INDEX

Section Page
Voltage1
Resisitivity and Resistance 1
Conductivity and conductance 4
Ohm's Law 4
Energy sources 4
Voltage Sources in Series and Parallel 4
Voltage and Current dividers 5
Current division 5
Voltage division 5
Power 6
Decibels 6
Kirchoff's Laws 6
Kirchoff's current Law 6
Kirchoff's voltage law 6
Simple Series Circuit 7
Superposition 7
Norton's Theorem 8
Thevenin's Theorem 10
Equivalence of Norton and Thevenin Equivalent Circuits 11
Loop Current Method 12
Node Voltage Method 13
Wheatstone Bridge 18

Please inform me of your opinion of the relative emphasis of the review material by simply making comments on this page and sending it to me at:

Frank Merat
4398 Groveland Road
University Heights, Ohio 44118
Your information will be used to revise next year's exam review course. I may be reached for questions about the review material at:

291-0602 (home)
368-4572 (Case Western Reserve)
368-6039 (Case Western Reserve FAX)
flm@po.cwru.edu

The morning session (also known as the A.M. session) has 120 multiple-choice questions, each with four possible answers lettered (A) to (D). Responses must be recorded with a number 2 pencil on special answer sheets. No credit is given for answers recorded in ink.

Each problem in the morning session is worth one point. The total score possible in the morning is 120 points. Guessing is valid; no points are subtracted for incorrect answers.

Morning FE Exam Subjects subject number of questions		Afternoon FE Exam Subjects (General Exam)	
chemistry	11	subject	number of questions
computers	7	chemistry	5
dynamics	9	computers	3
electrical circuits	12	dynamics	5
engineering economics	5	electrical circuits	6
ethics	5	engineering economics	6
fluid mechanics	8	ethics	3
material science and structure of matter	8	fluid mechanics	3
mathematics	24	material science and structure of matter	4
mechanics of materials	8	mathematics	3
statics	12	mechanics of materials	12
thermodynamics	11	statics	4
		thermodynamics	6
			6

There are six different versions of the afternoon session (also known as the P.M. session), five of which correspond to a specific engineering discipline: chemical, civil, electrical, industrial, and mechanical engineering.

Each version of the afternoon session consists of 60 questions. All questions are mandatory. Questions in each subject may be grouped into related problem sets containing between two and ten questions each.

The sixth version of the afternoon examination is a general examination suitable for anyone, but in particular, for engineers whose specialties are not one of the other five disciplines. Though the subjects in the general afternoon examination correspond to the morning subjects, the questions are more complex - hence their double weighting.

Questions on the afternoon examination are intended to cover concepts learned in the last two years of a four-year degree program. Unlike morning questions, these questions may deal with more than one basic concept per question.

The numbers of questions for each subject in the general afternoon session examination are given in the above table
The numbers of questions for each subject in the, discipline-specific afternoon session examination are listed on the following pages. The discipline specific afternoon examinations cover substantially different bodies of knowledge than the morning examination. Formulas and tables of data needed to solve questions in these examinations will be included in either the NCEES FE Reference Handbook or in the body of the question statement itself.

Each afternoon question consists of a problem statement followed by multiple-choice questions. Four answer choices lettered (A) through (D) are given, from which you must choose the best answer.

- Each question in the afternoon is worth two points, making the total possible score 120 points.
- The scores from the morning and afternoon sessions are added together to determine your total score. No points are subtracted for guessing or incorrect answers. Both sessions are given equal weight

CHEMICAL ENGINEERING	
chemical reaction engineering	6
chemical thermodynamics	6
computer and numerical methods	ds
heat transfer	6
mass transfer	6
material/energy balances	9
pollution prevention (waste minimization)	inimization)
process control	3
process design and economics evaluation	evaluation
process equipment design	3
process safety	3
transport phenomenon	6
INDUSTRIAL ENGINEERING	
subject number of que	number of questions
computer computations and modeling	odeling 3
design of industrial experiments	ts
engineering economics	3
engineering statistics	3
facility design and location	
industrial cost analysis	3
industrial ergonomics	3
industrial management	3
information system design	3
manufacturing processes	3
manufacturing systems design	
material handling system design	n
mathematical optimization and modeling	modeling
production planning and scheduling	uling
productivity measurement and management	management
queuing theory and modeling	3
simulation	
statistical quality control	3
total quality management	3
work performance and methods	3
ELECTRICAL ENGINEERING subject number of questions	
analog electronic circuits	6
communications theory	6
computer and numerical methods	ds
computer hardware engineering	g
computer software engineering	3
control systems theory and analysis	lysis
digital systems	6
electromagnetic theory and applications	plications
instrumentation	3
network analysis	6
power systems	3
signal processing	3
solid state electronics and drives	S 6

