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Chapter 3 - Waveforms, Power and Measurement

Recommended problems to study:
Problem Page

Concentrates
3: Low-pass filter/Fourier series 10<
10: Two wattmeter 3-f power measurement 12
Timed
3: DC ammeter 14<
5: Power factor correction 16
8: AC meter calibration 18<
Concentrates    (from two versions of textbook)
1: DC voltmeter 21
2: AC voltmeter 22<
4: AC meter  measurement 24
5: Power factor correction 25
6: AC impedances/single phase power 26<
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Reference formula

Part 1 - periodic signals
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Instantaneous power:
p t v t i t V t I t( ) = ( ) ( ) = +( ) +( )max maxcos cosw q w f
Using the trig identity 2cos cos cos cosa b a b a b( ) ( ) = -( ) + +( )  this becomes

p t
V I

t( ) = -( ) + + +( )[ ]max max cos cos
2

2q f w q f

Average power

P
T

p t
V I

t

t T
= ( ) = -( )+

Ú1
21

1 max max cos q f

For rms quantities
P V Irms rms= -( )cos q f
where cos q f-( ) is the power factor

Complex power:
P VI V I V Irms rms rms rms= { } = – – -{ } = -( )Re Re cos* q f q f
Note the - sign for f

+jQ

P

S

q

apparent power S VI= * VAs (Volt-amperes)
real power P VI= { }Re * Watts

reactive power Q VI= { }Im * VARs (Volt-amperes reactive)

P F
P

Q
. . cos= = q

Part 2 - Measurement of DC and Periodic Signals
Part 3 - Power

Trigonometric relationships

Complex numbers  
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The ability to convert complex numbers from a rectangular format (a+jb) to a polar form
Aejq is essential to describing the behavior of ac electrical networks. This conversion is
provided by Euler's identity which states that

a + jb = a2 + b2–Tan-1 b
a

and can be readily understood by the diagram shown below.

q

a

b

a+jb
where

a + jb = a2 + b2–Tan-1 b
a

and
tanq = ba

The rectangular form is a+jb; the polar (or phasor) form is c–q where

c = a2 + b2

Phasors

sinusoidal voltage v t V t( ) = +( )max cos w f

Euler’s formula e jjq q q= +cos sin

v t V e V e ej t j t j( ) = { } = { }+( )Re Remax max
w q w q

For 60Hz power systems all voltages are at the same frequency so we ignore thee j tw  term

v t V e j( ) = { }Re max
q , or ˆ maxv V= –q

For power systems v̂ Vrms= –q  where V
V

rms
rms=
2

Complex power, power factor, power factor correction   

For sinusoidal signals the power factor is defined by
pf=cosq

where q is the phase angle of the voltage or current relative to some reference. For power
circuits, the generator (or line) voltage is usually taken as the reference since the loads are
usually connected in parallel.

For phasors we can define complex (also called the reactive) power as:
CP = v¥i* = real power ± j reactive power = P ± jQ

where
real power or P = v¥i¥cosq
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and
reactive power or Q = v¥i¥sinq

The relationship between P and Q determines the power factor as shown below.
inductive load

CP
+jQ

P

capacitive load

CP
-jQ

P

LEADING

LAGGING

Complex power relationships for inductive and capacitive loads

V

I

I

V

lagging power factor
    (inductive)

leading power factor
    (capacitive)

Relationship between voltage and current in complex loads

q

real power = CPcosq

imaginary power = CPsinq

CP

imaginary

real

in units of kVA

in units of kVAR

in units of kW
Relationship between real and imaginary power in a complex load. Note
that the diagram is drawn for an inductive circuit. It would be reversed for
a capacitive load.
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Delta/        wye conversions   
Delta circuits can be transformed into wye circuits and vice versa to simplify circuit
analysis.

a
b

c

1

2 3

A

B C

A

B C

With reference to the circuits shown above (Note that that A corresponds to A, B to B and
C to C in the two circuits.) the conversion formula are:

Delta to Wye Wye to Delta
R* = Ra + Rb + Rc

R1 = RaRc

R*

R2 = RaRb

R*

R3 = RbRc

R*

R* = R1R2 + R1R3 + R2R3

Ra = R
*

R3

Rb = R
*

R1

Rc = R
*

R2

Three phase circuits   
Three phase power is very complex for non-electrical engineers and usually accounts for
several questions in the morning and afternoon sections of the exam. Do not attempt to
understand how these expressions are derived—simply use them—and you should do well
on that part of the exam. A three-phase load always has three terminals which I have
labeled A, B and C in the drawings below. The connections to the voltage sources are
called lines and the voltages between the terminals (lines) are called line-to-line voltages.
The current passing through each terminal is called the line current. Other voltages and
currents can be defined internal to the different loads possible, i.e. wye and delta. The line-
to-line voltages are 120∞ out of phase relative to each other as shown in the diagram below.

