\qquad
\qquad
\qquad

Department of Electrical Engineering and Computer Science
ENGR 210. Introduction to Circuits and Instruments (4)
ENGR 210 - SPRING 2005
FINAL EXAMINATION-5/3/05

ACADEMIC DISHONESTY
All forms of academic dishonesty including cheating, plagiarism, misrepresentation, and obstruction are violations of academic integrity standards. Cheating includes copying from another's work, falsifying problem solutions, or using unauthorized sources, notes or computer programs. Misrepresentation includes forgery of official academic documents, the presentation of altered or falsified documents or testimony to a university office or official, taking an exam for another student, or lying about personal circumstances to postpone tests or assignments. Obstruction occurs when a student engages in unreasonable conduct that interferes with another's ability to conduct scholarly activity.

NOTES:

159 students took the exam in Strosacker
2 students took the exam in ESS
1 student took the exam later in the day
162 students total took the exam

Name : \qquad
\qquad
\qquad

Problem 1 DC Circuit Analysis (10 points)
Determine the indicated node voltages (with respect to ground) and currents for the circuit shown below. All voltages are to be in volts and all currents in amperes.

SOLUTIONS:

Several of these quantities were straight forward to find. For example, simple inspection of the circuit indicates that:
$\mathrm{i}_{6}=5 \mathrm{~mA}$
$\mathrm{V}_{1}=+20$ Volts
Since these were clearly indicated on the circuit diagram they were $1 / 2$ point each. All other voltages and currents were worth 1 point each.

The next easiest parameter to determine is $\mathrm{v}_{4}=-10$ volts. The remaining parameters require calculations.
V_{3} is calculated as $v_{3}=v_{1}-20=(20)-20=0$ volts
We can now calculate i_{2} and i_{4} using Ohm's law and paying attention to the indicated direction of these currents on the circuit diagram.
$i_{2}=\frac{v_{1}-v_{3}}{4 k}=\frac{(20)-(0)}{4 k}=5 \mathrm{~mA}$
$i_{4}=\frac{v_{5}-v_{3}}{2 k}=\frac{(0)-(0)}{2 k}=0$
Consider using Kirchoff's Circuit Law to find v_{2} since a current source is clearly supplying one of the currents to the node.

Name: \qquad
\qquad
\qquad
$\sum_{+i n @ 2} i=+i_{1}-i_{3}-i_{6}=+\frac{v_{1}-v_{2}}{2 k}-\frac{v_{2}-v_{4}}{2 k}-5 m A=0$
Substituting $\mathrm{v}_{1}=+20$ Volts and $\mathrm{v}_{4}=-10$ volts gives
$\frac{(+20)-v_{2}}{2 k}-\frac{v_{2}-(-10)}{1 k}-5 m A=0$
$\frac{(+20)-v_{2}}{2 k}-\frac{v_{2}+10}{1 k}-5 m A=0$
Multiplying by 2000 gives
$20-v_{2}-2 v_{2}-20-10=0$
$-3 v_{2}-10=0$
$v_{2}=-\frac{10}{3}=-3 \frac{1}{3}$ volts

This now allows us to find i_{1} and i_{3} using Ohm's Law and paying attention to the indicated direction of these currents on the circuit diagram.
$i_{1}=\frac{v_{1}-v_{2}}{2 k}=\frac{(20)-(-3.33)}{2 k}=\frac{23.33}{2 k}=11.665 \mathrm{~mA}$
$i_{3}=\frac{v_{2}-v_{4}}{1 k}=\frac{\left(-\frac{11}{3}\right)-(-10)}{1 k}=\frac{\left(-\frac{11}{3}\right)+10}{1 k}=6.67 \mathrm{~mA}$
The remaining currents must be found using Kirchoff's Circuit Law at the appropriate nodes.
Examining node 0 (the ground)

$$
\sum_{+i n @ 0} i=+i_{3}-i_{4}-i_{5}=+6.67 m A-0-i_{5}=0
$$

Solving this gives $i_{5}=6.67 \mathrm{~mA}$

Examining node 3

$$
\sum_{+i n @ 1} i=+i_{7}-i_{1}-i_{2}+i_{5}=+i_{7}-(11.665 m A)-(5 m A)+(6.67 m A)=0
$$

Solving for i_{7} gives $i_{7}=(11.665 m A)+(5 m A)-(6.67 m A)=9.995 m A$

In summary,

$\mathrm{v}_{1}=$	20 V	$\mathrm{i}_{1}=$	11.665 mA	$\mathrm{i}_{5}=$
$\mathrm{v}_{2}=$	-3.33 V	$\mathrm{i}_{2}=$	5 mA	6.67 mA
$\mathrm{v}_{3}=$	0 V	$\mathrm{i}_{6}=$	5 mA	
$\mathrm{v}_{4}=$	-10 V	$\mathrm{i}_{4}=$	6.67 mA	$\mathrm{i}_{7}=$

You received $1 / 2$ point for v_{1} and i_{6} and 1 point for all other voltages and currents.