CIVIL ENGINEERINGsubjectnumber of questions
computers and numerical methods 6
construction management 3
environmental engineering 6
hydraulics and hydrologic systems 6
legal and professional aspects 3
soil mechanics and foundations 6
structural analysis (frames, trusses, etc.) 6
structural design (concrete, steel, etc.) 6
surveying 6
transportation facilities 6
water purification and treatment 6
MECHANICAL ENGINEERING
subject number of questions
automatic controls 3
computer (numerical methods, automation, etc.) 3
energy conversion and power plants 3
fans, pumps, and compressors 3
fluid mechanics 6
heat transfer 6
material behavior/processing 3
measurement and instrumentation 6
mechanical design 6
refrigeration and HVAC 6
thermodynamics 6
Morning:
computers 7
electrical circuits 12
total of $19 / 120$, about 10%
General Afternoon:
computers3
electrical circuits 6

I did a count of the various sample exams and came up with the following topical distribution.
Morning general examination:
Laplace transform 1
power triangle 1
impedance diagram (phasors) 1
transients 2
electromagnetic fields 1
DC circuits 1
computers 2

Afternoon general examination:
transients
computers 1

Afternoon, EE specific examination:
op-amps 4
transistors (BJT \& FET) 4
control 3
communications 2
E\&M 2
Digital filters 3
Solid State 3
Phasors 2
Three-phase power 2
digital (mostly counters) 3
differential equations 1
computer 1

Current may be defined by a derivative, i.e. the rate at which charge is moved:
$\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}$
or in the form of an integral as the total charge moved:
$\mathrm{q}=\int_{0}^{\mathrm{t}} \mathrm{i}(t) \mathrm{d} t$
where i is in units of coulombs/second, or amperes.

Voltage

Voltage is a measure of the work required to move a unit charge through an electric field (usually inside an electrical circuit element such as a resistor). It requires one joule of energy to move one coloumb of charge through a potential difference of one volt.
$\mathrm{w}=\int \mathrm{vdq}$
where w is in joules, v is in volts and dq is in coulombs.

Resisitivity and Resistance

The resistance of ordinary wire can be calculated provided one knows the resistivity of the wire as

$$
\mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{~A}}
$$

where l is the length of the wire and A is its cross-sectional area. The resistivity ρ is a property of the material and a function of temperature as given by
$\rho=\rho_{0}(1+\alpha \Delta t)$
where $\rho_{0}=1.7241 \times 10^{-6} \Omega-\mathrm{cm}^{2} / \mathrm{cm}$ at $20^{\circ} \mathrm{C}, \alpha=0.00382 /{ }^{\circ} \mathrm{C}$ for hard-drawn copper of the type most commonly used for electrical wiring, and $\Delta \mathrm{T}$ is the temperature difference between the temperature of the desired resistance and that at which ρ_{0} is specified, in this case $\Delta T=T_{\text {specified }}{ }^{-}$ $20^{\circ} \mathrm{C}$.

Be careful of the units of ρ. Very commonly ρ is given in units of Ω-cmil/foot. This requires that A be given in circular mils, i.e. the area of a 0.001 inch diameter circle. The formula for converting between actual diameter and circular mils is:

$$
A_{\text {cmils }}=\left(\frac{d_{\text {inches }}}{0.001}\right)^{2}
$$

The equivalent value of N series resistors is:

The equivalent value of N parallel resistors is:

$$
\mathrm{R}_{\mathrm{eq}}=\frac{1}{\sum_{\mathrm{j}=1}^{\mathrm{N}} \frac{1}{\mathrm{R}_{\mathrm{j}}}}
$$

For the important case of two resistors in parallel:

$$
\mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Equivalent resistance for a complex network:

Looks like three resistors in series:
$\mathrm{R}_{\mathrm{eq}}=5 \Omega+1 \Omega+9 \Omega=15 \Omega$

Looks like two resistors in parallel:
$\mathrm{R}_{\mathrm{eq}}=\frac{(10)(15)}{(10)+(15)}=6 \Omega$

Looks like three resistors in series
$\mathrm{R}_{\mathrm{eq}}=4+6+2=12 \Omega$

Looks like two resistors in parallel:
$\mathrm{R}_{\mathrm{eq}}=\frac{(4)(12)}{(4)+(12)}=3 \Omega$

Looks like three resistors in series:
$\mathrm{R}_{\mathrm{eq}}=3+3+4=10 \Omega$

Conductivity and conductance
Ohm's Law can also be written in terms of conductance which is simply $1 / \mathrm{R}$, i.e. $\mathrm{v}=\mathrm{i} / \mathrm{G}$ where G is in mhos, the unit of conductance.

Ohm's Law
Electrical resistance
where R is in units of ohms.

Energy sources

independent ideal voltage source:

independent real voltage source:

independent ideal current source:

independent real current source:

Perfect voltage and current sources have the following characteristics:
A perfect (ideal) voltage source has $\mathrm{R}_{\mathrm{int}}=0$.
A perfect (ideal) current source has $\mathrm{R}_{\text {int }}=\infty$.
Voltage Sources in Series and Parallel
Voltage sources that are in series (even if there are intervening resistances) can be algebraically combined into a single equivalent resistance.

