Homework Solutions 6

(3-52) Find the maximum power available to the load resistance in the Figure P3-52. What is the value of RL will extract maximum power?

Step (1) Find the Thevenin ("lookback") resistance, open the current source and short the voltage source, then find the resistance by looking back into the circuit from the load.

Step (2)Using superposition to find the too find two different Isc(short circuit) currents. Therefore, open the current source and use the voltage source to find the first short circuit current. Next short the voltage source and use the current source to find the second short circuit current.

Simply add $i_{\text {scl }}$ to $i_{\text {sc2 }}$ to find the total $\boldsymbol{i}_{\text {sc }} \rightarrow \boldsymbol{i}_{N}$
Using the equation $\operatorname{Pmax}=(0.25) \cdot \mathrm{i}_{\mathrm{N}}{ }^{2} \cdot \mathrm{R}_{\mathrm{T}}=(0.25) \cdot(0.01)^{2} \cdot 333.33=8.333 \mathrm{~mA}$ Therefore, $\operatorname{Pmax}=\underline{\mathbf{8 . 3 3 3 m A}}$.
(3-53) Find the maximum power available to the load resistance in Figure P3-53. What is the value of Rl will extract the maximum power?

First find the "lookback" resistance in the wheatstone bridge, open the load and short the voltage source. Now find the resistance in the path from terminal A to terminal B.

Finding the equivalent "lookback" resistance or Thevenin resistance is quite hard to visualize but if you rearrange the circuit drawing enough you can clearly see that $10 \Omega|\mid 20 \Omega$ which is in series with the $\mathbf{3 0 \Omega} \| \mathbf{3 0 \Omega}$. Therefore,

$$
\mathrm{R}_{\mathrm{T}}:=\frac{10 \cdot 20}{10+20}+\frac{30 \cdot 30}{30+30}
$$

$\underline{R}_{T}=\mathbf{2 1 . 6 7 \Omega}$

Next, consider finding the Thevenin voltage V_{T} which is the voltage across terminal A and terminal B:

$$
V_{T}=V_{A}-V_{B}
$$

Find the voltage at A and B using voltage division;

$$
v_{A B}:=\frac{10}{10+20} \cdot 50-\frac{30}{30+30} \cdot 50 \quad v_{A B}=-8,333
$$

Therefore, $\underline{V}_{\underline{T}}=\mathbf{V}_{A B}=\mathbf{- 8 . 3 3 3 3}$

Now, solve for $i_{N}=V_{T} / R_{T}=-0.3846 A$
And,
$\boldsymbol{P m a x}=(0.25) \cdot(-0.3846 \mathrm{~A})^{2} \cdot 21.67 \Omega=\underline{\mathbf{0 . 8 0 1 W}}$
(3-64) In Figure P3-61 the load is a 500Ω resistor and the Rs $=75 \Omega$. Design an interface circuit so that the input resistance of the two port is $75 \Omega+/-10 \%$ and the output resistance seen by the load is $500 \Omega+/-10 \%$.
$3-64 \mathrm{R}_{\mathrm{S}}:=75 \mathrm{R}_{\mathrm{L}}:=500$

First guess let: $\quad \mathrm{R}_{1}=75 \quad \mathrm{R}_{2}:=500$
$\mathrm{R}_{\mathbb{N}}:=\frac{\mathrm{R}_{1} \cdot\left(\mathrm{R}_{2}+\mathrm{R}_{\mathrm{L}}\right)}{\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{\mathrm{L}}} \quad \quad \mathrm{R}_{\mathbb{I N}}=69.767$
$\mathrm{R}_{\text {OUT }}:=\mathrm{R}_{2}+\frac{\mathrm{R}_{1} \cdot \mathrm{R}_{\mathrm{S}}}{\mathrm{R}_{1}+\mathrm{R}_{\mathrm{S}}} \quad \mathrm{R}_{\text {OUT }}=537.5$
Both answers are with $\pm 10 \%$

$$
\text { Given } \quad \frac{R_{1} \cdot\left(R_{2}+500\right)}{R_{1}+R_{2}+500}=75 \quad R_{2}+\frac{R_{1} \cdot 75}{R_{1}+75}=500 \mathrm{Find}\left(R_{1}, R_{2}\right)=\binom{81.349}{460.977} \quad \text { <-exact solutions }
$$

The best way to solve these design problems is to try each Interface Circuit equivalent shown in Figure $3-52$ on pg. 118 of the text. Since this is a design problem you can guess some values and use logic into which is the best interface circuit to use for specifications required.

