PROBLEM 5
An 8-bit analog-to-digital converter (ADC) uses a 5 V reference voltage. What is the accuracy of the converter?
(A) 3.9 mV
(B) 9.8 mV
(C) 20 mV
(D) 250 mV

SOLUTION 5
The accuracy of a converter is one-half the value of the least significant bit (LSB). (Sometimes the value of the LSB is called the resolution of the converter and this substitutes for the accuracy. The use of terms is not standard.) The value of the LSB is given by
\[V_{\text{LSB}} = 2^{-n} V_{\text{ref}} \]
The term \(n \) is the number of bits in the converter, in this case 8. The full-scale voltage is the reference voltage. Substituting gives
\[V_{\text{LSB}} = 2^{-8} V_{\text{ref}} = (2)^{-8} (5 \text{ V}) = 1.95 \times 10^{-2} \text{ V} \]
One-half of this value is
\[\text{accuracy} = \frac{1}{2} V_{\text{LSB}} = \frac{1}{2} (1.95 \times 10^{-2} \text{ V}) = 9.75 \times 10^{-3} \text{ V} \ (9.8 \text{ mV}) \]
The answer is B.

PROBLEM 6
An 8-bit analog-to-digital converter (ADC) has a reference voltage of 10 V. What is the value of the most significant bit (MSB)?
(A) 3.90 \times 10^{-3} \text{ V}
(B) 256 \times 10^{-3} \text{ V}
(C) 5.00 V
(D) 10.0 V

SOLUTION 6
The value of the most significant bit in a binary number with \(n \)-bits is given by
\[V_{\text{MSB}} = \frac{1}{2} V_{\text{ref}} = \left(\frac{1}{2} \right) (10 \text{ V}) = 5.00 \text{ V} \]
The answer is C.

PROBLEM 7
A 10-bit digital-to-analog converter (DAC) uses a 5.12 V reference. What is the output voltage for a binary input code of 1011011001?
(A) 5.00 \times 10^{-3} \text{ V}
(B) 723 \times 10^{-3} \text{ V}
(C) 729 \times 10^{-3} \text{ V}
(D) 2.64 V

SOLUTION 7
The converter determines the output by assigning an analog value to the code that is obtained in steps. The value of the least significant bit (LSB) determines the minimum size of the steps. The minimum size for a 10-bit converter with a 5.12 V reference is
\[V_{\text{LSB}} = 2^{-10} V_{\text{ref}} = (2)^{-10} (5.12 \text{ V}) = 5 \text{ mV} \]
The binary coded input is the number of these minimum steps to take. The number corresponding to the binary code is
\[1011011001_2 = (1)(2)^8 + (0)(2)^7 + (1)(2)^6 + (0)(2)^5 + (1)(2)^4 + (0)(2)^3 + (0)(2)^2 + (2)(2)^0 = 729_\text{dec} \]
Thus, 729 steps of 5 mV are taken to convert this input signal. The output voltage is
\[V_{\text{out}} = (729)(5 \text{ mV}) = 3645 \text{ mV} \ (3.64 \text{ V}) \]
Note that the output voltage of any DAC can be represented as
\[V_{\text{out}} = \left(b_0 2^{-1} + b_1 2^{-2} + \cdots + b_8 2^{-8} \right) V_{\text{ref}} b_i \in \{0,1\} \]
The full-scale (or reference) voltage is given by \(V_{\text{ref}} \). The total number of bits is represented by \(n \). The value of the bits, \(b_i \), is either 0 or 1. The 2s are the weighting factors.
The answer is D.
PROBLEM 4
The manufacturing data for a discrete silicon diode shows a reverse saturation current of 1 nA and an experimentally determined coefficient, \(\eta \), of 2. The diode is forward biased at 0.7 V. What is the expected current as the diode just becomes forward biased?
(A) 10\(^{-7}\) mA
(B) 0.7 mA
(C) 1.8 mA
(D) 24 mA

SOLUTION 4
The governing equation for practical diodes is

\[
I = I_s \left(\frac{V}{\eta kT} \right) e^{\frac{\eta kT}{V}} - 1
\]

(The minus 1 term is insignificant and often neglected.)

Substitute the given information and the known value of the thermal voltage at a room temperature of 0.026 V (see Prob. 3).

\[
I = \left(1 \times 10^{-9} \right) \left(\frac{0.7}{2(0.026) V} \right) e^{\frac{2(0.026) V}{0.7 V}} - 1 = 7.02 \times 10^{-4} \text{ A (0.7 mA)}
\]

The answer is B.
Operational Amplifiers

2. Determine the voltage gain V_o/V_i in the circuit shown below. Assume the operational amplifier is ideal. You may use $R_4=24\,\Omega$.

$$V_o/V_i = \text{___________} \quad \text{ANSWER: -120.5}$$

ANSWER:

There are multiple ways to solve the problem. The key is that by KCL and the virtual short assumption the voltage at the junction of R_2, R_3 and R_4 is actually known. Once this is known V_o can be readily calculated using KCL.

Using the virtual short assumption, since v_{in-} is grounded v_{in+} is also at ground potential, i.e., $v_{in-} = 0$

Since $v_{in-} = 0$, the input current through R_1 is given by $i_1 = v_i/R_1$.

Using KCL at the – input of the op amp and recognizing that no current can flow into the op amp we have that $v_x = -i_2 R_2$ where $i_2 = i_1$ and v_x is the voltage at the node formed by R_2, R_3 and R_4.