Voltage and Current dividers

Current division between two resistors in parallel:

Since the resistors are in parallel they MUST have the same voltage across them

$$
\begin{array}{r}
\mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \\
\mathrm{v}=\mathrm{i} \mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{i} \\
\mathrm{i}_{1}=\frac{\mathrm{v}}{\mathrm{R}_{1}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{i} \\
\mathrm{i}_{2}=\frac{\mathrm{v}}{\mathrm{R}_{2}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{i}
\end{array}
$$

This is known as a current divider.
Voltage division between two resistors in series (see the figure below).
As the resistors are in series they MUST have the same current thru them.

$$
\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}
$$

Using Ohm's Law

$$
\mathrm{i}=\frac{\mathrm{v}}{\mathrm{R}_{\mathrm{eq}}}=\frac{\mathrm{v}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

Knowing the current through each resistor we can apply Ohm's Law again to get

$$
\mathrm{v}_{2}=\mathrm{i} \mathrm{R}_{2}=\frac{\mathrm{v}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{R}_{2}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}} \mathrm{v}
$$

This result is known as a voltage divider.

Power

Power may also be defined, using our previous relationships, as $p=v i$.
The unit of power is joules/second, or watts. 746 watts $=1$ horsepower is a very common conversion.

Decibels
Decibels are units used to express power ratios

$$
\mathrm{db}=10 \log _{10}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)
$$

or voltage and current ratios

$$
\begin{aligned}
& \mathrm{db}=20 \log _{10}\left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right) \\
& \mathrm{db}=20 \log _{10}\left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}\right)
\end{aligned}
$$

Kirchoff's Laws

Kirchoff's current Law: the algebraic sum of all currents entering or leaving a node is zero. Mathematically,

$$
\overline{\sum_{j=1}^{N} i_{j}=0}
$$

For a simple example: $i_{3}-\mathrm{i}_{1}-\mathrm{i}_{2}-\mathrm{i}_{4}=0$ where we used the negative sign to indicate current leaving the node. IMPORTANT: It does not matter whether you use the positive or negative sign to indicate current leaving the node AS LONG AS YOU ARE CONSISTENT.

Kirchoff's voltage law states that the algebraic sum of the voltages around any closed path in a circuit is zero, i.e.
$\sum_{j=1}^{N} v_{j}=0$

Simple Series Circuit

Determine the voltage drop across the resistors and the power delivered by the batteries.

Note that the sign of the voltages drops agrees with our previously defined convention. Summing the voltages around the circuit in a clockwise direction:

$$
\begin{gathered}
-120+30 \mathrm{i}+30+15 \mathrm{i}=0 \\
45 \mathrm{i}=90 \\
\mathrm{i}=2 \mathrm{amps}
\end{gathered}
$$

The voltage drop across the 30Ω resistor is:

$$
\begin{aligned}
& \mathrm{v}_{30 \Omega}=\mathrm{iR}=(2)(30)=60 \text { volts } \\
& \mathrm{v}_{15 \Omega}=\mathrm{i} \mathrm{R}=(2)(15)=30 \text { volts }
\end{aligned}
$$

The power supplied by the batteries is:

$$
\begin{gathered}
\mathrm{P}_{120 \mathrm{~V}}=\mathrm{vi}=(120)(2)=240 \text { watts } \\
\mathrm{P}_{30 \mathrm{~V}}=\mathrm{vi}=(30)(2)=60 \text { watts }
\end{gathered}
$$

The power dissipated by the resistors is:

$$
\begin{gathered}
\mathrm{P}_{30 \Omega}=\mathrm{i} 2 \mathrm{R}=(2)^{2}(30)=120 \text { watts } \\
\mathrm{P}_{15 \Omega}=\mathrm{i} 2 \mathrm{R}=(2)^{2}(15)=60 \text { watts }
\end{gathered}
$$

where we used the following formula to calculate the power:

$$
\mathrm{P}=\mathrm{vi}=\mathrm{i}^{2} \mathrm{R}=\frac{\mathrm{v}^{2}}{\mathrm{R}}
$$

Note that the batteries use a lot of power just canceling each other out.

Superposition

Superposition can be used to determine node voltages but is usually more complex than the loop current method discussed in the next section. To solve a problem by superposition we consider only one voltage or current source at a time (all the other voltage sources are replaced by shorts, all the other current sources are replaced by open circuits) and sum up the resulting voltages or currents. Superposition works because electrical sources are linear.

Example:

Find the voltage v across the 4Ω resistor by superposition.