Name : \qquad Section: \qquad CWRU e-mail: \qquad

Problem 2 Circuits with controlled sources (10 points)

Find the node voltages v_{1} and v_{2} for the circuit shown below.
$\mathrm{v}_{1}=\quad \mathrm{v}_{2}=$

SOLUTION
Because you are asked for node voltages and there is an indicated current source this is a problem that can best be solved using the node voltage technique. Let node 1 be the node whose voltage is v1 and node 2 be the node whose voltage is v2. There are also two other nodes whose voltages are determined by a direct connection to a voltage source. The voltage on the left hand side of the 2Ω resistor is set by the voltage source to be +12 volts. The voltage on the bottom of the 1Ω resistor is set by the dependent voltage source to be -5 vo volts. Using this information we can write the node voltage equations (using $K C L$) at nodes 1 and 2 to be:
$\sum_{+i n @ 1} i=+i_{1}-i_{2}-i_{3}-3=+\frac{(12)-v_{1}}{2}-\frac{v_{1}-0}{4}-\frac{v_{1}-v_{2}}{8}-3=0$
$\sum_{+i n @ 2} i=+i_{3}+3-i_{4}=+\frac{v_{1}-v_{2}}{8}+3-\frac{v_{2}-\left(-5 v_{o}\right)}{4}=0$
which gives two equations in two unknowns
$+\frac{12-v_{1}}{2}-\frac{v_{1}-0}{4}-\frac{v_{1}-v_{2}}{8}-3=0$
$+\frac{v_{1}-v_{2}}{8}+3-\frac{v_{2}+5 v_{o}}{1}=0$
Multiplying both equations by 8 gives
$48-4 v_{1}-2 v_{1}-v_{1}+v_{2}-24=0$
$+v_{1}-v_{2}+24-8 v_{2}-40 v_{o}=0$

Name : \qquad
\qquad
\qquad

Before we can simplify we need to substitute the constraint equation $v_{o}=12-v_{1}$ into the second equation to get $+v_{1}-v_{2}+24-8 v_{2}-40\left(12-v_{1}\right)=0$ or
$+v_{1}-v_{2}+24-8 v_{2}-480+40 v_{1}=0 \quad$ (2)
We can rearrange equations (1) and (2) into more standard form to solve them:
$+7 v_{1}-v_{2}=24$
$+41 v_{1}-9 v_{2}=456$

We have two equations in two unknowns which can be solved by a variety of methods. I chose to solve the first equation for $v_{2}=7 v_{1}-24$ and substitute this into the second equation giving:
$+41 v_{1}-9\left(7 v_{1}-24\right)=456$
$+41 v_{1}-63 v_{1}+216=456$
$-22 v_{1}=240$
$v_{1}=-\frac{120}{11}=-10.91$
Using $v_{2}=7 v_{1}-24$ we get $v_{2}=7 v_{1}-24=7\left(-\frac{120}{11}\right)-24=-100.36$
In conclusion,
$v_{1}=-10.91$ volts $\quad v_{2}=-110.36$ volts
Grading: 5 points for each answer.
Partial credit: You received 3 points for the equation for v_{1} and another 3 points for the equation for v_{2} if they were correct allowing 4 points for the detailed solution. Algebraically, this was the hardest problem on the exam.
\qquad
\qquad
\qquad

Problem 3 Multiple Op Amp Circuits (10 points)
Determine the indicated node voltages (with respect to ground) and currents for the circuit shown below. All voltages are to be in volts and all currents in amperes.

SOLUTION

Just as in Problem 2 this problem will reduce to two equations in two unknowns if you apply the ideal OP AMP constraints that $\mathrm{v}_{+}=\mathrm{v}_{-}$and no current goes into the OP AMP inputs.

From the circuit we see that $\mathrm{v}_{+}=\mathrm{v}_{\text {- }}$ gives us $v_{1}=v_{2}$ and $v_{3}=0$. We now apply Kirchoff's Current Law to find v_{1} and v_{4}. Some of you may ask why do we choose to find v_{1} and v_{4}. The reason is that we have no currents going into the OP AMPs (the second constraint) so all the currents at these nodes are known but we have no idea what currents are coming out of the OP AMPs. As you will recall you were told in lecture several times never to write a KCL equation at the output for an ideal OP AMP. Writing the KCL equations at nodes 1 and 3 gives:

$$
\begin{aligned}
& \sum_{+i n @ 1} i=+\frac{(0.6)-v_{1}}{1 k}-\frac{v_{1}-0}{3 k}-\frac{v_{1}-v_{3}}{5 k}=0 \\
& \sum_{+i n @ 3} i=+\frac{v_{2}-v_{3}}{2 k}+\frac{v_{1}-v_{3}}{5 k}-\frac{v_{3}-v_{4}}{10 k}=0
\end{aligned}
$$

Multiplying the first equation by 15 k and the second equation by 10 k gives
$+15(0.6)-15 v_{1}-5 v_{1}-3 v_{1}-3 v_{3}=0$
$+5 v_{2}-5 v_{3}+2 v_{1}-2 v_{3}-v_{3}+v_{4}=0$
Using our constraints that $v_{1}=v_{2}$ and $v_{3}=0$ allows us to simplify these equations.
$+9-15 v_{1}-5 v_{1}-3 v_{1}-3(0)=0$
$+5 v_{2}-5(0)+2 v_{1}-2(0)-(0)+v_{4}=0$
Re-arranging and collecting terms gives
$+9-15 v_{1}-5 v_{1}-3 v_{1}=0$
$+5 v_{1}+2 v_{1}+v_{4}=0$
\qquad
\qquad
\qquad

This allows us to solve for v_{1} and v_{4}.
$23 v_{1}=9$
$v_{4}=-7 v_{1}$
$v_{1}=\frac{9}{23}=0.391$ volts and $v_{4}=-7\left(\frac{9}{23}\right)=-2.739$ volts.

From the constraint $v_{1}=v_{2}$ we can further write $v_{2}=0.391$ volts.
The output current i_{0} is simply given by Ohm's Law as
$i_{o}=\frac{0-v_{4}}{4 k}=\frac{0-(-2.739)}{4 k}=\frac{2.739}{4 k}=0.685$ milliamperes. However, you must be careful of using the passive sign convention to get the proper sign (direction) of the current.