If we know v_x we can write $i_3 = -v_x/R_3$ and $i_4 = (v_x - V_o)/R_4$. Using Kirchhoff’s current law at this
node we have \(i_2 + i_3 + i_4 = 0 \) which gives

\[
\frac{v_x - v_o}{R_4} = -\frac{v_x}{R_2} + \frac{v_x}{R_3}
\]

(1)

Substituting for the actual circuit values gives

\[
\frac{v_x - v_o}{24,000}\Omega = -\frac{v_x}{500,000}\Omega + \frac{v_x}{100}\Omega
\]

We know \(v_x \) in terms of \(v_i \) from the input node where \(\frac{v_i - v_x}{R_1} = \frac{v_x - v_x}{R_2} \)

And, using the given circuit values becomes \(\frac{v_i - 0}{1,000,000}\Omega = \frac{0 - v_x}{500,000}\Omega \)

which can be solved to give \(v_x = -\frac{v_i}{2} \). Substituting this value into equation (1) gives

\[
-\frac{v_i}{48,000} + \frac{-v_o}{24,000}\Omega = + \frac{v_i}{1,000,000} + \frac{v_i}{200}
\]

Combining terms gives \(\frac{-v_o}{24,000}\Omega = \frac{v_i}{199.13} \) or \(\frac{v_o}{v_i} = \frac{24,000}{199.13} = -120.52 \)
4. For the difference amplifier circuit shown, determine the output voltage at terminal A.

\[V_{in+} = 25 \left(\frac{3\Omega}{5\Omega + 3\Omega} \right) = 9.375V \]

By the virtual short circuit between the input terminals, \(V_{in-} = 9.375V \)

Using Ohm's law, the current through the 15 \(\Omega \) resistor is

\[I_{15} = \left(\frac{30V - 9.375V}{15\Omega} \right) = 1.375A \]

The input impedance is infinite; therefore, \(I_{in-} = 0 \) and \(I_{15} = I_{20} \).

Use Kirchoff's voltage law to find the output voltage at A.

\[V_A = V_{in-} - 20I_{20} = 9.375V - (20\Omega)(1.375A) = -18.125V \]

Answer is A.
Problems 2 and 3 refer to the following figure.

2. What is the current, i?

(A) -0.88 A
(B) -0.25 A
(C) 0 A
(D) 0.25 A

Solution 2:

The input current in an op amp is so small that it is assumed to be zero.

Answer is C.

3. What is the output voltage, v_o?

(A) -7 V
(B) -6 V
(C) -1 V
(D) 6 V

Solution 3:

This op amp circuit is a summing amplifier. Since $i=0$,

$$i_f = \frac{v_1}{R_1} + \frac{v_2}{R_2} = \frac{3 \text{ V}}{8 \text{ } \Omega} + \frac{2 \text{ V}}{4 \text{ } \Omega} = 0.875 \text{ A}$$

$$v_o = -i_f R_f = -(0.875 \text{ A})(8 \text{ } \Omega) = -7 \text{ V}$$

Answer is A.
4. For the ideal op amp shown, what should be the value of resistor R_f to obtain a gain of 5?

(A) 12.0 kΩ
(B) 19.5 kΩ
(C) 22.5 kΩ
(D) 27.0 kΩ

Solution:

By voltage division, $v_{in+} = v_i \left(\frac{2 \text{kΩ}}{3 \text{kΩ}} \right) = \frac{2}{3} v_i$

By the virtual short circuit, $v_{in-} = v_{in+} = \frac{2}{3} v_i$

$$i = \frac{v_{in-}}{3 \text{kΩ}} = \frac{2}{3} \frac{v_i}{3 \text{kΩ}}$$

Since the op amp draws no current, $i_f = i$

$$\frac{v_o - v_{in-}}{R_f} = \frac{2}{3} \frac{v_i}{3 \text{kΩ}}$$

But, $v_o = 5v_i$.

$$\frac{5v_i - \frac{2}{3} v_i}{R_f} = \frac{2}{3} \frac{v_i}{3 \text{kΩ}}$$

$$\frac{13}{3} = \frac{2}{3} \frac{v_i}{3 \text{kΩ}}$$

$$R_f = 19.5 \text{kΩ}, \quad \text{Answer is B.}$$
14. For the circuit shown below, $V_1 = 10\sin\left(\frac{200\pi}{1}\right)$ and $V_2 = 15\sin\left(\frac{200\pi}{1}\right)$. What is V_{out}?

The op amp is ideal with infinite gain.

\[V_1 = 10\sin(200t) \quad \text{and} \quad V_2 = 15\sin(200t) \]

\[C_f = 2\mu F \]

\[\begin{align*}
\text{R}_2 &= 0.5\,\text{M}\Omega \\
\text{R}_1 &= 0.75\,\text{M}\Omega
\end{align*} \]

\[V_{out} \]

\[\begin{align*}
\text{ANSWER:} \\
\text{Any problem with a capacitor (or inductor) in it and sinusoidal voltages immediately indicates that } V_1 \text{ and } V_2 \text{ should be represented as phasors, and } C_f \text{ should be replaced by an impedance. This circuit is most easily solved using the virtual short assumption (} V_+ = V_- \text{), and using KCL at the inverting input. Since } V_+ \text{ is grounded } V_- = 0. \\
\frac{V_2 - 0}{R_2} + \frac{V_1 - 0}{R_1} - \frac{V_{out}}{j\omega C} = 0.
\end{align*} \]

Rationalizing this expression gives

\[+\frac{V_2}{R_2} + \frac{V_1}{R_1} + j\omega CV_{out} = 0. \]

Solving for V_{out} gives

\[V_{out} = -\frac{V_2}{j\omega C_R} - \frac{V_1}{j\omega C_R}. \]

It is important to recognize that all sine functions should always be converted to cosines for proper phase in the phasor expressions, i.e. $\sin(\frac{200\pi}{1}) = \cos\left(\frac{200\pi}{1} - 90^\circ\right) \leftrightarrow 1\angle-90^\circ = -j$

Using the circuit parameters given,

\[V_{out} = -\frac{15}{200} - \frac{j0}{200}\left(2 \times 10^{-6}\right)\left(0.5 \times 10^6\right) - \frac{j0}{200}\left(2 \times 10^{-6}\right)\left(0.75 \times 10^6\right) \]

\[= \frac{15}{200} + \frac{0}{300} = \frac{3}{40} + \frac{1}{30} \]

The answer is then

\[V_{out}(t) = \left(\frac{3}{40} + \frac{1}{30}\right)\cos\left(\frac{200\pi}{1}\right) \]
PROBLEM 13
Consider the operational amplifier circuit shown. What is the function of the circuit?