V
CA

VBC

VAB
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Balanced Delta-connected Load    

Z

IA
A

B

CIC

IB

V
CA Z

Z

V
AB

VBC

I
CA

IAB

I BC

The delta load connects to the three-phase voltage source through the terminals A, B and C
as described above. The delta load is balanced when all three load impedances are identical.
The current through each load is called the phase current.

line-to-line voltages: phase currents: line currents:
VAB = VAB  –0∞
VBC = VBC  –-120∞
VCA = VCA  –+120∞

IAB = IAB  –-q
IBC = IBC  –-q-120∞
ICA = ICA  –-q+120∞

IA = IA  –-q-30∞
IB = IB  –-q-150∞
IC = IC  –-q+90∞

where q is defined by

Z = Z  –q
The magnitudes of the phase and line current are related to each other for a balanced
system.

Iphase  = 
 Iline

3
The total power consumed by a balanced load is
Ptotal = 3 Vline-to-line  Iline  cos q

Balanced        Wye-connected Load    

Z

Z

Z

IA
A

O

B

C IC

IB

V
CA

VBC

VAB

The wye load connects to the three-phase voltage source through terminals A, B and C as
shown above. The wye load is called balanced when all three load impedances are identical
as shown above. A unique characteristic of the wye load is that the three load impedances
are connected together at a common node labeled O. The voltage across each load
impedance, i.e. the voltage betwwen the terminal A, B or C and the common node O is
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called a phase-to-phase voltage. The phase relationships between the voltages and currents
using the line-to-line voltage VAB as the reference is then given by:

line-to-line voltages: phase-to-phase voltages:
VAB = VAB  –0∞
VBC = VBC  –-120∞
VCA = VCA  –+120∞

VAO = VAO  –-30∞
VBO = VBO  –-150∞
VCO = VCO  –+90∞

In a balanced system the three load impedances are identical in magnitude and phase
resulting in the magnitudes of the different line-to-line voltages being equal.
VAB  = VBC  = VCA
The same result is true for the phase-to-phase voltages.
VAO  = VBO  = VCO

The magnitude of the phase-to-phase and line-to-line voltages are related to each other for a
balanced system.

Vphase-to-phase  = 
 Vline-to-line

3
The total power consumed by a balanced load is
Ptotal = 3 Vline-to-line  Iline  cos q
where q is defined by

Z = Z  –q

Note: for a wye load the line current is equal to the phase current.

Complex power, power factor, power factor correction   

For sinusoidal signals the power factor is defined by
pf=cosq

where q is the phase angle of the voltage or current relative to some reference. For power
circuits, the generator (or line) voltage is usually taken as the reference since the loads are
usually connected in parallel.

For phasors we can define complex (also called the reactive) power as:
CP = v¥i* = real power ± j reactive power = P ± jQ

where
real power or P = v¥i¥cosq

and reactive power or Q = v¥i¥sinq

The relationship between P and Q determines the power factor as shown below.
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inductive load

CP
+jQ

P

capacitive load

CP
-jQ

P

LEADING

LAGGING

Complex power relationships for inductive and capacitive loads

V

I

I

V

lagging power factor
    (inductive)

leading power factor
    (capacitive)

Relationship between voltage and current in complex loads

q

real power = CPcosq

imaginary power = CPsinq

CP

imaginary

real

in units of kVA

in units of kVAR

in units of kW
Relationship between real and imaginary power in a complex load. Note
that the diagram is drawn for an inductive circuit. It would be reversed for
a capacitive load.
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Chapter 3

Concentrates

3. A train of rectangular pulses is applied to an ideal low-pass filter circuit.  The pulse
height is 5 volts, and the duration of each pulse is 2ms.  The repetition period is 10ms.
The low-pass filter has a cut-off frequency of 500 Hz.  What percentage of the signal
power is available at the output of the filter?