In summary,
$\begin{array}{lll}\mathrm{v}_{1}=0.391 \text { volts } & \mathrm{v}_{3}=0 \text { volts } & \mathrm{i}_{0}= \\ \mathrm{v}_{2}=0.391 \text { volts } & \mathrm{v}_{4}=-2.739 \text { volts } & \end{array}$
Grading: Each electrical quantity was worth 2 points; we took off $1 / 2$ point for the wrong sign.
\qquad
\qquad
\qquad

Problem 4 Computer Interfacing (10 points)

The resistance R_{x} of a semiconductor pressure sensor varies linearly with pressure from $5 \mathrm{k} \Omega$ (0 psi) to $15 \mathrm{k} \Omega$ (100 psi). This sensor is placed in the following circuit.

(a) Determine $\frac{v_{o}}{v_{1}}$ for the above circuit.

SOLUTION:

The input/output relationship for this circuit can be derived directly using KCL and the OP AMP constraints, or it can be simply recognized from the formula sheet as a summing amplifier. We will show both solutions.

From the formula sheet we see that the circuit is exactly that of a summing amplifier:

From the block diagram we can directly write
$v_{o}=K_{1} v_{1}+K_{2} v_{1}=\left(-\frac{R_{F}}{R}\right)\left(-v_{1}\right)+\left(-\frac{R_{F}}{R_{x}}\right)\left(v_{1}\right)=+\frac{R_{F}}{R} v_{1}-\frac{R_{F}}{R_{x}} v_{1}$ or $\frac{v_{o}}{v_{1}}=\frac{R_{F}}{R}-\frac{R_{F}}{R_{x}}$

Alternatively, we can write KCL at the inverting input of the OP AMP:
$\frac{-v_{1}-0}{R}+\frac{v_{1}-0}{R_{x}}-\frac{0-v_{o}}{R_{F}}=0$
$\frac{-v_{1}}{R}+\frac{v_{1}}{R_{x}}+\frac{v_{o}}{R_{F}}=0$
which can be re-arranged as
\qquad
\qquad
\qquad
$v_{o}=R_{F}\left(\frac{v_{1}}{R}-\frac{v_{1}}{R_{x}}\right)$ or $\frac{v_{o}}{v_{1}}=\frac{R_{F}}{R}-\frac{R_{F}}{R_{x}}$
(b) For $v_{1}=15$ volts, select values of R and R_{F} to convert the sensor resistance to a voltage output which ranges from 0 to 5 volts.

This can be done in a variety of ways ranging from guessing (not effective) to writing equations for each end of the sensor/output voltage range. We will use the latter approach and use the result from part (a) with $\mathrm{v}_{1}=15$ volts. For $\mathrm{v}_{1}=15$ volts the output is

$$
\begin{equation*}
v_{o}=15\left(\frac{R_{F}}{R}-\frac{R_{F}}{R_{x}}\right) \tag{1}
\end{equation*}
$$

A critical part of this problem was identifying the proper output voltage corresponding to $R_{x}=5 k \Omega$ and $R_{x}=15 k \Omega$. First, we notice from (1) that as R_{x} increases the second term becomes smaller and the output voltage increases. Using this we can recognize that for $\mathrm{R}_{\mathrm{x}}=5 \mathrm{k} \Omega$ (0 psi) we want $v_{o}=0$. Similarly, for $\mathrm{R}_{\mathrm{x}}=15 \mathrm{k} \Omega$ (0 psi) we want $v_{o}=5$. As soon as we make this recognition we can write equation (1) for each set of parameters to solve for R and R_{F}.

For $\mathrm{R}_{\mathrm{x}}=5 \mathrm{k} \Omega$ equation (1) becomes $0=15\left(\frac{R_{F}}{R}-\frac{R_{F}}{5000}\right)$
For $\mathrm{R}_{\mathrm{x}}=15 \mathrm{k} \Omega$ equation (1) becomes $5=15\left(\frac{R_{F}}{R}-\frac{R_{F}}{15000}\right)$
Simplifying equation (2) gives
$\frac{R_{F}}{R}-\frac{R_{F}}{5000}=0$ or $R=5000 \Omega$.
Using this result in equation (3) gives
$5=15\left(\frac{R_{F}}{5000}-\frac{R_{F}}{15000}\right)$
which may be solved for R_{F}
$\frac{5}{15}=R_{F}\left(\frac{1}{5000}-\frac{1}{15000}\right)=R_{F}\left(\frac{3-1}{15000}\right)=R_{F}\left(\frac{2}{15000}\right)$
to give $R_{F}=\frac{5}{15} \frac{15000}{2}=2500 \Omega$.
(c) Is the output voltage from your circuit a linear function of pressure?

Linearity would require that vo (pressure) $=K R x$.
For $\mathrm{R}_{\mathrm{x}}=5 \mathrm{k}$, vo $=0$ volts (0 psi)
For $\mathrm{R}_{\mathrm{x}}=15 \mathrm{k}$, vo=5 volts (100psi)

Name: \qquad Section: \qquad CWRU e-mail: \qquad

Since the sensor itself is a linear function of pressure $R x=10 \mathrm{k} \Omega$ will correspond to 50 psi . If our sensor interface circuit is linear the output voltage would then be vo=5/2=2.5 volts.
To check this we calculate the output voltage using $R=5000$ and $R F=2500$ for $R x=10 k \Omega$, Using these numbers gives $v_{o}=15\left(\frac{2500}{5000}-\frac{2500}{10000}\right)=15\left(\frac{5000-2500}{10000}\right)=15 \frac{1}{4}=3.75$ volts. Clearly the circuit output is not a linear function of pressure $(R x)$.