(3-71) Comparison of Analysis Methods for (a), (b), (c); problem statement located in the text

Step 1: Convert the voltage sources in series with $2 R$ to equivalent current sources in parallel

Step 2: Replace left-most $2 R \| 2 R$ by a single resistor R and then convert the left-most current source to an equivalent voltage sources $\mathrm{v}_{1} / 2$ in series with $R+R=2 R$.

Step 5: Convert the left most voltage source in series with $2 R$ to an equivalent current sources $\frac{v_{1}}{8 \cdot R}+\frac{v_{2}}{4-R}$ in parallel with $2 R$ and then combine with the right most current source to produce an equivalent current source $\frac{v_{1}}{8 \cdot R}+\frac{v_{2}}{4 \cdot R}+\frac{v_{3}}{2 \cdot R}$, in parallel with R.

Hence $v_{O}=\left(\frac{v_{1}}{8 \cdot R}+\frac{v_{2}}{4 \cdot R}+\frac{v_{1}}{2 \cdot R}\right) \cdot R=\frac{1}{8} \cdot v_{1}+\frac{1}{4} \cdot v_{2}+\frac{1}{2} \cdot v_{3}$
(c) Either method is acceptable. Method (a) is analytical and abstract. Method (b) is more intuitive since it works directly with the circuit model.
(4-4) The circuit in Figure P4-4 is an ideal voltage amplifier with the negative feedback provided via the resistor R_{F}.
(a) Find the output voltage V 2 and the current gain $\mathrm{i}_{2} / \mathrm{i}_{1}$ when $\mathrm{Vs}=10 \mathrm{mV}$ and $\mathrm{R}_{\mathrm{F}}=10 \mathrm{k} \Omega$.
(b) Find the input resistance $R_{I N}=v_{1} / i_{1}$.
4-4 $\mathrm{R}_{\mathrm{F}}:=10.10^{3} \quad \mathrm{v}_{\mathrm{s}}:=0.01$ (a) Writing a KCL equation at Node A yields:

$$
\frac{v_{x}-v_{s}}{1000}+\frac{v_{x}-\left(-99 v_{x}\right)}{R_{F}}=0
$$

$$
\text { solving for } v_{x} \text { yields } v_{x}:=\frac{R_{F} \cdot v_{s}}{R_{F}+100000}
$$

$$
v_{2}=-99 \cdot v_{x} \quad v_{2}=-9 \times 10^{-2} \quad i_{2}:=\frac{v_{2}}{1000}
$$

$$
i_{1}:=\frac{v_{s}-v_{x}}{1000} \quad K_{I}:-\frac{i_{2}}{i_{1}} \quad K_{I}=-9.9
$$

$$
\text { (b) } \mathrm{R}_{\mathrm{IN}}:=\frac{v_{\mathrm{x}}}{i_{1}} \quad \mathrm{R}_{\mathrm{IN}}=100
$$

Therefore, $\mathbf{K = \mathbf { - 9 . 9 }}$ for part (a); and $\underline{\mathbf{R}}_{\mathbf{I N}}=\mathbf{1 0 0}$ for part (b)
(4-6) Find the voltage gain v_{O} / v_{S} and the current gain i_{O} / i_{S} in Figure P4-6.

(a) Writng a KCL equation at Node A yields:

$$
v_{\mathrm{O}}=\frac{-400}{9}, v_{\mathrm{S}} \quad \mathrm{~K}_{\mathrm{V}}:=\frac{-400}{9}
$$

(b) is $=\frac{v_{\mathrm{S}}}{3000} \quad i_{\mathrm{O}}=\frac{v_{\mathrm{O}}}{500}=\frac{1}{500} \cdot\left(\frac{-400}{9} \cdot v_{\mathrm{S}}\right) \quad K_{I}:=\frac{-400.3000}{500.9}$

$$
K y=-44.444
$$

$K_{I}=-266.667$

Therefore, $\underline{\mathbf{K v}=\mathbf{- 4 4 . 4 4} \text { for part (a); and } \underline{\mathbf{K}_{\mathrm{I}}}=\mathbf{- 2 6 6 . 6 6 7} \text { for part (b) }}$

