Homework Solutions 9

(4-32) Design a signal conditioning circuit for the temperature transducer whose characteristics are shown in Figure P4-38. The conditioning circuit must convert the transducer output for temperatures between - 300 C and -100 C to a range of 0 to 5 . The voltage gain for all stages must be less than 1000 .

In these types of problems you must design your own circuit, so there can be many variations in answers. Remember that you must remove the "bias constant" after the first stage always when designing the transducer. It is also suggestible that all the gains $(\mathrm{K} 1 * \mathrm{~K} 2 * \mathrm{~K} 3=\mathrm{K})$ of the three stages be relatively close to each other because it will help reduce noise with in the circuit. This is the reason they choose (200) (200) (186.57) because when multiplied you get a gain from all three stages to be $7.1463 * 10 \wedge 6$. For more information on how to solve this problem and ones like it check out pages 189-190.

(4-55) WHEATSTONE BRIDGE AMPLIFIER SEE TEXT FOR PROBLEM STATEMENT

(a) Verify that this expression is correct and the express K in terms of circuit paramenters.
(b) For Vref $=15 \mathrm{~V}, \mathrm{R}=100 \Omega$ and $\Delta \mathrm{R} / \mathrm{R}$ in the range of $+/-0.04 \%$, select the value Rf so that the output voltage Vo falls in the range $+/-3 \mathrm{~V}$.

(b) For $v_{O}= \pm 3 \mathrm{~V}$ when $\Delta R / R= \pm 0.0004$ and $V_{c c}=15 \mathrm{~V}$ requires
$\left[\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}} \cdot\left(2+\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{F}}}\right)^{-1}\right] \cdot 4 \cdot 10^{-4} \cdot 15=3$
This requires $\frac{\mathrm{R}_{\mathrm{F}}}{\mathrm{R}}=1000.5$ Since $\mathrm{R}=100 \Omega$ we have $\mathrm{RF}_{\mathrm{F}}=100.05-10^{3}$

This major trick of this problem is to understand that $\mathrm{Vb}=\mathrm{Va}$ which is a property of how Operational Amplifiers function because if in $=\mathrm{ip}=0$, then Va must be Vb for this problem. Once you know that, find your nodal equations and set Va to Vb and solve for Vo. Also remember that K will be expressed in terms of circuit parameters.
(5-8) An exponential waveform is 5 V at $\mathrm{t}=5 \mathrm{~ms}$ and 2 V at $\mathrm{t}=6 \mathrm{~ms}$. Find the amplitude and time constant.

$$
\begin{aligned}
& 5-8 \quad \mathrm{~V}_{\mathrm{A}} \cdot \exp \left(\frac{-0.005}{\mathrm{~T}_{\mathrm{C}}}\right)=4 \quad \mathrm{~V}_{\mathrm{A}} \cdot \exp \left(\frac{-0.006}{\mathrm{~T}_{\mathrm{C}}}\right)=2 \quad \frac{\exp \left(\frac{-0.005}{\mathrm{~T}_{\mathrm{C}}}\right)}{\exp \left(\frac{-0.006}{\mathrm{~T}_{\mathrm{C}}}\right)}=2 \exp \left(\frac{0.006}{\mathrm{~T}_{\mathrm{C}}}\right)=2 \cdot \exp \left(\frac{0.005}{\mathrm{~T}_{\mathrm{C}}}\right) \\
& \frac{0.006}{\mathrm{~T}_{\mathrm{C}}}=\ln (2)+\frac{0.005}{\mathrm{~T}_{\mathrm{C}}} \quad \mathrm{~T}_{\mathrm{C}}:=\frac{1}{1000 \cdot \ln (2)} \quad \mathrm{T}_{\mathrm{C}}=1.4427 \times 10^{-3} \quad \mathrm{~V}_{\mathrm{A}}:=4 \cdot \exp \left(\frac{0.005}{\mathrm{~T}_{\mathrm{C}}}\right) \mathrm{V}_{\mathrm{A}}=128 \\
& \text { Checking solution } \\
& 128 \cdot \exp \left(\frac{-0.005}{1.4427 \cdot 10^{-3}}\right)=4 \quad 128 \exp \left(\frac{-0.006}{1.4427 \cdot 10^{-3}}\right)=2 \quad \text { Checks }
\end{aligned}
$$

(5-14) A sinusoid has frequency of 5 MHz , a value of -10 V at $\mathrm{t}=0$, and reaches its first positive peak at $\mathrm{t}=125 \mathrm{~ns}$. Find the amplitude, phase angle, and Fourier coefficients.