To find v in this circuit we consider the following superposition of sources:

In circuit (i), the total resistance seen by the source is $5+4 \| 6=5+2.4=7.4 \Omega$. The total current is then $\mathrm{i}=4 \mathrm{volts} / 7.4 \Omega=0.54$ ampere. This current goes through the 5Ω resistor and, then, splits with $0.54(6 /(4+6))=0.324$ amperes going through the 4Ω resistor. The voltage drop v_{1} is then $\mathrm{v}_{1}=\mathrm{i} \mathrm{R}=(0.324$ amperes $)(4 \Omega)=1.3$ volts.

In circuit (ii), the total resistance seen by the source is $4+5 \| 6=4+2.73=6.73 \Omega$. The total current is $\mathrm{i}=6 \mathrm{volts} / 6.73 \Omega=0.892$ ampere. This current goes through the 4Ω resistor directly below the source. The voltage drop v_{2} across the 4Ω resistor is then $\mathrm{v}_{2}=\mathrm{iR}=$ $(0.892$ amperes $)(4 \Omega)=3.57$ volts.
Since the currents going through the 4Ω resistor are in the same direction they add giving, for the original circuit, $\mathrm{v}=\mathrm{v}_{1}+\mathrm{v}_{2}=1.3+3.57=4.87$ volts.

Norton's Theorem

Norton's Theorem (formal definition)
Given any linear circuit, rearrange it in the form of two networks 1 and 2 that are connected together by two zero resistance conductors. Define a current i_{sc} as the short-circuit current which would appear at the terminals A and A' of network 1 if network 2 were replaced by a short circuit. Then, all the currents and voltages in network 2 will remain unchanged if network 1 is killed (all independent voltage sources and current sources in network 1 are replaced by short circuits and open circuits, respectively) and an independent current source $i_{\text {sc }}$ is connected, with proper polarity, in parallel with the equivalent resistance of the dead (inactive) network 1.

Example:

Find the Norton equivalent circuit of Network 1 shown below.

Replace network 2 by a short-circuit and superimpose the 4 volt and the 2 ma sources to find $i_{\text {sc }}$.

The current $\mathrm{i}_{1}=4$ volts $/ 5 \mathrm{k} \Omega=0.8 \mathrm{~mA}$. The current i_{2} is found using the current divider relationship.
$\mathrm{i}_{2}=2 \mathrm{~mA}\left(\frac{2 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+3 \mathrm{k} \Omega}\right)=2 \mathrm{~mA}\left(\frac{2}{5}\right)=0.8 \mathrm{~mA}$
Both currents are in the same direction so $\mathrm{i}_{\text {sc }}=\mathrm{i}_{1}+\mathrm{i}_{2}=0.8 \mathrm{~mA}+0.8 \mathrm{~mA}=1.6 \mathrm{~mA}$.
Shorting out the voltage sources and opening the current sources yields:

Shorting out the voltage sources and opening the current sources yields:

The terminal resistance $\mathrm{R}_{\mathrm{T}}=2 \mathrm{k} \Omega+3 \mathrm{k} \Omega=5 \mathrm{k} \Omega$
The final Norton equivalent circuit is then:

which is certainly easier to analyze than the original circuit with multiple sources.

Thevenin's Theorem

Thevenin's Theorem (formal definition):
Given any linear circuit, rearrange it in the form of two networks 1 and 2 that are connected together by two zero resistance conductors at A and A'. Define a voltage $\mathrm{v}_{\text {oc }}$ as the open-circuit voltage which would appear between the terminals A and A^{\prime} if network 2 were disconnected so that no current is drawn from network 1. Then, all the currents and voltages in network 2 will remain unchanged if network 1 is killed (i.e., all independent voltage sources and current sources in network 1 are replaced by short circuits and open circuits, respectively) and an independent voltage source v_{oc} is connected, with proper polarity, in series with the equivalent resistance of the dead (inactive) network 1.

Example:

Find the Thevenin equivalent circuit of Network 1 shown below.

Disconnect network 2 at AA' and calculate the open circuit voltage from network 1.

No current flows through the $3 \mathrm{k} \Omega$ resistor. Use superposition to find v_{oc}. From the voltage source only, $v_{1}=4$ volts. From the current source only $v_{2}=(2 \mathrm{k} \Omega)(2 \mathrm{~mA})=4$ volts. The voltages are of the same polarity so $v_{\text {oc }}=4+4=8$ volts. The equivalent resistance is found by replacing the 4 volt source by a short and the 2 mA current source by an open and computing the resultant Thevenin resistance $\mathrm{R}_{\mathrm{T}}=2 \mathrm{k} \Omega+3 \mathrm{k} \Omega=5 \mathrm{k} \Omega$. The Thevenin equivalent circuit to connect at AA^{\prime} in place of network 1 is then:

Equivalence of Norton and Thevenin Equivalent Circuits
If you know the Norton equivalent circuit, the Thevenin equivalent circuit is directly computable from Ohm's Law. This observation also works the other way.