Grading:
Part (a) was worth three points.
In part (b) R and Rx were each worth three points.
Part (c) was worth one point.
\qquad
\qquad
\qquad

Problem 5 Thevenin and Norton Equivalent Circuits (10 points)

Answer the following questions about this circuit.
(a) What is the open circuit voltage $V_{o c}$, i.e., if $R_{L}=\infty$? \qquad

SOLUTION:
To find the open circuit voltage we remove RL and redraw the circuit as shown below. The voltage Vab is then Voc

There are any number of ways to find Vab for this circuit.
The astute student would notice that that the current from the 4A current source can only go through the 5Ω resistor creating a voltage across the 5Ω resistor. Similarly, the current from the 20 V voltage source can only go through the two 10Ω resistors. The voltage across the 5Ω resistor is then $V_{1}=i R=(4)(5)=20$ volts and the voltage across the vertical 10Ω
\qquad
\qquad
\qquad
resistor is $V_{2}=\frac{10}{10+10}(20)=10$ volts. The open circuit voltage is then $V_{a b}=V_{1}+V_{2}=20+10=30$ volts. This approach is shown in the circuit below.

Another way is to apply a source transformation to the voltage source and then use the node voltage technique to find the voltages of the resulting circuit as shown below.

We combine the two 10Ω resistors into one equivalent resistor ($R_{e q}=\frac{(10)(10)}{10+10}=\frac{100}{20}=5 \Omega$) to get the following circuit.
\qquad
\qquad
\qquad

We can write the node voltage equations for V1 and V2 as

$$
\begin{aligned}
& \sum_{+i n @ 1} i=+4-2-\frac{V_{1}-0}{5}+\frac{V_{2}-V_{1}}{5}=0 \\
& \sum_{+i n @ 2} i=+2-\frac{V_{2}-V_{1}}{5}=0
\end{aligned}
$$

Simplifying these equations gives
$10-V_{1}+V_{2}-V_{1}=0$
$10-V_{2}+V_{1}=0$
$-2 V_{1}+V_{2}=-10$
$V_{1}-V_{2}=-10$
Adding these equations gives $-V_{1}=-20$ or $V_{1}=20$ volts.

Using $V_{1}-V_{2}=-10$ we get $20-V_{2}=-10$ or $V_{2}=30$ volts which is the same result we got earlier.
(b) What is the Thevenin equivalent resistance of this circuit as seen by R_{L} ? \qquad
SOLUTION:
We simply turn off all sources (open the current sources, and short the voltage sources) in any of the above circuits. For example, we can turn off (open) the current sources in the above circuit to get
\qquad
\qquad
\qquad

By simple inspection $\mathrm{R}_{\mathrm{ab}}=5+5=10 \Omega$
(c) What is the short circuit current $i_{s c}$, i.e., if $R_{L}=0$? \qquad
SOLUTION
Although you could put a short between a and b and solve for $i_{\text {sc, }}$, it is far easier to use the known relationships between the Norton and Thevenin equivalent circuits to computer $\mathrm{i}_{\text {sc }}$ as $i_{s c}=\frac{V_{T}}{R_{T}}=\frac{V_{o c}}{R_{T}}=\frac{+30}{5}=6$
(d) What is the current i_{x} when the load resistance R_{L} between a and b is 6Ω.

SOLUTION

You already have the equivalent circuit so this is simply a matter of connecting a 6Ω load resistor to the Thevenin equivalent circuit and computing the current through the resistor as shown below.

We simply calculate i_{x} as $i_{x}=-\frac{30}{10+6}=-\frac{30}{16}=-1.875$ amperes where we note that the sign is introduced because the current i_{x} is in the opposite direction to the voltage coming from the 30 volt source.

GRADING
The Thevenin voltage was worth 4 points; the Thevenin resistance was worth 3 points. The maximum power transferred was worth 2 points. The value of R for maximum power transfer was worth one point.

Name : \qquad
\qquad
\qquad

Problem 5 Thevenin and Norton Equivalent Circuits (10 points)

(a) What is the Thevenin equivalent of the circuit as seen by resistor R at terminals $a-b$.
$V_{T}=$ \qquad

$$
\mathrm{R}_{\mathrm{T}}=
$$

SOLUTION

As stated many times in class the solution approach often becomes obvious when you redraw the circuit. In this case we re-draw the circuit so that the terminals a-b are at the right side of the circuit as we normally draw it in our solutions or in class. The circuit will then look like the one shown below.

[^0]Name : \qquad
\qquad
\qquad

We find R_{T} by simply turning off all sources (opening current sources, and shorting voltage sources) as shown below.

This is clearly seen to be an $8 \Omega\left(3 \Omega+5 \Omega\right.$ in series) resistor in parallel with a 2Ω resistor. R_{T} is then given as $R_{T}=\frac{(8)(2)}{8+2}=1.6 \Omega$

Finding V_{T} is slightly more complex. We would like to use KVL in the circuit below to find the current i .

However, we can't use KVL immediately because of the current source so we use a source transformation to convert the 2 A current source and parallel 5Ω resistor into a series 5Ω
\qquad
\qquad
\qquad
resistor and a $V_{\text {source }}=i_{\text {source }} R_{\text {parallel }}=(2)(5)=10$ volts. This transformed circuit is drawn below.

This is clearly a circuit that can be solved using Kirchoff's Voltage Law. Going around the loop clockwise from the lower left and summing voltages gives
$-10+5 i-2=+3 i+2 i-10=0$
Solving for i gives
$10 i=40$
$i=4$ amperes.

