Homework Solutions 7

4-12 The input loop contains an open circuit, hence $i_{g}=0$. A KVL. equation around the input loop is
$-\mathrm{v}_{\mathrm{S}}+\mathrm{v}_{\mathrm{x}}-\mu \cdot \mathrm{v}_{\mathrm{x}}=0$

Solving for v_{x} yields $v_{\mathrm{X}}=\frac{\mathrm{v}_{\mathrm{S}}}{1-\mu}$
The open-ckt voltage is
$v_{\mathrm{T}}=-\mu \cdot \mathrm{v}_{\mathrm{X}}=\frac{-\mu}{1-\mu} \mathrm{v}_{\mathrm{S}}$
The short-ckt current is $\mathrm{i}_{\mathrm{N}}=\frac{-\mu \cdot \mathrm{v}_{\mathrm{x}}}{\mathrm{R}_{\mathrm{O}}}$
The Thevenin resistance is $\mathrm{R}_{\mathrm{T}}=\frac{\mathrm{v}_{\mathrm{T}}}{\mathrm{i}_{\mathrm{N}}}=\mathrm{R}_{\mathrm{O}}$

4-22 Ckt is in summing amp

$$
\begin{equation*}
v_{0}=\frac{-100 \cdot 10^{3}}{50 \cdot 10^{3}+25 \cdot 10^{3}}+\frac{-100 \cdot 10^{3}}{50 \cdot 10^{3}} \tag{-5}
\end{equation*}
$$

$\mathrm{v}_{\mathrm{O}}=10-\frac{4}{3} \cdot \mathrm{~s}$

(a) $v_{\mathrm{O}}=\mathrm{K}_{1} \cdot v_{\mathrm{S} 1}+\mathrm{K}_{2} \cdot v_{\mathrm{S} 2}$

$$
\begin{aligned}
& \mathrm{K}_{1}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=-2 \\
& \mathrm{~K}_{2}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}} \cdot \frac{\mathrm{R}_{4}}{\mathrm{R}_{3}+\mathrm{R}_{4}}=\frac{12}{5} \\
& \mathrm{v}_{\mathrm{O}}=-2 \cdot \mathrm{v}_{\mathrm{S} 1}+2 \cdot 4 \cdot \mathrm{v}_{\mathrm{S} 2}
\end{aligned}
$$

(b) $\mathrm{v}_{\mathrm{CC}}:=15 \quad \mathrm{v}_{\mathrm{S} 2}:=10$
$-\mathrm{V}_{\mathrm{CC}}<-2 \cdot \mathrm{v}_{\mathrm{S} 1}+2.4 \cdot \mathrm{v}_{\mathrm{S} 2}<\mathrm{V}_{\mathrm{CC}}$
$\frac{-V_{\mathrm{CC}}+2.4 \cdot \mathrm{v}_{\mathrm{S} 2}}{2}<\mathrm{v}_{\mathrm{S} 1}<\frac{\mathrm{V}_{\mathrm{CC}}+2,4 \cdot \mathrm{v}_{\mathrm{S}}}{2}$

$$
4.5<v_{S 1}<19.5
$$

(a) $\mathrm{vp}_{\mathrm{p}}=\mathrm{v}_{\mathrm{S}} \quad \mathrm{v}_{\mathrm{N}}=\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right) \cdot \mathrm{v}_{\mathrm{O}}+\mathrm{v}_{\mathrm{BB}}$
$v_{\mathrm{P}}=\mathrm{v}_{\mathrm{N}} \rightarrow \mathrm{v}_{\mathrm{S}}=\left(\frac{\mathrm{R}_{1}}{R_{1}+\mathrm{R}_{2}}\right) \cdot v_{\mathrm{O}}+\mathrm{v}_{\mathrm{BB}}$
$v_{\mathrm{O}}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}} \cdot\left(\mathrm{v}_{\mathrm{s}}-\mathrm{v}_{\mathrm{BB}}\right)=\mathrm{K} \cdot\left(\mathrm{v}_{\mathrm{s}}-\mathrm{v}_{\mathrm{BB}}\right)$
$\mathrm{K}=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{\mathrm{t}}}$
(b) $\quad \mathrm{V}_{\mathrm{BB}}:=5 \quad \mathrm{~V}_{\mathrm{CC}}:=15 \quad \mathrm{R}_{1}=\mathrm{R}_{2} \quad \mathrm{~K}:=2 \quad \mathrm{~V}_{\mathrm{s}}:=-15,-14.9 .15$

$$
v_{\mathrm{O}}\left(\mathrm{v}_{\mathrm{s}}\right):=\left\{\begin{array}{l}
\left(-\mathrm{v}_{\mathrm{CC}}\right) \text { if } \mathrm{v}_{\mathrm{s}}<\frac{-\mathrm{v}_{\mathrm{CC}}}{\mathrm{~K}}+\mathrm{v}_{\mathrm{BB}} \\
\mathrm{~K} \cdot\left(\mathrm{v}_{\mathrm{s}}-\mathrm{v}_{\mathrm{BB}}\right) \text { if } \frac{-\mathrm{V}_{\mathrm{CC}}}{\mathrm{~K}}+\mathrm{v}_{\mathrm{BB}} \leq \mathrm{v}_{\mathrm{s}} \leq \frac{v_{\mathrm{CC}}}{\mathrm{~K}}+\mathrm{v}_{\mathrm{BB}} \\
\mathrm{v}_{\mathrm{CC}} \text { if } \frac{\mathrm{v}_{\mathrm{CC}}}{\mathrm{~K}}+\mathrm{v}_{\mathrm{BB}}<\mathrm{v}_{\mathrm{s}}
\end{array}\right.
$$

$$
v_{\mathrm{O}}(12.5)=15
$$

$$
\operatorname{vo}(5)=0
$$

$$
v_{O}(0)=-10
$$

$\mathrm{v}_{\mathrm{O}}(-2.5)=-15$