Norton equivalent circuit

Thevenin equivalent circuit

Note that R_{T} is the same in both circuits and $\mathrm{V}_{\mathrm{T}}=\mathrm{I}_{\mathrm{N}} \mathrm{R}_{\mathrm{T}}$.

Perfect voltage and current sources have the following characteristics:
A perfect (ideal) voltage source has $\mathrm{R}_{\mathrm{T}}=0$.
A perfect (ideal) current source has $\mathrm{R}_{\mathrm{T}}=\infty$.
For a perfect (ideal) source,
if $\mathrm{V}_{\mathrm{T}}=0$ then the source is replaced by a short, $\mathrm{R}_{\mathrm{T}}=0$.
if $\mathrm{I}_{\mathrm{N}}=0$ then the source is replaced by an open, $\mathrm{R}_{\mathrm{T}}=\infty$.

Loop Current Method

Example:

Find the voltage vacross the 4Ω resistor by the loop current method.

To find v in this circuit we assume current directions for the chosen loops and write Kirchoff's voltage law for each loop as shown below:

Writing the loop equations:
loop1: $\quad 6 i_{1}+5 i_{1}-5 i_{2}+4$ volts $=0$
loop2: $\quad-4$ volts $+5 \mathrm{i}_{2}-5 \mathrm{i}_{1}-6$ volts $+4 \mathrm{i}_{2}=0$
Simplifying,
loop1: $\quad 11 i_{1}-5 i_{2}=-4 v o l t s$
loop2: $\quad-5 \mathrm{i}_{1}+9 \mathrm{i}_{2}=+10$ volts
which can be solved to give
$\mathrm{i}_{2}=+1.216$ amperes and $\mathrm{i}_{1}=0.19$ amperes.
The voltage v across the 4Ω resistor is then
$\mathrm{v}=\mathrm{i}_{2}(4 \Omega)=(1.216)(4)=4.864$ volts

Node Voltage Method

Example:

Find the voltage v across the 4Ω resistor by the node voltage method.

To find v in this circuit we assume that the node B is ground (0 volts). Typically, the ground is associated with the negative side of a voltage source or other voltage reference. In this case, ground is the negative side of the voltage drop v . The only other node in the circuit is A and we will define the voltage at A to be V_{A}. Using the node voltage method we apply Kirchoff's current law to node A.

At A: $i_{1}+i_{2}+i_{3}=0$
where
$\mathrm{V}_{\mathrm{A}}=\mathrm{i}_{1}(6 \Omega)$, or $\quad \mathrm{i}_{1}=\frac{\mathrm{V}_{\mathrm{A}}}{6}$
$V_{A}=i_{2}(5 \Omega)+4$ volts, or $i_{2}=\frac{\mathrm{V}_{\mathrm{A}}-4}{5}$
$V_{A}=i_{3}(4 \Omega)-6$ volts, or $i_{3}=\frac{V_{A}+6}{4}$
Substituting these results into Kirchoff's current law and solving for V_{A} :
$\frac{\mathrm{V}_{\mathrm{A}}}{6}+\frac{\mathrm{V}_{\mathrm{A}}-4}{5}+\frac{\mathrm{V}_{\mathrm{A}}+6}{4}=0$
$\mathrm{V}_{\mathrm{A}}=-1.135$ volts.
Then, $i_{3}=(-1.135+6) / 4=1.216$ amperes and $v=i_{3}(4 \Omega)=(1.216$ amperes $)(4 \Omega)=4.864$ volts.

Notice that all three examples give the same answer. You may judge whether one is particularly easier or faster than the others.

CIRCUITS 1

The equivalent resistance R_{ab} is closest to
(a) 2 ohms
(b) 40 ohms
(c) 60 hms
(d) 80 ohms
(e) 10 ohms

Solution:
R_{eq} for the $8 \Omega, 12 \Omega$ and 16Ω resistors in parallel is
$\mathrm{R}_{\mathrm{eq}}=\frac{1}{\frac{1}{8}+\frac{1}{12}+\frac{1}{16}}=3.68 \Omega$
and
$\mathrm{R}_{\mathrm{ab}}=3+4 \|(2+3.68)=3+\frac{4 \times(2+3.68)}{4+(2+3.68)}=3+2.35=5.35 \Omega$
The correct answer is (c).

CIRCUITS 4

The power supplied by the 10 volt source is
(a) 12 watts
(b) 0 watts
(c) -12 watts
(d) 16 watts
(e) -16 watts

Solution:
Call the clockwise loop currents i_{1} and i_{2} as shown in the drawing above. Use KCL to obtain two equations in two unknowns
$6 \mathrm{i}_{1}-2 \mathrm{i}_{2}=10$
$-2 i_{1}+4 i_{2}=-20$
Multiplying the first equation by two gives
$12 \mathrm{i}_{1}-4 \mathrm{i}_{2}=20$
and adding the last two equations we get the solution that $\mathrm{i}_{1}=0$.
$P_{10 \text { volt source }}=i_{1}(10$ volts $)=0$
The correct answer is (b).