The ideal filter

fo=500Hz
f

1

+5V

t(msec)+1 9 10+5-5 -1

T

As drawn this pulse train is an even function.  That was my option since I prefer even
function series.
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The last term of this expression for f t( ) can be ignored.  All bn = 0  since f t( ) is an even
function and sine is odd.
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Do the integral from t=-0.005 to t=+0.005 seconds.  For that case, the integral reduces to
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The ideal filter will pass ao, a1, a2, a3, a4  and a5

Power is rms voltage squared.
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The first term is different since the rms value of the dc term is the dc term 
ao

2
.  For all other

terms the rms voltage is given by V
V

rms
peak=
2

.  Computing the terms we get
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The output power is then
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Using the definition of rms to determine the power for the input pulse waveform
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The percentage power passed by the filter is then
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10. The measurement system shown below is used for a balanced load of 1 kW with a
lagging power factor of 0.8.  Determine the wattmeter readings.

See Section 3-16 for an explanation of the two-wattmeter method of three phase power
measurement.

Pa

Ia

+

-

Pb

Ib

+

-
Vbc

Ic

Van
+

-

Vcn
+

-

Vbn+ - neutral

The neutral is an artificial point used to make the two-wattmeter analysis easier.

Since it is not specified assume an ABC phase sequence. For this problem
PF = =cos .q 0 8 lagging so that q = + ∞36 87. .

Vc

Vb

Va

The voltages and currents are then specified by
V Van = – ∞0 I I Ia = – - = – - ∞q 36 87.
V Vbn = – - ∞120 I I Ib = – - - ∞ = – - ∞q 120 156 87.
V Vcn = – + ∞120 I I Ic = – - + ∞ = – + ∞q 120 83 13.

Recall the power triangle and write the expressions for the voltages and currents as seen by
the wattmeters.
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P
real

S

imaginary

Q
q

For wattmeter A:
V V V V V Vac an cn= - = – ∞ - – + ∞ = – - ∞( )0 120 1 732 30.
I Ia = – - ∞36 87.
S V I V I VI VIac ac a= = – - ∞( ) – - ∞( ) = – - ∞( ) – + ∞( ) = – ∞( )* *. . . . . .1 732 30 36 87 1 732 30 1 36 87 1 732 6 87
Or, in rectangular form
S VI jac = +( )1 72 0 207. .

For wattmeter B:
V V V V V Vbc bn cn= - = – - ∞ - – + ∞ = – - ∞( )120 120 1 732 90.
I Ib = – - ∞156 87.
S V I V I VI VIbc bc b= = – - ∞( ) – - ∞( ) = – - ∞( ) – + ∞( ) = – ∞( )* *. . . . . .1 732 90 156 87 1 732 90 1 156 87 1 732 66 87
Or, in rectangular form
S VI jbc = +( )0 68 1 59. .

For a balanced load P V Iline line line= -3 cosq  and V
V

phase
line line= -

3
In this problem Van , Vbn , and Vcn  are phase voltages. Vac  and Vbc  are line-line voltages.
Then
P V I V Iphase line phase line= =3 3 3cos cosq q
Using the numbers for this problem
1000 3 0 8watts V Iphase line= ( ).
or VI=416.67 watts

As a check on our calculations
P S VIa ac= { } = = ( ) =Re . . . .1 72 1 72 416 67 716 67watts

P S VIb bc= { } = = ( ) =Re . . . .0 68 0 68 416 67 283 33
These powers add up to exactly 1000 watts so the answer looks good.
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3. An ammeter is being designed to measure currents over the five ranges indicated in the
accompanying illustration.  The indicating meter is a 1.00 milliampere movement with an
internal resistance of 50 ohms.  The total resistance R R R R R1 2 3 4 5+ + + +( ) is to be 1000
ohms.  Specify the resistances Ra  and R1  through R5.

R1

R2

R3

R4

R5

Ra

50W

1.5mA

15mA

150mA

1.5A
15A

For 1.5mA

1000W

Ra

50W

1.5mA 1.0mA There is 0.5 milliampere through the 1kW resistor.
Since the voltages must be equal:
1000 0 5 1 50. mA mA Ra( ) = + W( )
or
Ra = W450

For 15mA

450W

50W

15mA

1.0mA

1000W-R1

R1

1 450 50 15 1 10001 1mA R mA R+ W + W( ) = -( ) -( )
R R1 1500 14000 14+ W = -

15 14000 500 135001R = - =

R1 900=
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For 150mA
1 900 450 50 150 1 1000 9002 2mA R mA R+ W + W + W( ) = -( ) - W +( )( )

450W

50W

150mA

1.0mA

1000W-(900W+R2)