(A) amplification
(B) differentiation
(C) integration
(D) multiplication

SOLUTION 13
Assuming an ideal op amp, KCL can be written at the inverting terminal as:

\[
\frac{0 \ V - v_{in}}{R} + i_c = 0
\]

\[
\frac{0 \ V - v_{in}}{R} + C \frac{d(0 \ V - v_{out})}{dt} = 0
\]

Rearranging for an expression of the output voltage gives:

\[
C \left(\frac{d(0 \ V - v_{out})}{dt} \right) = - \frac{0 \ V - v_{in}}{R} = \frac{v_{in}}{R}
\]

\[
- \frac{dv_{out}}{dt} = \frac{1}{RC} v_{in} dt
\]

\[
v_{out} = \left(- \frac{1}{RC} \right) v_{in} dt
\]

The op amp circuit is designed to accomplish integration.

The answer is C.

PROBLEM 11
Operational amplifiers can be used to isolate sections of instrumentation to avoid undesirable interactions between circuits. One such circuit is as follows. What is the common name for the circuit shown?

(A) differential amplifier
(B) noninverting amplifier
(C) simple amplifier
(D) voltage follower

SOLUTION 11
The op amp shown is configured such that the input is amplified and fed directly to the negative terminal of the amplifier. This, in effect, causes the output to follow the input, hence the name voltage follower. (The configuration is used to buffer the input circuitry from that connected to the output. That is, the impedance of the input is not seen by the output circuitry. In fact, ideally, the output impedance is zero.)

The answer is D.
PROBLEM 7

An electronic voltmeter using a d’Arsonval meter display is shown. The full-scale meter current is 0.1 mA. The voltmeter reads 250 Vrms. To ensure linear operation, the op amp input and output are restrained to operate a minimum of 3 V from the rail voltages (power supply voltages).

7.1 What approximate value of divider resistance, \(R_{dv} \), is necessary to ensure linear operation?
 (A) 40 kΩ
 (B) 50 kΩ
 (C) 55 kΩ
 (D) 1000 kΩ

SOLUTION 7

7.1 The op amp will respond to the instantaneous values of the voltage. The relationship between the peak voltage and the root-mean-square voltage for a sinusoidal voltage is

\[
|V_{peak}| = \sqrt{2} \cdot V_{rms} = 1.414 \cdot V_{rms} \\
|V_{pk}| = \left(\sqrt{2} \right) (250 \text{ V}) = 353.55 \text{ V}
\]

The op amp is not able to follow the input voltage more than 13 V (positive or negative). Choose to make the op amp input peak voltages of 13 V, (which is 3 V less than the power supply voltage needed to ensure linear operation) correspond to the peak voltage (both positive and negative) of 353.55 V, that is, 250 Vrms. The voltage divider shown attached to the positive terminal accomplishes the adjustment if the value of \(R_{dv} \) is

\[
\left(353.55 \text{ V} \right) \left(\frac{R_{dv}}{R_{dv} + 1 \times 10^6 \text{ Ω}} \right) = 13 \text{ V} \\
\left(353.55 \text{ V} \right) \left(\frac{13 \text{ V}}{R_{dv} + 1 \times 10^6 \text{ Ω}} \right) = 13 \text{ V} \\
\left(353.55 \text{ V} \right) R_{dv} = 13 \times 10^6 \text{ V} \cdot \Omega \\
R_{dv} = \frac{13 \times 10^6 \text{ V} \cdot \Omega}{340.55 \text{ V}} = 3.8 \times 10^5 \text{ Ω} = 40 \text{ kΩ}
\]

The answer is D.

7.2 What approximate value of meter resistance, \(R_{meter} \), is required if the op amp uses the entire linear voltage range?
 (A) 52 Ω
 (B) 82 Ω
 (C) 41 \times 10^7 Ω
 (D) 102 \times 10^6 Ω

7.2 The full-scale meter current is given as 0.1 mA. Given that the meter is a d’Arsonval meter, this is the average current. (DC meters, such as the d’Arsonval, respond to the average current through them, hence their inability to measure AC currents without rectification. The current output of the op amp is half-wave rectified by the indicated diode. The average value of a full-wave rectified signal is \(2/\pi \) of the peak value. For half-wave rectification, which has a period twice that of full-wave rectification, the average value is \(1/π \) of the peak value. Thus,

\[
I_{meter, peak} = (0.1 \text{ mA}) \pi = 0.314 \text{ mA}
\]

0.314 mA is the current through the meter resistor, \(R_{meter} \), at which 13 V must be developed at the negative input. This value matches the 13 V at the positive terminal that develops at the peak input voltage of 353.55 V (250 Vrms). Using Ohm’s law on the meter resistor gives

\[
V_{m} = I_{m} \cdot R_{m} \\
R_{m} = \frac{V}{I} = \frac{13 \text{ V}}{0.314 \times 10^{-3} \text{ A}} = 41,400 \text{ Ω} \left(41 \times 10^3 \text{ Ω} \right)
\]

Note that this problem essentially determines the average current flowing through a meter as a function of the rms value of a pure sinusoidal input voltage. Thus, the scale factors for the meter can be determined from the calculated information.

The answer is C.
Transistors - Diodes

PROBLEM 8
Consider the diode operating characteristic shown.

![Diode characteristic graph]

The diode is used in the indicated circuit.