CIRCUITS 5

The voltage V_{y} is closest to
(a) 0 volts
(b) 3.6 volts
(c) -1.2 volts
(d) 7.2 volts
(e) -7.2 volts

Solution:
Call the voltage drop (from top to bottom) across the 2Ω resistor V_{1}. Using KCL to sum the currents at the node pointed to by V_{1} in the above drawing gives the following expression
$\frac{\mathrm{V}_{1}}{2}+\frac{\mathrm{V}_{1}-6}{3}=-3$
Note that we used the + sign for currents coming out of the node. Solving for V_{y} gives V :
$\mathrm{V}_{\mathrm{y}}=\mathrm{V}_{1}-6=-7.2$ volts or $\mathrm{V}_{1}=-1.2$ volts. The correct answer is (e).

Alternatively, this problem could have been solved by superposition

Since the 4Ω resistor is shorted out by the 6 volt source in the circuit on the left we can solve for the loop current as
$\mathrm{i}_{1}=\frac{2}{2+3}(3 \mathrm{~A})=1.2 \mathrm{~A}$
The voltage across the 3Ω resistor is then
$\mathrm{V}_{1}=-\left(\frac{6}{5} \mathrm{~A}\right)(3 \Omega)=-\frac{18}{5} \mathrm{~A}$
Examing the right hand circuit we can solve for the current i_{2} as
$\mathrm{i}_{2}=\frac{6 \mathrm{~V}}{5 \Omega}=\frac{6}{5} \mathrm{~A}$
The voltage across the 3Ω resistor is then given by
$\mathrm{V}_{2}=-\left(\frac{6}{5} \mathrm{~A}\right) 3 \Omega=-\frac{18}{5}$ volts
$V y$ is then the sum of the voltages across the 3Ω resistor, i.e.
$V_{y}=V_{1}+V_{2}=-\frac{18}{5}-\frac{18}{5}=-\frac{36}{5}=-7.2$ volts

CIRCUITS 2

The voltage V_{x} is closest to
(a) 16 volts
(b) 8 volts
(c) 3.55 volts
(d) 6.42 volts
(e) 4.65 volts

Solution:
Using current division the current through the 8Ω resistor is
$\mathrm{i}_{8 \Omega}=2 \times \frac{4}{4+(6+8)}=\frac{8}{18} \mathrm{Amps}$
The voltage across the 8Ω resistor is then given by Ohm's Law as
$\mathrm{V}_{\mathrm{x}}=\mathrm{i}_{8 \Omega} \times 8 \Omega=\frac{8}{18} \times 8=\frac{64}{18}=3.55$ Volts
The correct answer is (c).

CIRCUITS 10

The Thevenin equivalent at terminals a-b is closest to
(a) $\mathrm{V}_{\mathrm{T}}=5.33$ volts, $\mathrm{R}_{\mathrm{T}}=5 \Omega$
(b) $\mathrm{V}_{\mathrm{T}}=1.84$ volts, $\mathrm{R}_{\mathrm{T}}=4.33 \Omega$
(c) $\mathrm{V}_{\mathrm{T}}=1.84$ volts, $\mathrm{R}_{\mathrm{T}}=5 \Omega$
(d) $\mathrm{V}_{\mathrm{T}}=5.33$ volts, $\mathrm{R}_{\mathrm{T}}=4.33 \Omega$
(e) $\mathrm{V}_{\mathrm{T}}=2.67$ volts, $\mathrm{R}_{\mathrm{T}}=4.33 \Omega$

Solution:
V_{T} is the open-circuit voltage from terminals $\mathrm{a}-\mathrm{b}$. The open circuit voltage at a-b is given by the voltage divider relationship
$\mathrm{V}_{\mathrm{T}}=8 \times \frac{2}{2+4}=2.67$ Volts
Note that the 3Ω resistor does enter this relationship since no current flows through it if terminals $\mathrm{a}-\mathrm{b}$ are open. R_{T} is the equivalent resistance with all the sources replaced by their equivalent impedances. For a voltage source this is zero, a short, placing the 4Ω and 2Ω resistors in parallel and their resultant in series with the 3Ω resistor to give
$\mathrm{R}_{\mathrm{T}}=3+\frac{2 \times 4}{2+4}=3+\frac{8}{6}=4.33 \Omega$
The correct answer is (e).