Using the b terminal as our zero voltage reference we can now calculate the voltage at terminal a as $V_{T}=V_{a b}=V_{10 \text { voltsolurce }}+i(2 \Omega)=-10+4(2)=-2$ volts. A common mistake was not noticing that the polarity of the 10 volt source was -10 volts and getting +18 volts instead of -2 volts.

In summary, $\mathrm{VT}=-2$ volts and $\mathrm{RT}=1.6 \Omega$
(b) What is the maximum power that can be dissipated in R ?

Power= \qquad

SOLUTION
Consider the Thevenin equivalent circuit shown below which was just calculated in (a).
\qquad
\qquad
\qquad

The maximum power in R occurs when $R=R_{T}=1.6 \Omega$. When $R=R_{T}$ the voltage at point a will be given by $V_{a}=\frac{1.6}{1.6+1.6}(-2)=-1$ volt. The maximum power dissipated in R is then given by $P_{R, \max }=\frac{\left(V_{a}\right)^{2}}{R}=\frac{(-1)^{2}}{1.6}=0.625$ watts.
(c) What is the value of R which gives this maximum power dissipation?
$R=$ \qquad

SOLUTION
From (b) the maximum power dissipation occurs when $R=1.6 \Omega$.
GRADING
The bulk of the problem was calculating the Thevenin equivalent circuit. V_{T} was worth 4 points; R_{T} was worth 3 points since it was easier to calculate.
The resistance for maximum power transfer was worth 1 point. The actual value of maximum power was worth 2 points.
\qquad
\qquad
\qquad

Problem 6 Capacitors and Inductors (10 points)
Consider the capacitor circuit shown below. The current is $i_{0}(t)=1.92 e^{-20 t}$ milliamperes for $\mathrm{t} \geq 0$. The initial conditions are $v_{o}(0)=-5$ volts and $v_{1}(0)=+25$ volts.

a) What is $v_{0}(t)$ for $t \geq 0$?

SOLUTION

This was clearly the most difficult problem on the exam and required that you understand the relationship between voltage and current in a capacitor.

We start with $-i_{o}=C \frac{d v_{o}}{d t}$ where the minus sign comes from the given direction of i_{0}.
We then re-arrange the expression as $d v_{o}=\frac{1}{C} i_{o} d t$ so we can integrate it. Integrating gives
$-\int_{0}^{t} d v_{o}=\frac{1}{C} \int_{0}^{t} i_{o} d t$
$v_{o}(t)-v_{o}(0)=-\frac{1}{C} \int_{0}^{t} i_{o} d t=-\frac{1}{8 \times 10^{-6}} \int_{0}^{t} 1.92 \times 10^{-3} e^{-20 t} d t=-\frac{1.92 \times 10^{-3}}{8 \times 10^{-6}} \int_{0}^{t} e^{-20 t} d t$
\qquad
\qquad
\qquad

$$
\begin{aligned}
& v_{o}(t)-v_{o}(0)=-\left.240 \frac{e^{-20 t}}{-20}\right|_{0} ^{t}=12\left[e^{-20 t}-1\right] \\
& v_{o}(t)=12\left[e^{-20 t}-1\right]+v_{o}(0)=12 e^{-20 t}-12+(-5)=12 e^{-20 t}-17 \text { for } \mathrm{t} \geq 0
\end{aligned}
$$

This was the crux of the problem. All the other answers are similarly calculated.
b) What is $v_{1}(t)$ for $t \geq 0$?

SOLUTION

The secret to this part of the problem is understanding how two capacitors in parallel operate. Consider that for capacitors C_{1} and C_{2} we can write $-i_{1}=C_{1} \frac{d v_{1}}{d t}$ and $-i_{2}=C_{2} \frac{d v_{1}}{d t}$. We can then write the currents at the node between the capacitors as $i_{o}=i_{1}+i_{2}=-C_{1} \frac{d v_{1}}{d t}-C_{2} \frac{d v_{1}}{d t}=-\left(C_{1}+C_{2}\right) \frac{d v_{1}}{d t}$.

We then proceed with this equation in effectively the same manner as part (a).
$i_{o}=-\left(C_{1}+C_{2}\right) \frac{d v_{1}}{d t}$

Rearranging gives
$-\int_{0}^{t} d v_{1}=\frac{1}{C_{1}+C_{2}} \int_{0}^{t} i_{o} d t$
$v_{1}(t)-v_{1}(0)=-\frac{1}{C_{1}+C_{2}} \int_{0}^{t} i_{o} d t=-\frac{1}{10 \times 10^{-6}+2 \times 10^{-6}} \int_{0}^{t} 1.92 \times 10^{-3} e^{-20 t} d t=-\frac{1.92 \times 10^{-3}}{12 \times 10^{-6}} \int_{0}^{t} e^{-20 t} d t$
$v_{1}(t)-v_{1}(0)=-\left.160 \frac{e^{-20 t}}{-20}\right|_{0} ^{t}=8\left[e^{-20 t}-1\right]$
$v_{1}(t)=8\left[e^{-20 t}-1\right]+v_{1}(0)=8 e^{-20 t}-8+(25)=8 e^{-20 t}+17$ for $t \geq 0$
\qquad
\qquad
\qquad
c) What is $i_{1}(t)$ for $\mathrm{t} \geq 0$?