![Circuit diagram]

What is the quiescent operating point (Q-point)?
(A) point A
(B) point B
(C) point C
(D) point D

SOLUTION 8
Using KVL around the given circuit results in the following equation.

\[V_{source} = I_D R + V_D \]

Substituting the known values gives the load line equation.

\[12 \text{ V} = (5.65 \times 10^3 \text{ } \Omega) I_D + V_D \]

Such an equation can be used to find the load line for the particular circuit. Since two points are required to define a line, let \(V_D = 0 \) V and \(I_D = 0 \) A. For \(V_D = 0 \) V, the resulting point is

\[12 \text{ V} = (5.65 \times 10^3 \text{ } \Omega) I_D + V_D = 5.65 \times 10^3 \text{ } \Omega \]

\[I_D = \frac{12}{5.65 \times 10^3 \text{ } \Omega} = 2.12 \times 10^{-3} \text{ A} = 2.12 \text{ mA} \]

This gives a point (0.00, 2.12) on the graph.

For \(I_D = 0 \) A, the resulting point is

\[12 \text{ V} = (5.65 \times 10^3 \text{ } \Omega) I_D + V_D = (5.65 \times 10^3 \text{ } \Omega)(0 \text{ A}) + V_D \]

\[V_D = 12 \text{ V} \]

This gives a point (0, 12) that is off the graph. Since any point can be used, let \(V_D = 1.0 \) V to ensure a point of \(I_D \) will be found that will plot on the graph. The resulting point is

\[12 \text{ V} = (5.65 \times 10^3 \text{ } \Omega) I_D + V_D = (5.65 \times 10^3 \text{ } \Omega) I_D + 1.0 \text{ V} \]

\[I_D = \frac{11 \text{ V}}{5.65 \times 10^3 \text{ } \Omega} = 1.95 \times 10^{-3} \text{ A} (1.95 \text{ mA}) \]

This gives a point (1.00, 1.95) on the graph.

Plotting both these points results in the following.

![Graph with load line and operating characteristic]

The Q-point is at point C. The point C is (0.7, 2.0), which is a solution to the load line equation.

The answer is C.
PROBLEM 9

A voltage source produces a triangular wave shape as shown.

An output wave shape of the indicated form is desired.

Consider the four circuits shown. Which of the indicated circuits can provide the desired output?

(A)

(B)

(C)

(D)

SOLUTION 9

A clamping (limiting) circuit that clamps the voltage on both the positive and negative portion of the cycles is needed. Thus, only choices (A) and (D) are possibilities.

Consider both the figures for choices (A) and (D). During the positive half cycle, diode D' (associated with V_{ref+}) conducts once the source voltage is greater than the reference voltage. This means that in a portion of the positive half-cycle, the diode V_{ref+} conducts, thus limiting the voltage drop to the reference value. Diode D'' (associated with V_{ref-}) is reverse-biased and does not conduct.

Consider the negative half-cycle. In choice (A), diode D'' conducts almost immediately, thus clamping the output voltage to near zero. In choice (D), diode D' conducts once the source voltage is less than the reference voltage. Or, one can say that diode D' conducts when it overcomes V_{ref-}. (A symmetrical wave is generated when $|V_{ref+}| = |V_{ref-}|$.)

The answer is D.
PROBLEM 10
Consider the electronic circuit models shown. Note that identifying subscripts have been removed. Which of these models represents a field-effect transistor?

(A)

(B)

(C)

(D)

SOLUTION 10
The figure in choice (A) is the piecewise linear model for a diode. The figure in choice (B) is an h-parameter, small-signal, simplified equivalent circuit for a common-emitter bipolar junction transistor (BJT). The figure in choice (C) is an h-parameter, small-signal, simplified equivalent circuit for a common-collector BJT. The figure in choice (D) is a simplified model of a field-effect transistor. (The simplifications in each model consist of ignoring parameters that are insignificant, for example, extremely small reverse currents or near-infinite parallel resistance.)

The answer is D.
PROBLEM 11
Consider the following figure of the characteristics of a bipolar junction transistor (BJT) configured as a common emitter.

11.1 The bipolar junction transistor (BJT) whose characteristics are shown is to be used in a TTL (transistor-transistor logic) circuit. What operating region(s) will be utilized?
(A) 1
(B) 2
(C) 3
(D) 1 and 3

SOLUTION 11
11.1 Logic circuits require the transistor to operate as a switch, thereby providing two outputs (logic 0 and logic 1). Logic circuit operation requires the transistor to operate between the saturation region (1) and the cutoff region (3).

The answer is D.

11.2 What region of operation is an npn transistor using if $V_{BE} = 0.75 \text{ V}$ and $V_{BC} = -0.70 \text{ V}$?
(A) forward-active
(B) saturation
(C) reverse-active
(D) cutoff

11.2 The given voltages indicate that the base-emitter (pn) junction is forward-biased and the base-collector (pn) junction is reverse-biased. This places the transistor in the forward-active region (or normal-active region) that is used when amplification of the input signal is the main goal.

The answer is A.
PROBLEM 11
Consider the following figure of the characteristics of a bipolar junction transistor (BJT) configured as a common emitter.

11.3 A transistor with the characteristics given is used as part of an amplification circuit. The portion of the circuit of interest is shown. What is the circuit’s Q-point, in terms of \(I_C, V_{CE} \), if the base current is 60 \(\mu A \)?

(A) \((1.0, 3.0)\)
(B) \((1.5, 4.0)\)
(C) \((1.5, 5.0)\)
(D) \((2.5, 6.0)\)

SOLUTION 11
11.3 The Q-point is found graphically, in this case, by determining the load line. Redraw the circuit with the transistor open circuited (that is, with \(I_C = 0 \) V).

Performing KVL in the collector loop, or by inspection, reveals that \(V_{CE} = 10 \) V. This provides a point \((0, 0, 10)\) on the characteristic graph.

Redraw the circuit with the transistor short-circuited (that is, with \(V_{CE} = 0 \) V).

The collector current is determined from Ohm’s law.

\[
I_C = \frac{V_{CE}}{R_C + R_E} = \frac{10 \text{ V}}{1940 \Omega + 1390 \Omega} = 3.00 \times 10^{-3} \text{ A}
\]

This provides a point \((3.0, 0)\) on the characteristic graph. Plotting both the calculated points and connecting the two gives the load line.

The Q-point is then determined as \((1.5, 5)\).