R2

900W

R R2 21400 149 100+ W = -( )
150 14900 1400 135002R = - =

R2 90=

For 1.5A
1 900 90 450 50 1500 1 1000 900 903 3mA R mA R+ W + W + W + W( ) = -( ) - W + W +( )( )

450W

50W

1.5A

1.0mA

1000W-(900W+90W+R3)

R3

900W

90W

R R3 31490 1499 10+ W = -( )
1500 135003R =

R3 9= W

For 15A
1 9 90 900 450 50 15000 1 1000 900 90 94 4mA R mA R+ W + W + W + W + W( ) = -( ) - W + W + W +( )( )

50W

15A

1.0mA

1000W-(900W+90W+9W+R4)

R4

900W

90W

9W

R R4 41499 14999 1+ W = -( )
15000 135004R =

R4 0 9= W.

And finally R5 1000 900 90 9 0 9 0 1= W - W + W + W + W( ) = W. .
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A load is connected to a voltage of 1320 volts at 60Hz.  The load dissipates 100kW with a
0.867 lagging power factor.  Specify the capacitance needed to correct the power factor to:
(a) 0.895 lagging
(b) 0.95 leading
(Give the voltage and volt-ampere-reactive ratings at 60Hz for the capacitors.)

1320V, 60Hz 100kW,
PF=0.867 lagging

Determine the initial reactive power before correction.

100kW
real

S

imaginary

Q
q

PF lagging= =0 867. cosq  therefore q = ∞29 89.
From the power triangle
Q kW j kVAR= = ∞ = ( ) = +100 100 29 89 100 0 5747 57 47tan tan . . .q

This reactive power must be corrected as per the problem specification.  The desired power
factor is PF lagging= =0 895. cos 'q .  Therefore, the new angle must be q' .= ∞26 49 .  The
new reactive power for this angle comes from the new power triangle.

100kW
real

S

imaginary

Q’
q’

Q kW j kVAR' tan ' tan . . .= = ∞ = ( ) = +100 100 26 49 100 0 4984 49 84q
The difference in reactive powers must be supplied by the correction capacitor.

Q Q Qcapacitor+ = '

Q Q Q j j j kVARcapacitor = - = + - = -' . . .49 84 57 47 7 63
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P VIcapacitor = *

- ¥ = ( )Ê
ËÁ

ˆ
¯̃

j
XC

7 63 10 1320
13203. *

Solving for the capacitive reactance:

X
j j CC*

.
= ( )
- ¥

=
- ( )

1320
7 63 10

1
2 60

2

3 p

Solving for the required capacitance

C f=
( ) ( )

= ¥ = m7630
1320 2 60

1 16 10 11 62
5

p
. .

We already know the power rating to be 7.6kVAR and the voltage rating to be 1320 volts.
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8. The signal shown below is measured with the following voltmeters:
(a) DC voltmeter,
(b) an RMS reading AC voltmeter using a d’Arsonval meter in a full-wave bridge in the

feedback circuit of an opamp,
(c) an RMS reading AC voltmeter using a d’Arsonval meter in series with a diode in the

feedback circuit of an opamp,
(d) a true RMS voltmeter such as an electrodynanometer,
(e) an RMS reading AC voltmeter using a peak detector, and
(f) an RMS reading AC voltmeter using a peak-to-peak detector.
Determine the reading on each meter.

+5V

t(msec)1 20 3 4 50 V
The trick in this problem is to know that old style meters were always calibrated with sine
waves.  The meter always actually read the average value, but the scale was generated with
the appropriate correction factor.  Thus the procedure is calculate the scale for a sine wave
as compared to the average value for a sine wave, and the calculate the average value of the
waveform.  The product of these two quantities will be the meter reading.

(a) a DC voltmeter reads the average value of a waveform

For this case the meter reading is

1 1
2

5
1

1
2

5
2

5
4

1 1 25
0 0

1 2

0

1
2

T
f t dt

m

V

m
tdt

t
volts

T m

( ) = = ( ) = ( ) =Ú Úsec sec
.

sec

(b) a d’Arsonval meter reads the average value

The full wave bridge in the feedback loop of an opamp is a fancy way of telling you that it
is a precision rectifier and you can neglect the voltage drop across the diode.  The
waveform that the meter will see for a sine wave is

1 20 3 4

The average value for this waveform is

V t dt t dt
t

avg = ( ) = ( ) = - ( )Ú Ú1
2

2
2

2
2

0

2

0

1

0

1

sin sin
cosp p p
p

Vavg = - +[ ] = - -( ) +[ ] =2
2

0
2

2
1 1

2
p

p
p p

cos cos
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The rms value of this waveform (which is the units in which the meter is calibrated) is

