Homework Solutions 11

(6-45)

$\begin{array}{llll}\text { For C1 } & \text { when C is open the source and OP AMP are disconnected hence } & \mathbf{v}_{\mathrm{O}}=0 & \mathrm{~V} \\ \text { For C2 } & \text { when C is open the OP AMP circuit is an inverter hence } & \mathbf{v}_{\mathrm{O}}=-5 & \mathrm{~V}\end{array}$
(7-15)

7-16

$$
\frac{d}{d t} v(t)+200 \cdot v(t)=25 \cdot \sin (100 \cdot t) \quad v_{N}(t)=K \cdot \exp (-200 \cdot t) \quad v_{F}(t)=A \cdot \cos (100 \cdot t)+B \cdot \sin (100 \cdot t)
$$

$\frac{d}{d t} v_{F}(t)+200 \cdot V_{P}(t)=-100 \cdot A \cdot \sin (100 \cdot t)+100 \cdot B \cdot \cos (100 \cdot t)+200 \cdot(A \cdot \cos (100 \cdot t)+B \cdot \sin (100 \cdot t))=25 \cdot \sin (100 \cdot t)$

$$
\text { hence } \quad-100 \cdot A+200 \cdot B=25 \quad 100 \cdot B+200 \cdot A=0 \quad B=-2 \cdot A \quad-500 \cdot A=25 A:=\frac{-1}{20} \quad B:=\frac{1}{10}
$$

$v(t)=\frac{-1}{20} \cdot \cos (100-t)+\frac{1}{10} \cdot \sin (100-t)+K \cdot \operatorname{cxp}(-200-t) \quad v(0)=\frac{-1}{20}+K=0 \quad K:=\frac{1}{20}$
$v(t)=\frac{-1}{20}-\cos (100 \cdot t)+\frac{1}{10} \cdot \sin (100 \cdot t)+\frac{1}{20} \cdot \operatorname{cxp}(-200 \cdot t)$ checking in Mathcad $\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{-1}{20} \cdot \cos (100 \cdot t)+\frac{1}{10} \cdot \sin (100 \cdot t)+\frac{1}{20} \cdot \exp (-200 \cdot t)\right)+200 \cdot\left(\frac{-1}{20} \cdot \cos (100 \cdot t)+\frac{1}{10} \cdot \sin (100 \cdot t)+\frac{1}{20} \cdot \exp (-200 \cdot t)\right)$
$8-2,15-2 \quad I_{1}:=6-\operatorname{cxp}(j \cdot 0) \quad I_{I}=6$

$$
\begin{aligned}
& \mathrm{I}_{2}=3 \sin \left(\mathrm{j} \cdot \frac{\pi}{2}\right) \quad \mathrm{L}_{2}=-3 \mathrm{j} \\
& \left|\mathrm{I}_{1}+\mathrm{I}_{2}\right|=6.708 \quad \frac{180}{\pi} \cdot \operatorname{rag}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=-26.565 \\
& \mathrm{i}_{1}(\mathrm{t})+\mathrm{i}_{2}(\mathrm{t})=6.70860(\mathrm{~b} \cdot \mathrm{t}-26.565)
\end{aligned}
$$

(8-15)

$$
8-15,15-15 \quad V:=200 \cdot \exp \left(-j \cdot \frac{\pi}{3}\right) 1:=20 \cdot 10^{-3}+\mathrm{j} \cdot 0
$$

(a) $Z:=\frac{V}{I} Z=5000-8660 j \Omega$
(b) $\mathrm{V}:=150 \cdot \exp \left(\mathrm{j} \cdot 3 \cdot \frac{\pi}{2}\right) \mathrm{I}:=\frac{\mathrm{V}}{\mathrm{Z}} \quad \mathrm{I}=-1.299 \times 10^{-2}+7.5 \mathrm{j} \times 10^{-3}$
$|\mathrm{I}|=1.5 \times 10^{-2} \quad \frac{180}{\pi} \cdot \arg (\mathrm{D})=150$
$i(t)=1.5 \cdot 10^{-2} \cdot \cos \left(1000 \cdot t+150^{\circ}\right) \mathrm{A}$
(8-26)

8-26, 15-26 $Z:=\frac{1}{j \cdot 2000 \cdot 2 \cdot 10^{-6}+\frac{1}{250+j \cdot 2000 \cdot 0.25}}$
$Z_{I N}:=500+Z \quad Z_{I N}=625-375 \mathrm{j} \quad$--Input Imp.
By double voltage division

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{x}}:=\left(\frac{\mathrm{Z}}{\mathrm{Z}_{\mathrm{N}}} \cdot 15\right) \frac{250}{250+\mathrm{j} \cdot 2000 \cdot 0.25} \\
& \mathrm{~V}_{\mathrm{x}}=-0.882-3.529 \mathrm{j} \quad\left|\mathrm{~V}_{\mathrm{x}}\right|=3.638 \\
& \frac{180}{\mathrm{x}} \cdot \arg \left(\mathrm{~V}_{\mathrm{x}}\right)=-104 \quad \mathrm{v}_{\mathrm{x}}(\mathrm{t})=3.638 \cdot \cos \left(2000-\mathrm{t}-104^{\mathrm{a}}\right)
\end{aligned}
$$