SOLUTION

This is the easiest part of the problem. For C_{1} we use the capacitor relationship $-i_{1}=C_{1} \frac{d \nu_{1}}{d t}$ where the negative sign appears again because of the direction of the indicated current.

$$
\begin{aligned}
i_{1}= & -C_{1} \frac{d v_{1}}{d t}=-\left(10 \times 10^{-6}\right) \frac{d\left(8 e^{-20 t}+17\right)}{d t}=-\left(10 \times 10^{-6}\right)\left[(-20) 8 e^{-20 t}\right]=\left(1600 \times 10^{-6}\right) e^{-20 t} \\
& i_{1}=1.6 e^{-20 t} \text { milliamperes }
\end{aligned}
$$

GRADING

Part (a) was 5 points since it was the most substantive part of the problem.
Part (b) was worth 3 points since it derived from (a)
Part (c) was only worth 2 points since it was effectively a straightforward application of a formula.
\qquad
\qquad
\qquad

Problem 7 Phasors (10 points)

(a) What is the frequency f in Hertz at which this circuit is operating? $\mathrm{f}=$ \qquad
SOLUTION:
From the sources we identify $\omega=377$ as the angular frequency of the source. Converting it to linear frequency we get $f=\frac{\omega}{2 \pi}=\frac{377}{2 \pi}=60$
(b) Transform each source to its phasor equivalent

$$
\begin{aligned}
3 \cos (377 \mathrm{t}) & \rightarrow \\
3 \sin (377 \mathrm{t}) & \rightarrow \\
2.5 \cos \left(377 \mathrm{t}+30^{\circ}\right) & \rightarrow
\end{aligned}
$$

SOLUTION:
$3 \cos (377 t) \rightarrow 3 \angle 0^{\circ}$
$3 \sin (377 t)=3 \cos \left(377 t-90^{\circ}\right) \rightarrow 3 \angle-90^{\circ}=-j 3$
$2.5 \cos \left(377 t+30^{\circ}\right) \rightarrow 2.5 \angle 30^{\circ}=2.165+j 1.25$
(c) Transform each component to its equivalent impedance.

$$
\begin{aligned}
& 3 \mathrm{mH} \rightarrow \\
& 1000 \mu \mathrm{f} \rightarrow \\
&
\end{aligned}
$$

SOLUTION
$Z_{L}=j \omega L=j(377)(0.003)=+j 1.131$
$Z_{C}=\frac{1}{j \omega C}=\frac{1}{j(377)\left(1000 \times 10^{-6}\right)}=-j 2.65$
\qquad
\qquad
\qquad
(d) Redraw the above circuit as an equivalent phasor circuit.

SOLUTION

This is simply re-drawing the original circuit replacing all the elements with complex resistances (impedances) and complex sources.

SOLUTION
This is a simple application of KCL. Using KCL at node 2 we can write
$\sum_{+i n @ 2} i=+\frac{V_{1}-\underline{V}_{2}}{j 1.131}-(-j 3)+(2.165+j 1.25)-\underline{I}_{x}=0$
Substituting the node voltages $\underline{V}_{1}=3$ (since it is connected directly to the voltage source) and $\underline{V}_{2}=0$ (since it is connected directly to ground) gives
$+\frac{3-0}{j 1.131}-(-j 3)+(2.165+j 1.25)-\underline{I}_{x}=0$
Simplifying and solving
$-j 2.653+j 3+2.165+j 1.25-\underline{I}_{x}=0$
$\underline{I}_{x}=2.165+j 1.597=2.69 \angle 36.4^{\circ}$
(f) What is $i_{x}(t)$?

SOLUTION
$\underline{I}_{x}=2.69 \angle 36.4^{\circ} \rightarrow i_{x}(t)=2.69 \cos \left(377 t+36.4^{\circ}\right)$
\qquad
\qquad
\qquad

Problem 8 Frequency response (10 points)
Consider the circuit shown below where $v_{\text {in }}(t)=5 \cos 1000 t$ volts, $\mathrm{R}=10 \mathrm{k} \Omega$, and $\mathrm{C}=0.1 \mu \mathrm{f}$.

(a) Write the expression for the output in the time domain. $v_{\text {out }}(t)=$ \qquad
SOLUTION:
You can solve this problem in several ways. The simplest to is identify this circuit as a differentiator from the formula sheet provided, i.e.,

	Differentiator	$K=-R C$

From this information you can write
$v_{\text {out }}(t)=K \frac{d v_{\text {in }}(t)}{d x}=-R C \frac{d v_{\text {in }}(t)}{d x}=-(10000)\left(0.1 \times 10^{-6}\right) \frac{d(5 \cos 1000 t)}{d x}$
$v_{\text {out }}(t)=-(0.001)(5)(-1000 \sin 1000 t)=5 \sin 1000 t$
You can also solve this problem directly from the OP AMP constraints and using KCL. From the OP AMP constraints the voltage at the inverting (-) input is zero volts since the noninverting (+) input is grounded. Writing KCL at the inverting input gives
$\sum_{+ \text {in @-input }} i=+i_{C}-i_{R}=C \frac{d\left(v_{\text {in }}-0\right)}{d t}-\frac{0-v_{\text {out }}}{R}=0$
Rearranging gives $C \frac{d v_{\text {in }}}{d t}+\frac{v_{\text {out }}}{R}=0$ or $v_{\text {out }}=-R C \frac{d v_{\text {in }}}{d t}$ which is the same expression as above and can be evaluated the same way to give $v_{\text {out }}(t)=5 \sin 1000 t$
(b) Convert the circuit elements to phasors and evaluate the expression

$$
T(j \omega)=\frac{v_{\text {out }}(j \omega)}{v_{\text {in }}(j \omega)}=
$$

\qquad
\qquad
\qquad
\qquad

To convert this circuit to its phasor equivalent we identify $\omega=1000$ from $v_{i n}(t)=5 \cos 1000 t$. Using this we convert the capacitor to an equivalent phasor impedance $Z_{C}=\frac{1}{j \omega C}=\frac{1}{j(1000)\left(0.1 \times 10^{-6}\right)}=-j 10000$
The source transforms as $5 \cos 1000 t \rightarrow 5 \angle 0^{\circ}$
The equivalent phasor circuit is then