V
m

t dt t dtrms = ( ) = ( )Ú Ú1
2

2
2

2

0

2
2

0

1

sec
sin sinp p

V t dt dt
t

dtrms = - ( )( ) = - ( ) =Ú Ú Ú1
2

1 2
1
2

1
2

2
2

1
2

0

1

0

1

0

1

cos
cosp p

The calibration constant for the meter is then

V

V
rms

avg

= =

1
2

2 2 2
p

p

The meter reading is given by multiplying the average value by the (sine wave) scaling
factor:

meter reading= = ( ) =V

V
V Voltsrms

avg
avg waveform, . .

p
2 2

1 25 1 39

(c) This is essentially the same as part (b) except that we have an ideal half wave rectifier
and the sine wave calibration constant changes.  Note that the ramp waveform is always
positive and will give the same reading through either rectifier circuit.

1 20 3 4

The average value for this wave is half that of a full wave rectifier, so

V Vavg avg full wave= = Ê
Ë

ˆ
¯ =-

1
2

1
2

2 1
, p p

Computing the rms voltage for this waveform we get

V t dt t dt dt t dtrms = ( ) = - ( )( ) = - ( ) = =Ú Ú Ú Ú1
2

1
2

1
2

1 2
1
4

1
4

2
1
4

1
2

2

0

1

0

1

0

1

0

1

sin cos cosp p p

The calibration constant for the meter is then

V

V
rms

avg

= =

1

2
1 2
p

p

The meter reading is given by multiplying the average value by the (sine wave) scaling
factor:
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meter reading = = ( ) =V

V
V Voltsrms

avg
avg waveform, . .

p
2

1 25 1 96

(d) the true RMS is pretty easy.  This is computed directly from the definition with no
scaling factors.

V t dt t dt
t

Voltstrue rms- = Ê
Ë

ˆ
¯ = = = =Ú Ú

1

2

5

2

1

2
25

25

2 3

25

6
2 04

2

0

1
2

0

1 3

0

1

.

(e) RMS using a peak detector is also pretty easy.  This is just a different scaling factor
based upon the peak value of the waveform.

The meter reads the peak value for the waveform of 5 Volts.

The calibration for sinusoids is V
V

rms
peak=
2

.

meter reading = =5
2

3 54. Volts

(f) This is essentially the same as (e) except using peak-peak values.

The calibration for sinusoids is V

V
V

rms

peak peak
peak peak= =

-
-2

2 2 2
.

Note that the meter still reads 5 Volts as the peak-peak value.

meter reading = =5
2 2

1 77. Volts
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Concentrates
1. A voltmeter is being designed to measure voltages in the full-scale ranges of 3, 10, 30
and 100 volts DC.  The meter movement to be used has an internal resistance of 50 ohms
and a full-scale current of 1 mA.  Using a four-pole, single-throw switch, design the
voltmeter.

The meter circuit is easily designed using the equivalent circuit of the meter.

@100 volts

Rext

1mA FS

Rcoil=50W

100V
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You can design several different types of meter circuits using this data.
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2. An AC voltmeter consists of a d’Arsonval meter with a full-scale current of 0.125mA
and a series resistance of 106W.  A full-wave bridge of silicon diodes (Vthr=0.6volts) is
used to rectify the AC voltage.  The full-scale needle deflection is 50 degrees.  Give the
scale increments in degrees from 0 to 100 volts in 10 volt increments for the RMS vaue of a
pure sinusoid.

This is somewhat of a tedious problem.  The crucial items to note are:
∑ full-wave bridge
∑ non-ideal diodes with a threshold
∑ RMS meter circuit
Otherwise the problem is fairly similar to the previous meter calibration problem.

If you follow the current path through the meter circuit you see that the current flows
through two diodes and we have two diode drops to include in our calculations.

106W

0.125mA FS RMS meter

Note that there can be no output when the AC input voltage is less than two diodes drops,
i.e., 2*0.6=1.2 volts.

p 2p0 3p 4p
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A d’Arsonval meter will read the average value of the voltage waveform shown below.
Note that I want to write the peak value in terms of the RMS value for convenience.
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This drawing shows what is happening.  I have to subtract 1.2 volts from the sine wave.
As a result I will only get a contribution to the average from the shaded region of the
waveform.  Only a quarter cycle is shown because of symmetry.  The actual average will
then be given by
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wt1 is the point in time when the input voltage drops below the threshold of the diode
bridge and there is no output.  This can be solved for as
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Using this result the average voltage becomes
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The full scale deflection of the resistor-meter combination is
0 125 10 10 1253 6. ¥ ¥ =- volts
Assuming the meter deflection is linear we have an angular deflection sensitivity of

 
50

125
∞

volts
 and a meter deflection of q = ∞50

125volts
Vavg

This is not something I wanted to calculate by hand so I used a spreadsheet to compute it.

