations is the same as that
introduced in Table 1. An example of a topological graph
constructed for a segmented image appears in Figure 6.

4.2. Preliminary Topological Indexing

The goal of the preliminary hypotheses generation
paradigm is to produce a coverture P of G, P-[P »i=1,2, ..
K}, where P; is a path of G for which there is suppomng
topological evxdence that it could correspond to an instance
of a primitive. Each path P; has associated two sets of
hypotheses, H,; and H ;. H_; is the set of complete aspect
hypotheses, while H; is the set of partial aspect hypotheses
for path P;. Complete aspect hypotheses are those primitive
instances for which P; could be a topological isomorphism;
partial aspect hypotheses are those primitive instances for
which P; could be a topological sub-isomorphism.

The generation of hypotheses from topological
information is done by first finding all paths in the
topological image graph which are compatible with the
form primitives. Valid paths are created with a breath first
search on the connectivity of each node in the image graph.
The search in each branch of the tree is pruned whenever the
corresponding qualitative connectivity graph does not
match any primitive pattern.
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(a) (b)
graph([(node(1).plane links([(4,lec)))),
(node(2) plane,links([(3 pec),(4.lic) (5 lec) (6,lec) (7.pec)})),
(node(3),plane,links([(2,pec).(7.pec))),
(node(4) cylex links([(1,lec),(2,lic)])),
(node(5),cylcc links{[(2,lec)])),
(node(6) cylcc links([(2,lec)])),
(node(7) plane links{[(2,pec),(3.pec))))).
©
FIGURE 6. Constructing the topological graph of a

segmented image. (a) mented range Image with

the Indlvldual surfaeos entified; (b) corresponding
'g) 8:. cal graph (c) symbolic ropreuntat n as a
clause.

To accelerate topological indexing, we perform a
qualitative pattern matching between the image and the
primitives aspect graphs. The pattern has a total of 11
features organized in two groups, one related with the
surface type description, and the other with the topological
relations among the surfaces. The surface type portion of
the pattern has 3 entries, indicating the number of planar,
convex, and concave surfaces in the path, respectively. The
topological description pattern has 8 features, which
represent the sum of the graph’s links with the topological
relations shown in TABLE 1.

4.3. Topological Hypotheses Organization

Since graph matching is a computationally intensive task,
the actual evaluation of preliminary topological
hypotheses needs to be done in an organized, hierarchical
fashion. To this end, preliminary hypotheses are organized
in levels according to their potential evaluation return
rates, estimated with two heuristics:

* Intuitively, a path having a qualitative correspondence
with a complete aspect carries on more information
than, say, a path corresponding only to a sub-set of an
aspect. Primitive indexing is more reliable when
primitives appear without occlusion or are not
otherwise ambiguous.

« If there are two paths, one longer than the other, the



longer path has the potential to reduce the entropy of
recognition more than the shorter path. This heuristic is
motivated on the fact that several primitives can be
topologically interpreted as being composed of simpler
primitives. For example, a step to a shoulder can be
seen as the interaction of two steps.

Based on these heuristics, we have grouped the
preliminary hypotheses in three levels. The highest level of
the hierarchy includes those paths which are not subsets of
other paths, and have a non-empty set of complete aspect
hypotheses. The next level includes those paths which are
not subsets of other paths, and have a non-empty set of
partial aspect hypotheses. Notice that it is possible to find the
same path in both the first and second hierarchical levels.
The last level of the hierarchy includes all remaining
preliminary hypotheses paths. We refer to the first level of
the hierarchy as the primary topological hypotheses, to the
second as the secondary topological hypotheses, and to the
third as the tertiary topological hypotheses. The third level
is seldom used and we will not make any further reference
to it in this paper.

Once hypotheses are divided, they are pruned. Not all
hypotheses are tested, though. Initially, only primary
hypotheses examined. If the evaluation of these hypotheses
is not sufficient to fully explain the scene, selected secondary
hypotheses are also evaluated. Finally, sclected tertiary
hypotheses might have to be evaluated, although this
situation would be extremely rare. Pruning is performed by
evaluating the isomorphism or sub-isomorphism of the
topological graph of the path with respect to the graph of the
hypothesized primitive instance. This verification is carried
out with optimizing neural networks. Neural net pruning is
explained in Section 5.

4.4. Examples

Two representative examples are given next.

Example 1. Figure 7 shows a very simple part and its surface
connectivity graph. The part is composed of a step with an
attached boss and hole. In this case, three primary
topological hypotheses are generated. Surfaces 1 and 2 are
considered to be either part of a through hole (aspect 1), or
ablind hole (aspect 2). Surfaces 7 and 8 are considered to be
part of a boss (aspect 3). Finally, surfaces 2, 3,4, 5, and 6 are
considered to be part of a step (aspect 10). No secondary
topological hypotheses are generated.

