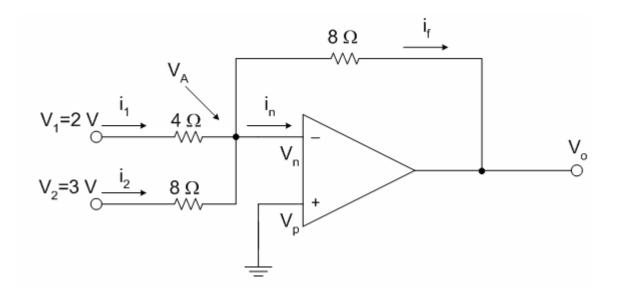
Name :	Section:	CWRU e-mail:
--------	----------	--------------

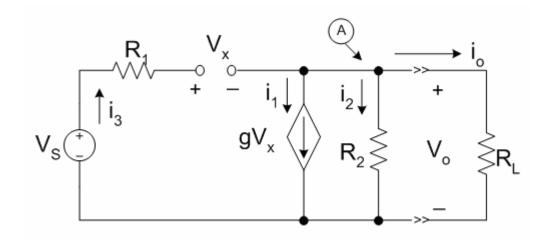

CASE WESTERN RESERVE UNIVERSITY

Case School of Engineering
Department of Electrical Engineering and Computer Science
ENGR 210. Introduction to Circuits and Instruments (4)

Quiz No. 7 3/5/04

PUT ANSWERS IN THE SPACE PROVIDED AND SHOW YOUR WORK IF APPROPRIATE BE SURE TO STATE ALL ASSUMPTIONS

Problem 1 (10 points)


(a) What is V_A ? 0 (2 points)

The IV relationships of the ideal model of the OPAMP are: $V_p=V_n$ and $i_n=i_p=0$; detailed analysis can be found in p.164. As noted, $V_p=0$. So $V_n=V_A=0$

- (b) What is i_n ? 0 (2 points) $I_{n}=i_p=0$
- (d) What is V_o ? -7 V (3 points) $V_o = V_A i_f * 8\Omega = 0 0.875 A * 8\Omega = -7 V$

Name :	Section:	CWRU e-mail:
--------	----------	--------------

Problem 2 (10 points)

(a) Determine an expression for the voltage V_x in terms of circuit constants (i.e., V_s, R₁, g and R2). Note that gV_x is a voltage-controlled current source, not a voltage source.

Write KVL equation: $-V_s+i_3*R_1+V_x+V_o=0$ and $i_3=0$

So $V_x=V_s-V_o$

Write KCL at node A: i₁+i₂+i₀=0

So $i_2+i_0=-i_1=-gV_x$

And we know $V_0 = -gV_x^*(R_2//R_L) = -gV_x^*R_2R_L/(R_2+R_L)$ In all, $V_x = V_s - V_0 = V_s - [-gV_x^*R_2R_L/(R_2+R_L)] = V_s + gV_x^*R_2R_L/(R_2+R_L)$

And solve for
$$V_x = V_s + gV_x \frac{R_2R_L}{R_2 + R_L}$$

$$=>V_x(1-g\frac{R_2R_L}{R_2+R_L})=V_s$$

$$=> V_x = V_s / (1 - g \frac{R_2 R_L}{R_2 + R_L})$$
 (3 points)

(b) Determine the open circuit output voltage V_{oc} , i.e., V_o for $R_L = \infty$.

If
$$R_L = \infty$$
, then $V_o = -gV_x \cdot (R_2 /\!/ \infty) = -gV_x R_2$

So
$$V_x = V_s + gV_xR_2$$

$$\Rightarrow V_x(1-gR_2) = V_s$$

$$\Rightarrow V_x = \frac{V_s}{1 - gR_2}$$

$$=> V_o = -\frac{gV_s R_2}{1 - gR_2}$$
 (3 points)

(c) Determine the short circuit output current i_{sc} , i.e., i_o for $R_L=0$.

Name : S	Section:	CWRU e-mail:
----------	----------	--------------

If
$$R_{\!\scriptscriptstyle L}=0$$
 , then $i_{\!\scriptscriptstyle o}=-gV_{\!\scriptscriptstyle x}$ and $V_{\!\scriptscriptstyle o}=0$ So $V_{\!\scriptscriptstyle x}=V_{\!\scriptscriptstyle s}$

$$=>i_o=-gV_s$$
 (2 points)

(d) What is the Thevenin output resistance R_T of the circuit?

$$R_{T} = \frac{V_{o}}{i_{o}} = \frac{-\frac{gV_{s}R_{2}}{1 - gR_{2}}}{-gV_{s}} = \frac{R_{2}}{1 - gR_{2}}$$
 (2 points)