Homework Solutions 10

6-6 $\quad \mathrm{C}:=0.5 \cdot 10^{-6} \quad \mathrm{~T}_{1}:=10 \cdot 10^{-6} \quad \mathrm{~T}_{2}:=30 \cdot 10^{-6} \quad \mathrm{~T}_{3}:=40 \cdot 10^{-6} \quad \mathrm{~V}_{\mathrm{A}}:=10 \quad \mathrm{~B}:=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{T}_{1}}$
$\mathrm{v}_{\mathrm{C}}(\mathrm{t}):=\mathrm{B} \cdot\left(\mathrm{r}(\mathrm{t})-\mathrm{r}\left(\mathrm{t}-\mathrm{T}_{1}\right)-\mathrm{r}\left(\mathrm{t}-\mathrm{T}_{2}\right)+\mathrm{r}\left(\mathrm{t}-\mathrm{T}_{3}\right)\right)$
$\mathrm{i}_{\mathrm{C}}(\mathrm{t}):=\mathrm{C} \cdot \mathrm{B} \cdot\left(\mathrm{u}(\mathrm{t})-\mathrm{u}\left(\mathrm{t}-\mathrm{T}_{1}\right)-\mathrm{u}\left(\mathrm{t}-\mathrm{T}_{2}\right)+\mathrm{u}\left(\mathrm{t}-\mathrm{T}_{3}\right)\right) \quad \mathrm{B} \cdot \mathrm{C}=0.5 \quad \mathrm{t}=0,0.0000002 . .0 .00005$
$\mathrm{PC}(\mathrm{t}):=\mathrm{v}_{\mathrm{C}}(\mathrm{t}) \cdot \mathrm{i} \mathrm{C}(\mathrm{t}) \quad \mathrm{w}_{\mathrm{C}}(\mathrm{t}):=0.5 \cdot \mathrm{C} \cdot \mathrm{v}_{\mathrm{C}}(\mathrm{t})^{2} \quad \mathrm{v}(\mathrm{t})(\mathrm{V})$

$$
<-P_{C}(t) \text { is positive and negative }
$$

delivering and absrobing power.

6-17 $\quad \mathrm{L}:=200 \cdot 10^{-6} \mathrm{i}(\mathrm{t})=40 \cdot 10^{-3}-20 \cdot 10^{-3} \cdot \exp \left(-500 \cdot \mathrm{t} \mathrm{i}_{\mathrm{L}}(\mathrm{t})=-\mathrm{i}(\mathrm{t})=-\left(40 \cdot 10^{-3}-20 \cdot 10^{-3} \cdot \exp (-500 \cdot \cdot \mathrm{t})\right.\right.$ $v_{L}(t)=L \cdot \frac{d}{d t} i_{L}(t)=200 \cdot 10^{-6} \cdot 20 \cdot 10^{-3} \cdot(-500) \cdot \exp (-500 \cdot t)=-2 \cdot 10^{-3} \cdot \exp (-500 \cdot t) P_{L}(t)=v_{L}(t) \cdot i_{L}(t)$ $v_{L}(t):=-2 \cdot 10^{-3} \cdot \exp (-500 \cdot t) p_{I}(t):=80 \cdot 10^{-6} \cdot \exp (-500 \cdot t)-40 \cdot 10^{-6} \cdot \exp (-1000 \cdot t) t:=0,0.00001 \ldots 0.01$

PL $(1)>0 \quad$ For $t>0$ the inductor is absorbing power

6-24 The circuit is an inverting integrator with $\mathrm{R}:=20 \cdot 10^{3} \quad \mathrm{C}:=100 \cdot 10^{-9} \quad$ R.C $=2 \times 10^{-3}$

$$
v_{\mathrm{O}}(\mathrm{t})=-10-500 \cdot \int_{0}^{t} 5 \mathrm{dx}=-10-2500 \cdot \mathrm{t}
$$

OP AMP saturates with $v_{O}=-15 \mathrm{~V}$
$\mathrm{v}_{\mathrm{O}}=-15 \quad \mathrm{t}:=\frac{-15+10}{-2500} \quad \mathrm{t}=2 \times 10^{-3}$

6-29 The circuit is an inverting differentiator with $\mathrm{R}:=100 \cdot 10^{3} \quad \mathrm{C}:=10.10^{-12} \quad \mathrm{R} \cdot \mathrm{C}=1 \times 10^{-6}$
For $\mathrm{v}(\mathrm{t})=5-\exp (-\alpha \cdot \mathrm{t}) \cdot \mathrm{u}(\mathrm{t})$ in the linear range the output is
$\left|v_{O}(t)\right|=\left|-10^{-6} \frac{\mathrm{~d}}{\mathrm{dt}} 5 \cdot \exp (-\alpha \cdot \mathrm{t})\right|=\left|5 \cdot \alpha \cdot 10^{-6} \cdot \exp (-\alpha \cdot \mathrm{t})\right|<15$ hence $|\alpha|<\frac{15}{5 \cdot 10^{-6}}=3 \cdot 10^{6}$

6-36 For Cl :
$\mathrm{C}_{\mathrm{EQ}}:=\left(\frac{1}{10^{-6}+5 \cdot 10^{-6}}+\frac{1}{2 \cdot 10^{-6}+4 \cdot 10^{-6}}\right)^{-1}$
$\mathrm{C}_{\mathrm{EQ}}=3 \times 10^{-6} \mathrm{~F}$

For C2:

$\mathrm{L}_{\mathrm{EQ}}=10^{-3}+\left(\frac{2}{10010^{-6}}+\frac{1}{1.510^{-3}+200010^{-6}}\right)^{-1}$
$L_{E Q}=1.0493 \times 10^{-3} \mathrm{H}$