CIRCUITS 11

The Thevenin equivalent at terminals a-b is closest to
(a) $\mathrm{V}_{\mathrm{T}}=10$ volts, $\mathrm{R}_{\mathrm{T}}=1.5 \Omega$
(b) $\mathrm{V}_{\mathrm{T}}=12$ volts, $\mathrm{R}_{\mathrm{T}}=1.0 \Omega$
(c) $\mathrm{V}_{\mathrm{T}}=12$ volts, $\mathrm{R}_{\mathrm{T}}=1.5 \Omega$
(d) $\mathrm{V}_{\mathrm{T}}=10$ volts, $\mathrm{R}_{\mathrm{T}}=1.0 \Omega$
(e) $\mathrm{V}_{\mathrm{T}}=0$ volts, $\mathrm{R}_{\mathrm{T}}=1.0 \Omega$

Solution:
Since this is a more complex circuit than the previous example we must find V_{T} indirectly by first finding the voltage V_{2} at node 2. Using KCL at node 2 gives the relationship for V_{2} as
$\frac{\mathrm{V}_{2}}{2}+\frac{\mathrm{V}_{2}-8}{2}-2=0$
where currents leaving the node are positive. Note that $\mathrm{V}_{2}-8$ is the voltage across the resistor between nodes 1 and 2 since the voltage at node 1 must be 8 volts. Solving for $V_{2}, V_{2}=6$ volts. Using KVL across the 2Ω output resistor and the 4 V voltage source we can get the voltage V_{ab} as $\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{2}+4=6+4=10$ Volts.
R_{T} is relatively easy to determine. Replacing all of the sources by their equivalent impedances, the voltage sources are replaced by shorts and the current source is replaced by an open. The 4Ω resistor is shorted out by the 8 V voltage source leaving only two 2Ω resistors in parallel. R_{T} is
$\mathrm{R}_{\mathrm{T}}=2 \| 2=\frac{2 \times 2}{2+2}=1 \Omega$ The correct answer is (d).
V_{T} could also be determined by superposition; however, there will be three components to V_{T} due to the fact that three sources are present. These contributions are shown below:

From the 8 volt source

$\mathrm{V}_{\mathrm{ab}}=+4$ volts
Redrawing the original circuit to explicitly show the 2Ω resistors in parallel as a result of the shorting out of the 4Ω resistor by the 8 V voltage source.

From the 4 volt source

From the 2A source

The resulting V_{ab} is then the sum of all the voltage contributions, i.e. $\mathrm{V}_{\mathrm{ab}}=4+4+2=10$ volts as before.

CIRCUITS 12 This is theWheatstone Bridge circuit and often appears on the exam.
The Norton equivalent at terminals $\mathrm{a}-\mathrm{b}$ is closest to
(a) $\mathrm{I}_{\mathrm{N}}=0.2 \mathrm{amps}, \mathrm{R}_{\mathrm{N}}=4 \Omega$
(b) $\mathrm{I}_{\mathrm{N}}=0.2 \mathrm{amps}, \mathrm{R}_{\mathrm{N}}=5 \Omega$
(c) $\mathrm{I}_{\mathrm{N}}=-0.5 \mathrm{amps}, \mathrm{R}_{\mathrm{N}}=4 \Omega$
(d) $\mathrm{I}_{\mathrm{N}}=0.5 \mathrm{amps}, \mathrm{R}_{\mathrm{N}}=5 \Omega$
(e) $\mathrm{I}_{\mathrm{N}}=-0.5 \mathrm{amps}, \mathrm{R}_{\mathrm{N}}=2 \Omega$

Solution:
The Norton current I_{N} is defined as the current between terminals a and b when terminals a and b are shorted together. The resulting circuit looks like a series combination of $4 \Omega \| 2 \Omega$ and $6 \Omega \| 8 \Omega$.

The total current I_{T} supplied by the 10 volt source is then
$\mathrm{I}_{\mathrm{T}}=\frac{10 \text { volts }}{\frac{4 \times 2}{4+2}+\frac{8 \times 6}{8+6}}=\frac{10 \text { volts }}{\frac{8}{6} \Omega+\frac{48}{14} \Omega}=2.1 \mathrm{Amps}$
Using the current divider relationship the current i_{1} through the 4Ω resistor and the current i_{2} through the 6Ω resistor can be calculated as
$\mathrm{i}_{1}=2.1 \mathrm{Amps} \times \frac{2}{4+2}=0.7 \mathrm{Amps}$
and
$\mathrm{i}_{2}=2.1 \mathrm{Amps} \times \frac{8}{6+8}=1.2 \mathrm{Amps}$
The Norton current I_{N} can then be found by applying KCL to node a
$\mathrm{i}_{\mathrm{N}}=\mathrm{i}_{1}-\mathrm{i}_{2}=0.7 \mathrm{Amps}-1.2 \mathrm{Amps}=-0.5 \mathrm{Amps}$
R_{N} is relatively easy to determine. Replacing the voltage source by a short we are now facing the circuit shown below with a $4 \Omega \| 6 \Omega$ combination in series with the $2 \Omega \| 8 \Omega$ combination.