Example 2. Topological hypotheses for a more interesting
part appear in Figure 8. The part has two primitives, a step
to shoulder and a through slot. A number of primary
topological hypotheses, some of them incorrect, are
generated. As it will be seen in Section 5, the false
hypotheses are pruned once the connectivity patterns of each
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(2)

Primary_topological_hypotheses = [path({1,2], [th1, bh2]),
path([7,8},[bs3]),
path([2,3,4,5,6},[s11])]

Secondary_topological_hypotheses =[]

©

FIGURE 7. Initial generation of topological
hypotheses. (a) A part consisting of a step, with a
through-hole and a boss; (b) its corresponding surface
connectivity graph; and (c) primary and secondary
topological hypotheses.

node in the surface connectivity graph is analyzed. The
correct hypotheses for the step to shoulder (aspect 2) and the
through slot (aspect 8), are also generated. There are also
several secondary hypotheses, which appear because
portions of the image graph partially match the patterns that
qualitatively define both primitives.

(a)

Primary_topological_hypotheses = [path{([2,4,6,8], [s6]),
path([1,4,6.8), [s6]),
path([3,4,6.8), [s6}),
path([2,4,7.8], [s6)),
path([1,4,7,8), [s6]),
path([3,4,7.8], [s6)),
path([1,2,3,4,5], [ts8]),
path([4,5,6,7,8,9), [ss2])]

(b)

FIGURE 8. Initial generation of topological hypotheses.
(a) A part consisting of a through step and a step to
shoulder, and (b) its corresponding primary topological
hypotheses




5. Neural Net Hypotheses Verification

The purpose of this matching is twofold. First, success/
failure at matching the graphs further prunes the set of
hypotheses; second, should the matching be successful, the
solution of the surface correspondence problem would
greatly simplify future hypotheses verification through
surface fitting or edge tracing, since it becomes a model
driven task.

Multiple examples of Hopfield neural nets for object
identification through graph maiching have been reported
in the literature [3]. The common denominator in these
applications is that a graph created by extracting significant
features from the image is matched against the graph of a
part model. Nodes in the graphs represent features and their
local properties; links represent relational properties or
constraints, such as distances between features.

5.1. Surface correspondence constraints

The desired solution to our topological isomorphism
problem requires the satisfaction of three types of
constraints:

* Uniqueness correspondence; each surface in the image
eventually matches only one surface in the model, and
vice versa.

« Shape correspondence; the shape of an image node
must be identical to the shape of the associated model
node.

» Topological correspondence; the connectivity pattern
of an image node must be identical to the connectivity
pattemn of the associated model node.

We have encoded these constraints in the energy
function of a Hopfield optimization neural net [10]. The
final stable state of the network indicates whether the
matched primitive and image graphs are isomorphic. In
case they are isomorphic, the neurons activation pattern
shows the surface correspondence existing between both
graphs.

5.2. Neural Net Indexing Examples

Two representative examples are given. In the first
example, the correspondence problem is solved for two
isomorphic topological graphs. The second example
consists of examining the possibility of finding a
correspondence mapping between an image graph and a
model graph which are not isomorphic.

Example 3. In this example, the problem consists in
matching the surface connectivity graph of a region of
interest to the model of a step’s aspect, as shown in Figure
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FIGURE 9. Solving the surface correspondence
problem with a neural net. (a) A model aspect of a step
(b) its corresponding surface connectivity graph; c,
surface assignment for an Image region of interest; (d,
its eorrosﬂpndlng surface connectivity graph; (e) ¢
final stable state for a particular correspondence
solution; (f) stable state for another feasible
correspondence solution.

9. Due to symmetry, there are two solutions. In the first
solution, the correspondence pairs (/ i»M;) between the i-th
image surface and the j-th model surface are
{(1,2),(2,1),(3.4),(4,5),(5,.3)}. In the second solution, the
correspondence pairs are {(1,3),(2,5),(3.4),4.1),(5.2)}.
Any one of these two solutions can be the final stable state
of the neural net.

Example 4. Here, the neural net tries to find a
correspondence function for a step’s aspect and a portion
of the image of Example 2. As it is seen in Figure 10, from
the final state of the network it is evident that no
isomorphism could be identified.

6. Recognition Results

Representative results obtained with both synthetic and
actual range images are presented next.