Vrms wt1 sqrt(2)*Vrms*sin(w t1) 1.2*w t1 difference angular deflection (degrees)

10   1.4858 14.091 1.783 7.836 3.134
20   1.5284 28.259 1.834 16.823 6.729
30   1.5425 42.409 1.851 25.820 10.328
40   1.5496 56.556 1.859 34.821 13.928
50   1.5538 70.700 1.865 43.822 17.529
60   1.5567 84.844 1.868 52.824 21.130
70   1.5587 98.988 1.870 61.827 24.731
80   1.5602 113.131 1.872 70.829 28.332
90   1.5614 127.274 1.874 79.832 31.933

100   1.5623 141.416 1.875 88.835 35.534
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4. A full wave rectifier type VTVM (vacuum tube voltmeter) is set to an RMS AC scale
with a range of 50 volts.  The meter is connected to a symmetrical (zero average) triangular
waveform of 100 volts peak-to-peak.  What does the meter read?

The input waveform is input to an AC VTVM with a full wave bridge  We we assume an
ideal rectifier circuit.
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The output of the full wave rectifier will look superficially the same but with different
voltage levels.
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Compute the input to the meter.
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The meter is designed and calibrated for sinusoidal waveforms.
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Computing the calibration relationship for the meter.
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The meter will read an average (actual) of 25 volts and display it as the appropriate RMS

value, i.e., 25
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5. An impedance receives a line current which lags the voltage by 30˚.  When the voltage
across the impedance is 100 volts (RMS), the impedance dissipates 200 watts.  Specify the
reactance of a capacitance to be places in parallel with the impedance which would make the
line current be in phase with the voltage.

The given circuit is

100V RMS,
dissipates 200watts

The current lags the voltage

voltage
30˚

current
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50 .  This gives G=0.02mhos.

At this point we have I YV G jB V jB V= = +( ) = +( )0 02. .  Since the phase angle is known
to be 30˚ we can use the relationship between voltage and current to find B.

G=0.02

30˚
B

tan30∞ = B

G
 or B G= ∞ = ∞ =tan . tan .30 0 02 30 0 0115.  Note that B is actually negativ e.

The resulting circuit is

+jBL 0.02
mhos

-j0.0115

Having the line current being in phase means that the reactance is zero.  This requires

jB jBC L+ = 0
B BC L= - = - -( ) =0 0115 0 0115. .
XC = - W86 6.  for the desired power factor correction
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6. A parallel combination of a resistance (10W), capacitance (88.5µf), and inductance (66.3
mH) has 60Hz, 230 volt (RMS) applied.  Obtain the:
(a) reactances of C and L.
(b) admittance of each circuit element.
(c) phasor diagram for the currents, using the applied voltage as the reference.
(d) admittance diagram for the circuits, including the total admittance.
(e) input current as a sine function, taking the applied voltage as a reference.  (Is the circuit
inductive or capacitive?)
(f) power factor.
(g) power triangle.

The circuit is

230V,60Hz 10W 88.5µf 66.3mH

The angular frequency is w p= ( ) =2 60 376 99. sec
rad
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iC=7.67

iL=9.2iL=9.2

iR=23

(d)

BC=0.0334

BL=0.04

G=0.1

Y j j jt = + - = - = – - ∞0 1 0 0334 0 04 0 1 0 0066 0 1002 3 776. . . . . . .
(e)
i YV j= = – - ∞( ) – ∞( ) = - = – - ∞0 1002 3 776 230 0 23 00 1 518 23 05 3 776. . . . . .
The circuit is inductive since the angle is negative.  Recall the phasor diagram

iC

iL

V

(f)
PF = - ∞( ) =cos . .3 776 0 9978
(g)
p vi j= = – ∞( ) – - ∞( ) = – + ∞ = +* . . * . . . .230 0 23 05 3 776 5301 5 3 776 5289 99 349 14
The power triangle will look like this

5301.5VA

349.14VAr

5289.99 watts
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