The answer is C.
4. SMALL SIGNAL BJT ANALYSIS

Consider the above BJT amplifier where $R_S=500\,\Omega$, $R_1=10\,k\Omega$, $R_2=10\,k\Omega$, $R_E=2000\,\Omega$, $R_L=10\,k\Omega$ and $R_c=5k\Omega$. The transistor is characterized by $\beta=100$. The amplifier is biased such that $I_{C,Q}=3.3\,mA$. You may assume that C_{IN} and C_{OUT} have a low impedance at mid-frequency and that r_o is so large it can be neglected.

(a) Draw the small-signal equivalent circuit for this BJT small signal amplifier at mid-frequency. Indicate the values of all small signal parameters in your circuit.

(b) Calculate R_{in} for this amplifier.

(c) What is the voltage gain A_v for this amplifier.

ANSWER:

(a)

All small signal circuit parameters except r_π are known. r_o can be neglected. r_π can be calculated as

$$r_\pi = \frac{\beta V_T}{I_{C,Q}} = \frac{(100)(26\,mV)}{(3.3\,mA)} = 788\,\Omega$$
(b) Normally you assume that the bias resistor equivalent resistance
\[R_B = \frac{V_{in}}{I_{in}} \left(R_1 \parallel R_2 \right) \]
\[= \frac{(10k\Omega)(10k\Omega)}{10k\Omega + 10k\Omega} = 5k\Omega \]
is so large that it can be neglected. That was not true in this problem since it is only 5000 ohms. We continue to use the definition of input resistance \(R_{in} = \frac{V_{in}}{I_{in}} \). The input current is now calculated as \(I_{in} = \frac{V_{in}}{R_1 \parallel R_2} + i_B \). The corresponding input voltage can be calculated as \(V_{in} = i_B r_\pi + (\beta + 1)i_B R_E = i_B \left(r_\pi + (\beta + 1)R_E \right) \).

Solving for \(i_B \) gives \(i_B = \frac{V_{in}}{r_\pi + (\beta + 1)R_E} \) which can be substituted into the expression for \(V_{in} \) to give \(I_{in} = \frac{V_{in}}{R_1 \parallel R_2} + \frac{V_{in}}{r_\pi + (\beta + 1)R_E} \). Using this expression in that for \(R_{in} \) gives
\[R_{in} = \left(R_1 \parallel R_2 \right) \left(r_\pi + (\beta + 1)R_E \right). \]
Numerically this gives \(R_{in} = (5k\Omega) \parallel (788 + (100 + 1)2000) = (5k\Omega) \parallel (202788\Omega) = 4880\Omega \).

(c) Note that \(i_B \) is independent of \(R_{in} \) and is given by \(i_B = \frac{V_{in}}{r_\pi + (\beta + 1)R_E} \). The collector current is then \(i_C = \beta i_B = \beta \frac{V_{in}}{r_\pi + (\beta + 1)R_E} = \frac{\beta}{r_\pi + (\beta + 1)R_E} V_{in} \). The output voltage is then
\[V_{out} = -i_C \left(R_C \parallel R_L \right) = -\frac{\beta}{r_\pi + (\beta + 1)R_E} V_{in} \left(R_C \parallel R_L \right) \]. Solving for the voltage gain gives
\[\frac{V_{out}}{V_{in}} = -\frac{\beta \left(R_C \parallel R_L \right)}{r_\pi + (\beta + 1)R_E}. \]
Numerically,
\[\frac{V_{out}}{V_{in}} = -\frac{\beta \left(R_C \parallel R_L \right)}{r_\pi + (\beta + 1)R_E} = -\frac{100(5000\Omega \parallel 10000\Omega)}{788\Omega + (100 + 1)2000\Omega} = -1.64 \]
10. An amplifier in the configuration of figure 8.45 has
$R_1 = 6K \Omega$, $R_2 = 2K \Omega$, $R_s = 1K \Omega$, $R_b = 1K \Omega$, and $R_L = 833 \Omega$. With $h_{ie} = 500 \Omega$, $\beta = 50$ and $r_e = 5K \Omega$, determine the amplifier voltage gain.

![Circuit Diagram]

Figure 8.45

Drawing small signal model at mid-band

Thevenized source.

$$R_{1 \parallel R_2} = \frac{(6)(3)}{6+3} = 2K$$

$$R_s = 1k$$

$$R_{s \parallel R_{1 \parallel R_2}} = \frac{2.1}{2+1} = 667\Omega$$

$$r_e \parallel R_e = \frac{(5000)\parallel(1000)}{5+1} = 833\Omega$$

Simplified circuit is then:

neglects feedback

$$V_s \rightarrow \begin{array}{c}
V_{in} \\
\downarrow
\end{array} \quad 667\Omega \quad \begin{array}{c}
I_S \\
\rightarrow
\end{array} \quad \begin{array}{c}
I_B \\
\rightarrow
\end{array} \quad \begin{array}{c}
500 \\
50\beta_b \\
\downarrow
\end{array} \quad \begin{array}{c}
833\Omega \\
\rightarrow
\end{array} \quad \begin{array}{c}
833\Omega \\
\rightarrow
\end{array}$$
Typically have voltage divider with input impedance.

\[V_{IN} = \frac{V_s}{1k} \frac{667 \times 500}{667 + 500} = 0.286 \, V_s \]

Input current two resistances in parallel.

This is amplifier input voltage.

\[I_B = \frac{667}{667 + 500} \frac{V_s}{1k} = 5.716 \times 10^{-4} \, V_s \]

\[I_B \text{ current divider} \]

\[V_{OUT} = -(50I_B)(833/1833) = -11.90 \, V_s \]

\[A_v = \frac{V_{OUT}}{V_{IN}} = \frac{-11.90 \, V_s}{0.286 \, V_s} = -41.6 \]
Transistors - FETS

PROBLEM 12
Consider the following figure of a MOSFET.