The resulting resistance is then
$\mathrm{R}_{\mathrm{N}}=\frac{4 \times 6}{4+6}+\frac{8 \times 2}{8+2}=4.0 \Omega$
The correct answer is (c).
I_{N} could alsobe determined by finding the Thevenin equivalent and converting it to a Norton equivalent. The 4Ω and 6Ω resistors form a voltage divider at terminal a. The voltage at terminal a is then
$\mathrm{V}_{\mathrm{a}}=\frac{6}{4+6}(10$ volts $)=6$ volts
The voltage at terminal b can be found in a similar manner
$\mathrm{V}_{\mathrm{b}}=\frac{8}{2+8}(10$ volts $)=8$ volts
The Thevenin voltage is the voltage difference between a and b.
$\mathrm{V}_{\mathrm{T}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=6-8=-2$ volts
The Thevenin resistance R_{T} is found by shorting the voltage source and computing the resistance between terminals a and b as shown below

$\mathrm{R}_{\mathrm{T}}=\frac{4 \times 6}{4+6}+\frac{2 \times 8}{2+8}=2.4+1.6=4.0 \Omega$
Note that $\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{\mathrm{N}}$ and that V_{T} and I_{N} satisify Ohm's Law
$\mathrm{I}_{\mathrm{N}}=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{R}_{\mathrm{T}}}=\frac{-2 \text { volts }}{4 \Omega}=-0.5 \mathrm{Amps}$
Problem 47-3 A 240 volt motor requiring 2000 watts is located 1 km from a power source. What minimum copper wire diameter is to be used if the power loss is to be kept less than 5% ?

Several assumptions are used in this problem: (1) the voltage at the line input is 240 volts, not at the motor; (2) that the 2000 watts are required by the motor, not at the input.

The power loss due to the resistors is $0.05 \times 2000=100$ watts. The total power consumed by the circuit is then $\mathrm{P}=\mathrm{VI}=(240$ volts $) \mathrm{I}=2100$ watts
Solving for I gives $\mathrm{I}=8.75 \mathrm{amps}$. We can now use this current to find the wire resistance.
$P=I^{2} R=(8.75)^{2} R=100$ watts or $R=1.306 \Omega$. Remember that this is the total resistance of the wire. Calculating the wire resistance using the total wire distance of 2 km we can solve for the diameter of the wire.
$\mathrm{R}=\frac{\rho \mathrm{l}}{\mathrm{A}}=\frac{\rho \mathrm{l}}{\pi\left(\frac{\mathrm{D}}{2}\right)^{2}}=\frac{\left(0.6788 \times 10^{-6} \frac{\Omega-\mathrm{in}^{2}}{\mathrm{in}}\right)\left(2 \mathrm{~km} \times 3281 \frac{\mathrm{ft}}{\mathrm{km}} \times 12 \frac{\mathrm{in}}{\mathrm{ft}}\right)}{\pi\left(\frac{\mathrm{D}}{2}\right)^{2}}=1.306 \Omega \quad \begin{aligned} & \text { or } \mathrm{D}=0.228 \text { inches }\end{aligned}$

CIRCUITS 13

When solving for i_{X} using superposition, the contribution due to the 6 V source is
(a) -0.24 amps
(b) 0.24 amps
(c) 0 amps
(d) 0.72 amps
(e) -0.72 amps

Solution:
To find the contribution from the 6 V source, we replace the 2 amp source by an open circuit and the 10 volt source by a short. Redrawing the circuit to show the 6 V source circuit a little more clearly

The total current i due to the 6 V source is given as $i=\frac{6 \text { volts }}{5+4 \| 2+2}=\frac{6 \text { volts }}{5+\frac{4 \times 2}{4+2}+2}=\frac{18}{25}=0.72 \mathrm{amps}$
The fraction of this current flowing through the 4Ω resistor is given by a current divider $\mathrm{i}_{\mathrm{X}}=-\frac{2}{2+4}(0.72 \mathrm{amps})=-0.24 \mathrm{amps}$
Note the use of the minus sign since I defined ito be in the opposite direction to i_{X}.
The correct answer is (a).
Problem 47-15 Three cascaded amplifier stages have amplifications of $100 \mathrm{db}, 25 \mathrm{db}$ and 9 db . What is the overall amplification?

The gain relationships can be written as
$100 \mathrm{db}=20 \log \left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{\text {in }}}\right)=20 \log \mathrm{~V}_{1}-20 \log \mathrm{~V}_{\text {in }}$
$25 \mathrm{db}=20 \log \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)=20 \log \mathrm{~V}_{2}-20 \log \mathrm{~V}_{1}$
$9 \mathrm{db}=20 \log \left(\frac{\mathrm{~V}_{\text {out }}}{\mathrm{V}_{2}}\right)=20 \log \mathrm{~V}_{\text {out }}-20 \log \mathrm{~V}_{2}$
and can be combined by adding the right and left hand sides of the above expressions
$134 \mathrm{db}=20 \log \left(\frac{\mathrm{~V}_{\text {out }}}{\mathrm{V}_{\text {in }}}\right)=20 \log \mathrm{~V}_{\text {out }}-20 \log \mathrm{~V}_{\text {in }}$