Determining the transfer function is nothing more than evaluating KCL at the inverting (-) input in the phasor domain.
$\sum_{+ \text {in@-input }} i=+i_{C}-i_{R}=\frac{v_{\text {in }}-0}{\frac{1}{j \omega C}}-\frac{0-v_{\text {out }}}{R}=j \omega C v_{\text {in }}+\frac{v_{\text {out }}}{R}=0$
$j \omega C v_{\text {in }}+\frac{v_{\text {out }}}{R}=0$
$v_{\text {out }}=-j \omega R C v_{\text {in }}$
Putting this in the request form gives

$$
T(j \omega)=\frac{v_{\text {out }}}{v_{\text {in }}}=-j \omega R C=-j \omega(10000)\left(0.1 \times 10^{-6}\right)=-j 0.001 \omega=-\frac{j \omega}{1000}
$$

Several students evaluated this expression for $\omega=1000$ whereas the question asked for the result as a function of ω
(c) Sketch $|T(j \omega)|$ for $10<\omega<10000$ radians/second. Label your axes.

SOLUTION

The expression from (b) is very similar to many which we plotted in class, on homework, and on quizzes. We can slightly modify the expression to make it easier to plot as

$$
T(j \omega)=\frac{v_{\text {out }}}{v_{\text {in }}}=-j 0.001 \omega=-j \frac{\omega}{1000}
$$

Converting this to decibels gives
$20 \log _{10}|T(j \omega)|=20 \log _{10}\left|-j \frac{\omega}{1000}\right|=20 \log _{10}\left|\frac{\omega}{1000}\right|$
This can be quickly evaluated for a few points and plotted. At $\omega=1000$ we have

$$
20 \log _{10}|T(j \omega)|=20 \log _{10}\left|\frac{1000}{1000}\right|=20 \log _{10}|1|=0 \mathrm{~dB}
$$

\qquad
\qquad
\qquad

Now let's consider $\omega=10000$ which gives

$$
20 \log _{10}|T(j \omega)|=20 \log _{10}\left|\frac{10000}{1000}\right|=20 \log _{10}|10|=20 \mathrm{~dB}
$$

These points form a straight line and are plotted on the chart below.

(d) What kind of filter is this?

SOLUTION
Since the filter amplifies high frequencies (gain>1, i.e., greater than 0db) and attenuates low frequencies (gain<1, i.e., less than Odb) this is a high-pass filter.

GRADING:
Parts (a), (b) and (c) were worth three points each. We took of two points in part (c) if you indicated the presence of a passband. Part (d) was worth one point.

Name : \qquad
\qquad
\qquad

Problem 9 Electrical Transients (10 points)
An airbag deploys when a pendulum switch detects a sudden deceleration greater than 10 g and closes a switch. A simple equivalent circuit of the airbag deployment device is shown below. You are given that $v_{c}(0)=24$ volts, $\mathrm{R}=100 \Omega$, and $\mathrm{C}=0.1 \mathrm{mf}$.

a) Determine $v_{c}(t)$ for $t \geq 0$.

SOLUTION:

We solve the problem by using KVL for $\mathrm{t} \geq 0$.
For $t \geq$ the switch is closed and summing the voltages in the circuit gives
$-v_{C}(t)-i_{C}(t) R=0$
Note that the minus sign for the voltage across R comes about because of the direction of the capacitor current.

Using the capacitor constraint gives
$-v_{C}(t)-C \frac{d v_{C}(t)}{d t} R=0$
which after rearranging gives the differential equation which describes this circuit as

$$
R C \frac{d v_{C}(t)}{d t}-v_{C}(t)=0
$$

We can evaluate RC as $R C=(100)\left(0.1 \times 10^{-3}\right)=0.01$ seconds.
By inspection the steady-state (DC) solution occurs when the derivative goes to zero, i.e., $\frac{d v_{C}(t)}{d t} \rightarrow 0$, giving $v_{C, D C}(t)=0$
\qquad
\qquad
\qquad

The natural or transient solution occurs when the right hand side (the sources) are set to zero. Since there are no sources in this problem the equation for the natural solution becomes $R C \frac{d v_{C, N A T}(t)}{d t}-v_{C, N A T}(t)=0$

We have seen this equation many times and know it has a solution of the form
$v_{C, N A T}(t)=K e^{-\frac{t}{R C}}$ which can be evaluated for this problem as $v_{C, N A T}(t)=K e^{-\frac{t}{0.01}}=K e^{-100 t}$
The total solution is then the sum of these solutions
$v_{C}(t)=v_{C, D C}(t)+v_{C, N A T}(t)=0+K e^{-100 t}=K e^{-100 t}$
To determine K we must evaluate this expression for the initial condition which is given as $v_{C}(t=0)=+24$ volts.

Equating these expressions gives $\mathrm{K}=24$
$v_{C}(t=0)=K e^{-100(0)}=K=24$
The final expression is then $v_{C}(t)=24 e^{-100 t}$ volts for $\mathrm{t} \geq 0$.
b) Determine an equation for the energy dissipated in the resistor as a function of time.