![MOSFET Diagram](image)

12.1 What type of device is the MOSFET?
(A) n-channel enhancement
(B) n-channel depletion
(C) p-channel enhancement
(D) p-channel depletion

12.2 What is the gate-source voltage, V_{GS}, for the indicated configuration if the gate supply voltage, V_{GS}, is 10.0 V?
(A) 0 V
(B) 0.3 V
(C) 0.7 V
(D) 4.0 V

SOLUTION 12

12.1 The dashed line on the MOSFET indicates an enhancement device. Some symbology uses a single connected line for an enhancement device and a thicker line for a depletion device. The thicker line is meant to indicate that a channel is already present. The alternate symbology is shown.

![Enhancement and Depletion Symbology](image)

The arrow indicates the direction of conventional current flow. Thus, the current flows from the drain to the source. That is, positive charges flow from the drain to the source, meaning that negative charges flow from the source (the source of the majority charges) to the drain. The channel is composed of these negative charges, that is, this is an n-channel device.

The answer is A.

12.2 Obtain the Thévenin equivalent of the gate-source circuit.

![Thévenin Equivalent Circuit](image)

Next write the KVL around the gate loop as indicated.

$V_{th} - I_G R_{th} - V_{GS} = 0$

The gate current in a MOSFET is zero amperes. Thus,

$V_{GS} = V_{th} = 4.0$ V

The answer is D.
PROBLEM 12
Consider the following figure of a MOSFET.

\[V_{\text{TN}} = 1 \text{ V} \]
\[k_n = 20 \mu\text{A/V}^2 \]

12.3 The drain-source current for a MOSFET in the saturation region is given by

\[I_{\text{DS}} = \left(\frac{k_n}{2} \right) (V_{\text{GS}} - V_{\text{TN}})^2 \]

The drain supply voltage, \(V_{\text{DD}} \), is 10 V. MOSFETs are very low-power devices with the drain-source current in the micro-ampere range. What is the Q-point (\(I_{\text{DS}}, V_{\text{GS}} \)) of the circuit?

(A) (15, 1.0)
(B) (30, 1.0)
(C) (90, 1.9)
(D) (110, 2.9)

SOLUTION 12
12.3 The drain-source current is determined by the operating conditions of the MOSFET in saturation and is calculated as

\[I_{\text{DS}} = \left(\frac{k_n}{2} \right) (V_{\text{GS}} - V_{\text{TN}})^2 \]
\[= \left(\frac{20 \times 10^{-6} \text{ A}}{\text{V}^2} \right) \left(4.0 \text{ V} - 1 \text{ V} \right)^2 \]
\[= 90 \times 10^{-6} \text{ A} \] (90 \(\mu \)A)

Using KVL around the output loop gives

\[V_{\text{DD}} - I_{\text{DS}} R_{\text{load}} - V_{\text{DS}} = 0 \]
\[V_{\text{DS}} = V_{\text{DD}} - I_{\text{DS}} R_{\text{load}} \]
\[= 10 \text{ V} - (90 \times 10^{-6} \text{ A}) (90 \times 10^3 \text{ \Omega}) \]
\[= 1.9 \text{ V} \]

The Q-point, in microamperes and volts, is (90, 1.9).

The answer is C.
5. An N-channel JFET has $I_{DSS} = 5$ mA and $V_p = 5$ volts. Estimate I_D at $V_{GS} = -3$ volts.

Basic FET equation

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_p}\right)^2$$

Watch signs. \(\text{term should always be negative}\)

I_{DSS} is saturation current beyond pinch-off.

If V_{GS} is negative, V_p must also be negative.

$$I_D = 5mA \left(1 - \frac{-3}{-5}\right)^2 = 5mA \left(1 - \frac{3}{5}\right)^2$$

$$= 5mA \left(\frac{2}{5}\right)^2 = 5 \times \frac{4}{25} = 0.8 \text{ mA}$$
6. An N-channel JFET has the characteristics shown. As a small-signal amplifier, it is to be self-biased at \(V_{DS} = 15 \text{ volts} \), \(I_D = 5 \text{ mA} \) with a drain supply of 30 volts. Specify \(R_D \) and \(R_S \).

\[\begin{align*}
V_{DS} & = 0 \\
-5 & \\
-1 & \\
-1.5 & \\
-2 & \\
-3 & \\
15 & \\
10 & \\
\end{align*} \]

\[I_D = \begin{cases}
15 \text{mA} \\
10 \text{mA} \\
5 \text{mA} \\
2 \text{mA} \\
\end{cases} \]

These are given.

\[V_{DS} = 15 \text{ volts} \]

\[R_G \text{ is a large resistor (typically } R_G \approx 0.5 \text{M} \Omega \text{) which grounds the gate since } I_G \approx 0. \]

Estimate \(V_{GS} = -1.8 \text{ volts} \) from graph.

Using KVL across \(V_{DD} \) to ground.

\[V_{DD} - V_{DS} = I_D (R_D + R_S) \]

\[30 - 15 = I_D (R_D + R_S) \]

\[R_D + R_S = \frac{15}{I_D} = \frac{15 \text{ volts}}{5 \text{ mA}} = 3 \text{k} \Omega \]

\[I_D R_S = 1.8 \text{ volts} \] since \(V_G \approx 0. \)

\[R_S = \frac{1.8 \text{ volts}}{5 \text{ mA}} = 360 \Omega \]

Then \(R_D = 3000 - 360 = 2640 \Omega \)

Always use KVL across output circuit.
7. An N-channel enhancement mode MOSFET with the given characteristics is to be operated as a source-follower with \(R_D = 500 \) ohms, and \(R_S = 1000 \) ohms, a D.C. supply of 16 volts. Determine a bias circuit which will permit an input voltage swing of at least one volt peak-to-peak.

\[
\text{1. Draw load line}
\]

\[
I_D = \frac{16V}{R_D + R_S} = \frac{16V}{500 + 1000} = 0.0107 \text{ mA} = 10.7 \text{ mA}
\]

\[V_D = 16V\]

Many choices of \(V_{GS} \) are possible. Pick \(V_{GS} = 3 \text{ volts} \) for somewhat linear operation.

