ENGR 210 HW 9 Solutions
\#1 Leg position sensor for Biorabot
V_{0} needs to be $0 \rightarrow 5 \mathrm{~V}$

$$
V_{i n}=V_{p}=(-15 \rightarrow 15) V
$$

We need to scale as well as shift.

Either design (as wall as at hers) will work.
Let's use a Subtractor circuit.

if this node is

$$
\begin{aligned}
& K_{1}=-\frac{R_{2}}{R_{1}} \\
& K_{2}=\left(\frac{R_{1}+R_{2}}{R_{1}}\right)\left(\frac{R_{4}}{R_{3}+R_{4}}\right)
\end{aligned}
$$

\downarrow
Since ky doesnt invert input let's put V_{p} on this node.
Choose $\left|K_{1}\right|=K_{y} \mid=1 / 6$ for ease

$$
\frac{R_{2}}{R_{1}}=\frac{1}{6} \quad \frac{R_{4}}{R_{3}}=\frac{1}{6}
$$

\#2 Temperature Sensor

$$
\begin{aligned}
& \begin{array}{ll}
k=1 \mu A \\
K & \frac{K C L @ x}{} 0 \\
V_{C}=10 V & \frac{V_{C C}-O}{R_{1}}+\frac{V_{b}-0}{R_{2}}=k T_{A}
\end{array} \\
& \frac{d V_{0}}{d T}=100_{n} V \quad V_{0}=R_{2}\left[k T_{A}-\frac{V_{c l}}{R_{1}}\right] \\
& \text { sensinvints } \frac{d V_{0}}{d T}=R_{2} K=100 \frac{\mathrm{mV}}{\mathrm{c}} \\
& R_{2}=\frac{100 \mathrm{~m} V_{/ k}}{\frac{\mu \mathrm{~A}}{\bar{K}}}=\underline{=100 \mathrm{k} \Omega}
\end{aligned}
$$

We also mant V_{0} to be proportional to ${ }^{\circ} \mathrm{C}$ (not K) so we need to have an offset.

We want $V_{0}=0$ if $T_{A}=273$

$$
\begin{aligned}
& 0= R_{2} K T_{A}-\frac{R_{2}}{R_{1}} V_{C c}=(100 \mathrm{k})\left(1 / \frac{A}{K}\right)(273 \mathrm{~K})-\frac{100 \mathrm{k}}{R_{1}}(10) \\
& R_{1}=(106 \mathrm{k})(100) \\
&(100 k)(1 \mathrm{AA})(273 \mathrm{k})
\end{aligned}
$$

\#3
$V=5 \quad t=5 \mathrm{~ms} \quad V=V_{A} e^{-t / c} \quad \leftrightarrow$ General Exponential Waveform.
$v=3,5 \quad t=7 \mathrm{~ms}$
(1) $5=V_{A} e^{-5 m / c}$
a)
(2) $3.5=V_{A} e^{-7 m / h}$

Plog values inta general aqu. a.d solve.

$$
\begin{aligned}
& \text { (2) }=\frac{5}{3.5}=e^{2 m / n} \\
& \ln \left(\begin{array}{l}
5 / 3,5)
\end{array}=\frac{2 m}{\tau}\right. \\
& \tau=\frac{2 m}{\mathrm{~m}}(5 / 3,5) \tau=5.6 \mathrm{~ms}
\end{aligned}
$$

b) $V=12.2 e^{-2 m / s .6 m}$

$$
V=8,54 \mathrm{~V}
$$

Pluginto equ (1)ar (2) to
find V_{A}. $5=V_{A} e^{-5 \mathrm{~m} / \mathrm{sinm}} \quad V_{A}=12.2 V$
\#4

$$
\begin{aligned}
& v(t)=A \cos \left(2 \pi f\left(t-T_{s}\right)\right) \leftarrow \begin{array}{l}
\text { General farm } \\
\text { of a cosine. }
\end{array} \\
& v(t)=75 \cos \left(2 \pi(100 k)\left(t-T_{s}\right)\right) \\
& \cos (a+b)=\cos a \cos b-\sin a \sin b \\
& v(t)=75\left[\operatorname { c o s } (2 \pi 1 0 0 k t) \operatorname { c o s } \left(2 \pi 100 k\left(-T_{s}\right)-\sin (2 \pi 100 k t) \sin (2 \pi 100 k(-t s))\right.\right. \\
& v(t)=a \cos (2 \pi f t)+b \sin (2 \pi f t)
\end{aligned}
$$

$f=100 \mathrm{kHz}$
$A=75 \mathrm{~V}$

Fourier
Coefficients $\left\{\begin{array}{l}a=75 \cos \left(2 \pi 100 k\left(-T_{s}\right)\right) \\ b=-75 \sin \left(2 \cos 100 \mathrm{~K}\left(-T_{s}\right)\right)\end{array}\right.$
What is T_{s} ?

$$
T=f=\frac{1}{100 k}=10 \mu \mathrm{~s}
$$

$$
T_{s}=-2.5 \mu \mathrm{~s} \text { if wavebem is shifted }
$$ left by $n .5 \mu$ s then the zero crossing with positive

$\cos (2 n f t)<N_{0}$ Time Shift slope would be at sups.

$$
\begin{aligned}
& a=75 \cos (\pi / 2)=0 \\
& b=-75(\sin (1 / 2))=-75
\end{aligned}
$$

What about place angle?
$v(t)=A \cos (2 \pi f t+\phi)$ Another way to wite general cosine eq.

$$
\begin{aligned}
& A \cos (2 \pi f t+\phi) \\
& \phi=-2 \pi f T_{s}=-2 \pi(100 k)\left(-2.5 \mu_{0}\right) \\
& \phi=\pi / 2
\end{aligned}
$$

All of the above assumed we were dealing with a cosine wave. Using a sine wave would affect T_{s} and ϕ but will not affect the fourier coefficient.

for Sin Lave

$$
\Rightarrow\left\{\begin{array}{l}
\phi_{s}=\pi \\
T_{s}=5 \mu_{s} \text { or }-5 \mu_{s}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { \#5 } \quad v(t)=V_{0}+10 \cos (200 \pi t) \\
& v_{c c} \tau^{ \pm}+15 \mathrm{~V} \\
& \left|V_{\text {our }}\right|_{\text {max }}=15 \mathrm{~V} \\
& \left|v(t)=\left|v_{0}\right|+|10 \cos (200 \pi t)|\right. \\
& |v(t)|=v_{0}+10 \\
& V_{0_{\text {max }}}=15 \rightarrow V_{\text {alt }}{ }^{2} / 5 \\
& V_{\text {min }}=-25 \rightarrow V_{\text {out }}=-15 \\
& -5 \leqslant V_{0} \leqslant+5 \\
& \text { Buffer } V_{\text {out }}=V(f)
\end{aligned}
$$