SOLUTION:

The energy is the integral of the power dissipated by the resistor. Expressed mathematically

$$
w_{\text {resistor }}=\int_{0}^{t} p_{\text {resistor }}(t) d t=\int_{0}^{t} \frac{v_{\text {resistor }}^{2}}{R} d t=\int_{0}^{t} \frac{\left(24 e^{-100 t}\right)^{2}}{100} d t
$$

Evaluating this expression gives

$$
w_{\text {resistor }}=\left.5.76 \frac{e^{-200 t}}{-200}\right|_{0} ^{t}=-0.0288\left[e^{-200 t}-1\right]=0.0288\left[1-e^{-200 t}\right]
$$

c) The airbag will deploy when the energy absorbed by the resistor (in reality a fuse) reaches 25 mJ . How low it will take for the air bag to deploy after the switch closes?

SOLUTION

This is now a numerical problem where we simply set the expression from (b) equal to 0.025 joules (25 millijoules) and solve for t.
\qquad
\qquad
\qquad
$w_{\text {resistor }}=0.0288\left[1-e^{-200 t}\right]=0.025$
$1-e^{-200 t}=\frac{0.025}{0.0288}=0.868$
Rearranging gives
$e^{-200 t}=1-0.868=0.13194$
Taking the natural logarithm gives
$-200 t=\ln (0.13194)=-2.025$
$t=\frac{-2.025}{-200}=0.010$ seconds.
The air bag will deploy in about 10 milliseconds.

GRADING
Parts (a) and (b) were worth 4 points each. Part (c) was worth 2 points.
\qquad
\qquad
\qquad

Problem 10 Switched circuits (10 points)
The switch in the circuit shown below has been open for a long time and the circuit is in steady state. At $t=0$ the switch closes.

(a) What is the initial value of i_{L}, i.e., $\mathrm{i}_{\mathrm{L}}(0)$?

SOLUTION

As a comment, this problem is almost identical to an example done with a capacitor in class. To find the initial value we recognize that the circuit is in steady state which means that the current through the inductor is not changing and the switch is in its open state. Since the current through the inductor is constant this means that the inductor is behaving like a short, i.e., $v_{L}=L \frac{d i_{L}(t)}{d t}=0$. We can then replace the inductor with an equivalent short and determine iL for the following circuit.

Although the circuit looks complicated the only current is flowing through the series combination of the 10Ω and the 15Ω resistor and must come from the 2 A current course. By inspection $i_{L}(0)=2$ amperes.
\qquad
\qquad
\qquad
(b) What is the final value of i_{L}, i.e., $\mathrm{i}_{\mathrm{L}}(\infty)$?

SOLUTION

The final value is harder to compute as the switch is now closed. Because the time is long after the switch closed the inductor again behaves like a short resulting in the following circuit for analysis.

In this form the circuit looks complicated to analyze. However we can get a better understanding the of the circuit and its analysis by re-arranging it as shown below.

I removed all the confusing notation and kept only the arrow identifying the current which we want to identify. This is now seen to be a current divider where a 2A incoming current splits between the 10Ω and the 20Ω resistors allowing us to use the current divider relationship.
$i_{L}(\infty)=\frac{20}{20+10} 2=\frac{4}{3}$ ampere.
(c) What is the time constant of this circuit for $t \geq 0$?

SOLUTION
\qquad
\qquad
\qquad

The time constant come from the circuit with the inductor in it for $t \geq 0$, i.e., with the switch closed. L is clearly know but we will need to compute the Thevenin equivalent resistance as seen by the inductor to compute the time constant.

We don't need the Thevenin voltage or the Norton current so all we need to do is turn off the current source and find the R_{T} of the following circuit as seen by the inductor.

Clearly this is simply two resistors in series so $R_{T}=10+20=30$ ohms. Note that there is no current through the 15Ω resistor because it is not connected to anything.

We can now evaluate the time constant as $T_{L}=\frac{L}{R_{t}}=\frac{3}{30}=0.1$
(d) Write the expression for $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ for $\mathrm{t} \geq 0$.

SOLUTION

We can use the initial-final value theorem to write this since we now know the initial value, the final value and the time constant.

Write the initial-final value theorem
\qquad
\qquad
\qquad
$i_{L}(t)=(I V-F V) e^{-\frac{t}{T_{L}}}+F V=\left(i_{L}(0)-i_{L}(\infty)\right) e^{-\frac{t}{L / R_{t}}}+i_{L}(\infty)$
and substitute the appropriate circuit values to get
$i_{L}(t)=\left(2-\frac{4}{3}\right) e^{-\frac{t}{0.1}}+\frac{4}{3}$
or
$i_{L}(t)=\frac{2}{3} e^{-10 t}+\frac{4}{3}$ amperes for $\mathrm{t} \geq 0$.
(e) What part of (d) is the forced response?

SOLUTION

The forced response is the DC (steady-state) response. This is $i_{L, D C}(t)=\frac{4}{3}$ ampere.
(f) What part of (d) is the natural response?

SOLUTION

The natural response is the transient response. This is $i_{L, N A T}(t)=\frac{2}{3} e^{-10 t}$ ampere.
(g) What is the state variable for this circuit?

SOLUTION

This was explicitly covered many times in class. The state variable is the circuit parameter which describes the energy of the reactive element. Since $w_{L}=\frac{1}{2} L i^{2}$ the state variable is the inductive current i_{L}

GRADING

The major part of the problem was determining the initial value, the final value and the time constant. Consequently, parts (a), (b) and (c) were worth 2 points each. The remaining four parts (d) to (g) were worth one point each.

[^0]: Careful examination will reveal that this is the same circuit as the original circuit.