For \(V_{GS} = 3 \text{ volts} \), \(I_D \approx 2.5 \text{ mA} \) from graph.

\[V_s = I_D R_s = (2.5 \text{ mA})(1 \text{ k}\Omega) = 2.5 \text{ volts}\]

\[V_G = V_{GS} + V_s = 3 \text{ volts} + 2.5 \text{ volts} = 5.5 \text{ volts}\]

No particular reason for \(I = 1 \text{ mA} \). Other typical consideration is input impedance.

\[\text{Pick } I = 1 \text{ mA} \]

Then \(R_G = \frac{16V}{1mA} = 16 \text{ k}\Omega \)

\[R_G = \frac{5.5V}{1mA} = 5.5 \text{ k}\Omega\]

\[R_G = 16 - 5.5 = 10.5 \text{ k}\Omega\]

Lots of other choices are possible.
5. Biasing MOSFETs
For the MOSFET amplifier circuit shown below determine the DC operating point of the transistor, i.e. determine \(I_D \), \(V_{DS} \), and \(V_{GS} \).

The circuit uses the values \(R_{gen} = 10k\Omega \), \(V_{DD}=18V \), \(R_1=3.3M\Omega \), \(R_2=1.2M\Omega \), \(R_D=2k\Omega \), and \(R_L=5k\Omega \) The MOSFET is characterized by \(K=0.96mA/V^2 \) and \(V_T=2.5 \) volts.

ANSWER:
There is no voltage at the source as it is connected directly to ground. \(V_{GS} \) is determined only by \(V_G \) which is set by the \(R_1-R_2 \) voltage divider.

\[
V_{GS} = \frac{R_2}{R_1+R_2}V_{DD} = \frac{1.2M\Omega}{1.2M\Omega + 3.3M\Omega}(18V) = (0.27)(18V) = 4.8Volts
\]

With the transistor parameter \(K \) AND \(V_{GS} \) we can calculate the drain current as:

\[
I_D = K(V_G - V_T)^2 = 0.96\frac{mA}{V^2}(4.8V - 2.5V)^2 = 5.08mA
\]

Once the drain current is known we can apply KVL to the loop from ground through the transistor, through \(R_D \), and through the power supply to ground to get:

\[
V_{DS} = V_{DD} - I_D R_D = 18 - (5.08mA)(2k\Omega) = 7.84Volts
\]
8. Design the bias circuit for the amplifier shown. The desired Q-point is 10 mA and $V_{DS} = 5$ volts, with an input impedance of 100K Ω. Determine the amplifier gain if the resistance R_s is capacitively bypassed.

![Diagram of bias circuit]

$V_{GS} = -3.4$ volts

Apply KVL to the drain-source circuit:

$600 + R_s = \frac{15 - 5}{10mA} = \frac{10V}{10mA} = 1k$ Ω

$R_s = 1000 - 600 = 400 \Omega$

From characteristic curves, estimate $V_{GS} = -3.4$ volts.

$V_s = I_D R_s = (10mA)(400 \Omega) = 4V$.

$V_g = 4V - 3.4V = 0.6V$

Designing the bias circuit:

$R_1W = \frac{R_1 R_2}{R_1 + R_2} = 100k$

$\alpha_6 = \frac{R_2}{R_1 + R_2} = \frac{15}{15} = 0.6 = 0.04$

Substituting:

$R_1 (0.04) = 100k \Rightarrow R_1 = 2.5M \Omega$

$R_2 = 0.04 R_1 + 0.04 R_2$

$0.96 R_2 = 0.04 R_1$

$R_2 = \frac{0.04}{0.96} R_1 = \frac{0.04}{0.96} (2.5M) = 104.2 k$
Small signal gain can be estimated (midband) from the circuit:

\[V_S \rightarrow 100k \circlearrowleft \quad g_m V_S \downarrow \rightarrow 600 \Omega \]

Estimating \(g_m \) from the characteristic curves:

\[g_m = \left. \frac{\partial I_D}{\partial V_S} \right|_{V_D=\text{constant}} = \frac{11 \text{ mA} - (8.5 \text{ mA})}{-3 - (-4)} \]

\[g_m = \frac{2.5 \text{ mA}}{1 \text{ V}} = 2.5 \times 10^{-3} \]

\(V_{out} \approx -g_m V_S (600) \text{ since no input divider} \)

\[\frac{V_{out}}{V_{in}} \approx -g_m 600 = -(2.5 \times 10^{-3})(600) = -1.5 \]
6. Small Signal Amplifier Analysis

Consider the above small signal equivalent circuit for a MOSFET amplifier. The circuit parameters are $R_{\text{source}}=100\,\Omega$, $R_B=1.5\,M\Omega$, $R_S=330\,\Omega$, and $R_L=100\,\Omega$. The transistor’s small signal parameters are $g_m=0.05\,S$ and $r_d=100\,k\Omega$.

(a) Determine the small signal voltage gain of this amplifier.
(b) What is the input impedance R_{in} of this amplifier? The output impedance R_{out}?
(c) What is the current gain of this amplifier ASSUMING THAT $R_{\text{in}}=200\,\text{kohms}$, $R_{\text{out}}=1000\,\Omega$, and $\frac{V_{\text{out}}}{V_{\text{in}}} = 1$?

