Vame '	Pierce	K. hogil	Section:	ME	CWRU e-mail:_	pak17
vario .	1,112	raine.				

CASE WESTERN RESERVE UNIVERSITY

Case School of Engineering Department of Electrical Engineering and Computer Science ENGR 210. Introduction to Circuits and Instruments (4)

Quiz No. 6

2/25/05

PUT ANSWERS IN THE SPACE PROVIDED AND SHOW YOUR WORK IF APPROPRIATE. BE SURE TO STATE ANY ASSUMPTIONS

MAXIMUM SIGNAL TRANSFER

Problem 1 (10 points)

(a) Find the value of the variable resistor Ro in the circuit below that will result in maximum power dissipation in the 8- Ω load resistor.

- (b) What is the maximum power that can be delivered to the 8- $\!\Omega$ load resistor.
- (c) If R_o increases from 10Ω to $25\Omega,$ the power dissipated by the 8Ω load % 100 will (circle one)
 - (i) increase

voltage divider > V_ = Reported > gets sm

(ii) remain the same

b) V2 = (852 ×852)(24V) = 12V P= V2/8 = 144/8 = 18VV

parameters. These are the connection equations. Do not write i_x in terms of other circuit variables for this part of your answer.

	Node	Node-Voltage Equation					
D	* A	1/2	· v _A	+.	0	$\cdot V_B$	= 8.94-10cx
+)	В	0	· v _A	+.	1/2	٠٧ _B	× (01 _×

b) Now write an expression for i_x in terms of V_A , V_B and the given circuit parameters. (This is a constraint equation.)

1/2 = 101 x 1x = (6-1/2/2) 1x+0,9A -101x =0 9:x = 0.9A 1x= VB/20) c) Using your equations from parts (a) and (b) determine the node voltages for the above

circuit values.

CASE WESTERN RESERVE UNIVERSITY

Case School of Engineering
Department of Electrical Engineering and Computer Science
ENGR 210. Introduction to Circuits and Instruments (4)

Quiz No. 6

2/25/05

PUT ANSWERS IN THE SPACE PROVIDED AND SHOW YOUR WORK IF APPROPRIATE. BE SURE TO STATE ANY ASSUMPTIONS

MAXIMUM SIGNAL TRANSFER

Problem 1 (10 points)

(a) Find the value of the variable resistor Ro in the circuit below that will result in maximum power dissipation in the $8-\Omega$ load resistor.

- (b) What is the maximum power that can be delivered to the 8- Ω load resistor.
- (c) If R_o increases from 10Ω to $25\Omega,$ the power dissipated by the 8Ω load will (circle one)
 - (i) increase

48

- (ii) remain the same
- (iii) decrease.

$$\frac{R_{L} v_{1}^{2}}{(R_{L}+R_{T})^{2}} = \frac{10(2v^{2})}{(10)^{2}} = (7.17)$$

$$= \frac{25(2v^{2})}{(33)^{2}} = 13$$

Name: David Anderson Section: ME CWRU e-mail: dee 7

LINEAR DEPENDENT SOURCES

Problem 2 (10 points)

Consider this active circuit with a dependent source. Assume R_L =6 Ω

a) Write node analysis equations (KCL) for nodes A and B in terms of i_x and the given circuit parameters. These are the connection equations. Do not write i_x in terms of other circuit variables for this part of your answer.

	Node	Node-Voltage Equation					
+\	* A	(.v _A +. U .v _B = 2/6V + 2/2					
+)	В	0 + PL ·VB = 101x					

b) Now write an expression for i_x in terms of V_A , V_B and the given circuit parameters. (This is a constraint equation.)

c) Using your equations from parts (a) and (b) determine the node voltages for the above circuit values.

V_{A}	(6V	V_B	7 V	
	\	ate IKV	+2	
.9= 96x	V# ~	V5= 16V NO	(+ + +) VG	= 1012
			7 VB=	0(.1)
			V3= 2	V

CWRU e-mail:___

CASE WESTERN RESERVE UNIVERSITY

Case School of Engineering Department of Electrical Engineering and Computer Science ENGR 210. Introduction to Circuits and Instruments (4)

Quiz No. 6

2/25/05

PUT ANSWERS IN THE SPACE PROVIDED AND SHOW YOUR WORK IF APPROPRIATE. BE SURE TO STATE ANY ASSUMPTIONS

MAXIMUM SIGNAL TRANSFER

Problem 1 (10 points)

(a) Find the value of the variable resistor Ro in the circuit below that will result in maximum power dissipation in the $8-\Omega$ load resistor.

- (b) What is the maximum power that can be delivered to the $8-\Omega$ load resistor.
- (c) If R_0 increases from 10Ω to 25Ω , the power dissipated by the 8Ω load will (circle one)
 - (i) increase

- (ii) remain the same
- (iii) decrease)

- 4.) Since $P=\frac{\sqrt{2}}{R}$, a resistance of Oohn at Ro will lead to the smallest R, and thus the largest P. b.) $P=\frac{242}{8}=72$ W.
 - () iii decrease.

Problem 2 (10 points)

Consider this active circuit with a dependent source. Assume $R_L=6\Omega$ 14 +0.9 -1014 =0

a) Write node analysis equations (KCL) for nodes A and B in terms of i_x and the given circuit parameters. These are the connection equations. Do not write i_x in terms of other circuit variables for this part of your answer.

	Node	Node-Voltage Equation
()	Ť A	+ 2.10ix Vb = 16V
/ 7	В	WA +· · · · · · · · · · · · · · · · · · ·

b) Now write an expression for i_x in terms of V_A , V_B and the given circuit parameters. (This n for I_X in terms = 0.1A $I_X = \frac{16 \cdot Vq}{20 \text{ Vb}} = 0.1A$ is a constraint equation.)

c) Using your equations from parts (a) and (b) determine the node voltages for the above circuit values.

The second state of the second second				
V,	ا ال	lt v	V_{B}	1587