$$
\begin{aligned}
& \text { 5-14 The waveform is of the form } v(t)=V_{A^{\prime}} \cos \left[2 \cdot \pi \cdot 5 \cdot 10^{6} \cdot\left(t-125 \cdot 10^{-9}\right)\right] v(0)=-10 \\
& \mathrm{~V}_{\mathrm{A}} \cdot \cos \left[2 \cdot \mathrm{\pi} \cdot 5 \cdot 10^{6} \cdot\left(0-125 \cdot 10^{-9}\right)\right]=-10 \quad \mathrm{~V}_{\mathrm{A}}=\frac{-10}{\cos \left[2-\mathrm{x} \cdot 5 \cdot 10^{6} \cdot\left(0-125 \cdot 10^{-9}\right)\right]} \quad \mathrm{V}_{\mathrm{A}}=14.142 \\
& \mathrm{~T}_{0}:=\frac{1}{5 \cdot 10^{6}} \quad \mathrm{~T}_{\mathrm{S}}:=125 \cdot 10^{-9} \quad \phi:=-2 \cdot \pi \cdot \frac{\mathrm{~T}_{\mathrm{S}}}{\mathrm{~T}_{0}} \quad \mathrm{a}:=\mathrm{V}_{\mathrm{A}} \cdot \cos (\phi) \quad \mathrm{b}:=-\mathrm{V}_{\mathrm{A}} \cdot \sin (\phi) \\
& \phi=-3.927 \quad \phi \cdot \frac{180}{\pi}=-225 \quad \mathbf{a}=-10 \quad \mathbf{b}=-10 \\
& v(t):=a \cdot \cos \left(2 \cdot \pi \cdot 5 \cdot 10^{6} \cdot t\right)+b \cdot \sin \left(2 \cdot \pi \cdot 5 \cdot 10^{6} \cdot t\right) t:=0, \frac{T_{0}}{20} . . T_{0} \\
& v(0)=-10 \quad v\left(125 \cdot 10^{-9}\right)=14.142
\end{aligned}
$$

(5-29)

The curve shown below is from the equation $v(t)=V_{a}\left[e^{-\alpha t} \sin (\beta t)\right] u(t)$.

The book gives the period of the sine wave to be 5 ms , the value of the first peak to be at 18 V at 1.3 ms , and the value of the first minimum to be at -10 V . The $\mathrm{u}(\mathrm{t})$ means that the value of this function at times less than $t=0$ is 0 V .
1)The value of beta can be determined from the period of the sine wave.
$\beta=2 \pi / T=400 \pi$
2)You can tell by looking at the graph that the peak occurs before the halfway point between the zero crossings. The book gives that the peak occurs at 1.3 ms and the halfway point between the first two zero crossings is at 1.25 ms , so the book is in error.
3)The first minimum occurs at half of the period of the sine wave after the first maximum.
4)If you solve this system of equations based on the book's value of $t=1.3 \mathrm{~ms}$
$18=V_{a}\left[e^{-\alpha^{*} .0013} \sin \left(400 \pi^{*} .0013\right)\right]$
$-10=V_{a}\left[e^{-\alpha^{*} .0038} \sin \left(400 \pi^{*} .0038\right)\right]$
then you will get a negative value for alpha which causes an exponentially growing instead of decaying waveform.
5)The correct way to do this is to find

$$
\frac{d v(t)}{d t}=V_{a} e^{-\alpha t}[\beta \cos (\beta t)-\alpha \sin (\beta t)]
$$

6)Set this derivative to 0 and solve for t to get the location of the maxima and minima $t=\frac{1}{\beta}\left[\tan ^{-1}\left(\frac{\beta}{\alpha}\right)+N \pi\right], \mathrm{N}=0$ at the first maximum and $\mathrm{N}=1$ at the first minimum.
7)Now substitute these values of t into step 4 instead of using $\mathrm{t}=.0013$ and $\mathrm{t}=.0038$ and you'll have two equations with the two unknowns Va and alpha since beta is known.

$$
\begin{aligned}
& 18=V_{a}\left[e^{-\frac{\alpha}{\beta} \tan ^{-1}\left(\frac{\beta}{\alpha}\right)} \sin \left(\tan ^{-1}\left(\frac{\beta}{\alpha}\right)\right)\right] \\
& -10=V_{a}\left[e^{-* \frac{\alpha}{\beta}\left[\tan ^{-1}\left(\frac{\beta}{\alpha}\right)+\pi\right]} \sin \left(\tan ^{-1}\left(\frac{\beta}{\alpha}\right)+\pi\right)\right]
\end{aligned}
$$

8)Solve this and you should arrive at this solution
$\mathrm{Va}=24.92$, alpha $=248.66$, beta $=400^{*}$ pi
(5-39)
$V(t)=100-200 \cos (2000 \Pi t)-75 \sin (40000 \Pi t)+35 \cos (80000 \Pi t)$
Take out multiples of two pi out of each sinusoidal term
Therefore,

```
    2*п*(1000)
    40*п*(1000)
    80*п*(1000)
fo = 1000Hz; To = 10^-3; Vavg = 0.1;
```

First component amplitude $=200 ; \operatorname{fmax}=40000$;