Answer:
(a) r_d is so large compared to $R_S||R_L$ that it can be neglected. Then

$$R_L' = R_S \parallel R_L = \frac{R_SR_L}{R_S + R_L} = \frac{(330\,\Omega)(100\,\Omega)}{330\,\Omega + 100\,\Omega} = 76.75\,\Omega$$

In the output circuit $V_{\text{out}} = +g_mV_{\text{GS}}R_L' = +\left(0.05V_{\text{GS}}\right)(76.75\,\Omega) = 3.84V_{\text{GS}}$ \[1\]

Using KVL around the input circuit gives $-V_{\text{in}} + V_{\text{GS}} + V_{\text{out}} = 0$. \[2\]

Substituting [1] into [2] gives $-V_{\text{in}} + \frac{V_{\text{out}}}{3.84} + V_{\text{out}} = 0$ which can be solved to give the voltage gain $-V_{\text{in}} + 1.26V_{\text{out}} = 0$, or $\frac{V_{\text{out}}}{V_{\text{in}}} = 0.79$

(b) By inspection. $R_{\text{in}}=R_B=1.5\,M\Omega$

Using the definition for the output resistance and applying a test voltage source we get

$$R_{\text{out}} = \frac{V_T}{I_T} = \frac{V_T}{I_T} = \frac{V_T}{r_d + \frac{1}{g_m}}$$

After substituting values we have $R_{\text{out}} = r_d \parallel R_S \parallel \frac{1}{g_m} = 100\,k\Omega \parallel 330\,\Omega \parallel 20\,\Omega = 18.85\,\Omega$

(c)

$$A_i = \frac{i_{\text{out}}}{i_{\text{in}}} = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{V_{\text{out}}}{V_{\text{in}}} = \frac{R_{\text{out}}}{R_{\text{in}}}(1)\frac{200\,k\Omega}{1\,k\Omega} = 200$$
3. MOSFETs (AC AMPLIFIER)

The amplifier circuit shown below uses an enhancement mode MOSFET with $k=2.7$ mA/V2 and $V_T=2.5$ volts operating at $I_{DQ}=1.2$ mA. The circuit parameters are $R_{gen}=600\Omega$, $R_K=1k\Omega$, $R_L=10k\Omega$, $R_1=1.285M\Omega$, and $R_2=237k\Omega$. You may neglect r_d for the MOSFET.

(a) Draw a small signal equivalent circuit for this amplifier indicating the values of all small signal parameters. Note that R_S is NOT bypassed.

(b) Derive an expression for the small signal gain $A_v = \frac{V_{out}}{V_{in}}$ of this amplifier.

ANSWER:
(a) The small signal model is

(b) Derive an expression for the small signal gain $A_v = \frac{V_{out}}{V_{in}}$ of this amplifier.
I combined \(R_1 \) and \(R_2 \) into the single bias resistor \(R_G \) since both go to ground. All the circuit parameters are known except for \(R_G \) and \(g_m \) from the previous circuit diagram. The bias resistor is given by

\[
R_G = \frac{R_1 R_2}{R_1 + R_2} = \frac{(1285 \Omega)(237 \Omega)}{(1285 \Omega) + (237 \Omega)} = 200 \Omega.
\]

\(g_m \) can be computed as

\[
g_m = 2 \sqrt{K I_D Q} = 2 \sqrt{(2.7 \text{ mA}) (1.2 \text{ mA})} = 0.0036 S.
\]

To determine the small voltage gain we first need to determine \(V_{GS} \). We can do KVL around the loop defined by \(V_{in} \), \(V_{GS} \) and \(R_S \), i.e., \(-V_{in} + V_{GS} + (g_m V_{GS}) R_S = 0 \). This gives

\[
V_{GS} = \frac{V_{in}}{1 + g_m R_S}.
\]

The output voltage is simply given as \(V_{out} = -(g_m V_{GS}) (R_D \parallel R_L) \). These two results can be combined to give

\[
\frac{V_{out}}{V_{in}} = -\frac{g_m}{1 + g_m R_S} (R_D \parallel R_L).
\]
REFERENCE MATERIAL:

TRANSISTORS

MEASURED 2N2222 BJT CHARACTERISTICS

<table>
<thead>
<tr>
<th>V_{CE} (volts)</th>
<th>I_C (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>0.25</td>
</tr>
<tr>
<td>14</td>
<td>0.125</td>
</tr>
<tr>
<td>16</td>
<td>0.0625</td>
</tr>
<tr>
<td>18</td>
<td>0.03125</td>
</tr>
<tr>
<td>20</td>
<td>0.015625</td>
</tr>
</tbody>
</table>

I_F $= 35 \mu A$

$= 30 \mu A$

$= 25 \mu A$

$= 20 \mu A$

$= 15 \mu A$

$= 10 \mu A$

$= 5 \mu A$

$V_T = 26 \text{mV} @ 300^\circ \text{C}$

$\beta = \frac{I_C}{I_E}$

$\beta = \frac{I_C}{V_T}$

$g_m = 2K(V_{GS} - V_{TO}) = 2\sqrt{KI_DQ}$

MEASURED 2N5447 MOSFET CHARACTERISTICS

<table>
<thead>
<tr>
<th>V_{DS} (volts)</th>
<th>I_D (amps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>1.6</td>
</tr>
<tr>
<td>8</td>
<td>1.2</td>
</tr>
<tr>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>20</td>
<td>0.4</td>
</tr>
<tr>
<td>24</td>
<td>0.2</td>
</tr>
<tr>
<td>28</td>
<td>0.1</td>
</tr>
<tr>
<td>32</td>
<td>0.05</td>
</tr>
<tr>
<td>36</td>
<td>0.025</td>
</tr>
<tr>
<td>40</td>
<td>0.0125</td>
</tr>
</tbody>
</table>

$V_{GS} = 10 \text{ volts}$$

$V_{GS} = 9 \text{ volts}$$

$V_{GS} = 8 \text{ volts}$$

$V_{GS} = 7 \text{ volts}$$

$V_{GS} = 6 \text{ volts}$$

$V_{GS} = 5 \text{ volts}$$

$V_{GS} = 4 \text{ volts}$$

$V_{GS} = 3 \text{ volts}$$

MOSFETs

$\beta V_{T} = \frac{I_D}{I_{c,0}}$

$\beta V_{T} = \frac{I_{c,0}}{V_{f}}$

$g_m = \frac{\beta}{r_{\pi}} = \frac{I_{c,0}}{V_{f}}$

$V_T = 26 \text{mV} @ 300^\circ \text{C}$

Copyright F. Merat