6.1. Synthetic Range Images

In Figure 11 we revisit Example 2. Recall that the set of
primary topological hypotheses included a number of false
indexings. Note how well the neural nets prune the initial
set of primary topological hypotheses, and topologically
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FIGURE 10. Detecting a falled
model aspect of a step; (b
hypothesized as matching the model; and
neural net state. Notice that no isomorphism |

a set of surfaces

$lound.

?raph matching. (a) A

verify the presence of a step to shoulder (aspect 2) and a
through slot (aspect 8).

Primary_hypotheses = [hypothesis(path([4,5,6,7,8.9]),
aspect(ss2),
assignment([3,2,5,6,4,1])),

hypothesis(path([1,2,3,4,5]),

aspec(ts8),
assignment([1,3,4,5,2]))]

(a)

(b)

FIGURE 11. Tog;ologlcal hypotheses for synthetic
rar:‘go Imalge of Example 2. (a) Pseudo-intensity image
and (b) primary hypotheses. Both the through siot an

the step to shoulder primitives are properly
recognized.

In Figure 12, we have an image with two objects, one
composed of a step with a hole, and the other of two bosses.
Here again the system succeeds at properly identifying the
individual CAD primitives. There are two hypotheses to
explain surfaces 3 and 5. The first hypothesis considers the
surfaces to be part of a through hole, and the second to be part
of a blind hole. The geometric verification routines would
examine both hypotheses and eventually declare the blind
hole an invalid one.

6.2. Actual Range Images

Results for actual range images are given in Figures 13 and
14. These images were originally scanned at the Pattern
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Primary_hypotheses = [hypothesis(path([1,2,3,4]),
aspect(s10),
assignment([3,4,1,2])),

hypothesis(path((8,9]).
aspect(bs3),
assignment([1,2])),

hypothesis(path([6,7]),
aspect(bs3),
assignment([2,1])),

hypothesis(path([3,5)),
aspect(th1),
assignment({2,1])),

hypothesis(path([3,5]),
aspect(bh2),
assignment{[2,1]))]

®)

(2)

FIGURE 12. Hypotheses Peneratlon for synthetic
range Ima‘fe. a) Pseudo-intensity Iimage, and (b)
corresponding topological hypotheses.

Recognition and Image Processing Laboratory, Michigan
State University, and are now available in an archive set up
at Washington State University by Professor P. Flynn. They
were produced with a Technical Arts 100X scanner.

In Figure 13, we have an image of a block with a column,
which can be described as a boss attached to a rib. Two
primary hypotheses are topologically verified by the neural
nets, one for a rib (aspect 1), and the other for a boss (aspect
3).

Primary_hypotheses = [hypothesis{path((3,4}),
aspect(bs3),
assignment([1,2])),

hypothesis(path([1,2]),
aspect(rb2),
assignment({2,1]))}

(b)

(a)
FIGURE 13. Hypotheses generation for actual ran%e

)

image of a column. (a) Pseudo-intensity image, and (
corresponding topological hypotheses.

Figure 14 shows results for an image of a tape roll. In
terms of our CAD primitives, the tape roll can be described
as being composed of a boss with a through hole. Here again,
the boss is correctly identified, while the hole is explained as
being either a blind hole (aspect 2) or a through hole (aspect
1). Note how the topological description simplifies dealing
with incomplete surfaces, making recognition robust.



Primary_hypotheses = [hypothesis(path({1,2]),
aspect(bs3),
assignment([1,2]))

hypothesis(path([2,3]),
aspect(tht),
assignment([2,1]))

hypothesis(path([2,3]),

aspect{bh2),
assignment([2,1]))

2 Secondary_hypotheses = [path([2,3}, [bh3])]

(a)

®)

FIGURE 14. Hypotheses generation for actual range
image of a tape roll. (a) Pseudo-Intensity image, and
(b) corresponding topological hypotheses.

7. Conclusions

We have described a 3-D object recognition system for
parts designed with a form feature CAD system. In this
system, objects are modelled as organized compositions of
instantiated form primitives. Primitives are modeled at the
topological and geometrical levels. At the topological level,
primitives are described as collections of surfaces with
specific topological relations. Primitive indexing is done in
two steps: a fast, qualitative pattern matching, and a more
attentive, relational graph matching.
This scheme offers the following advantages:

*In terms of computational recognition time, the
representation shifts the burden of sub-graph matching
from the object model database to the CAD primitive
model database. Since the size of the primitive
database remains constant for a particular CAD
system and is considerably smaller than the object
database, the matching costs are substantially reduced.

 Addition of new items to the object database has little
impact on recognition complexity both in terms of
matching time and in modification of recognition
heuristics.

« Since the core of an object representation is its
manufacturing feature description, interfacing with
CAD/CAM software is simplified thus permitting easy
compatibility within the CIM production system.
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