

Location of Closed Bundles in an Optical Nerve

Using Boundary Tracking of a Digital Image
 David Young

Department of Electrical Engineering and Computer Science,
Case Western Reserve University, Cleveland, OH, Email: dly@cwru.edu

Abstract
This paper presents an application of image segmentation
to locate and count individual nerve bundles from the opti-
cal nerve of mice. Automated image processing techniques
such as color-space manipulation, histogram analysis, and
boundary definition are used to reach the solution. To fur-
ther increase the accuracy of the algorithm, minimal input
is required from the user to allow the program to automati-
cally set parameters.

KEYWORDS
Image processing, image segmentation, histogram, binary
image, nerve bundles

INTRODUCTION
The task of counting bundles in an optical nerve is not only
a tedious task, but one that must be executed by a person
who is knowledgeable in the field to recognize a legitimate
bundle as opposed to noise or background. It makes sense
that a program is therefore able to help alleviate the lab
staff’s workload and expedite the time it takes to achieve
an accurate bundle count. However, an automated system
that efficiently recognizes bundles is difficult to realize for
the same reasons a trained technician is required for man-
ual counting. While the images are of reasonable resolu-
tion, they have very low contrast and bundles vary indi-
vidually in both shape and size. Additionally, the area in-
side a bundle can appear homogeneous with the areas be-
tween the bundles. Bundle counts completed by two dif-
ferent technicians can even produce conflicting data. An
example of a full optical nerve is shown below in Figure 1.

Figure 1 – Image of a full optical nerve.

Due to the ambiguities related to the problem, an accept-
able accuracy from the program will be defined as +/-15%
from an expert’s count.
Boundary following is a method widely used for image
representation applications. The Moore Boundary Track-
ing Algorithm [1968] outlines a reliable method for defin-
ing boundaries in an image. To ensure simplicity of the
process, the algorithm can only be run on binary images.
The five basic steps below complete the algorithm, and are
illustrated by Figure 2.

1. Let the starting point, b0, be located in the upper-
left pixel of the binary image of value 1. C0 is de-
fined by the neighbor directly to the left of b0, and
must be of value 0 (Figure 2b). Moving from c0 in
a clockwise direction find the next pixel of value 1
and define it as b1 and the pixel preceding it as c1.
[1]

2. Let b=b1 and c=c1 (Figure 2c).[1]
3. Perform the same operation as in step 1, looking at

adjacent pixels beginning with c in a clockwise
fashion for the next location of value 1.[1]

4. Name the next pixel b, and the pixel preceding it
c. [1]

5. Repeat steps 3 and 4 until two conditions are met:
a. B=b0
b. After completing step 3 once more, the

next pixel is found to be b1.[1]

Figure 2 [1] - Illustration of the Moore Boundary Tracking
Algorithm. [book]

It is important to note the dependence on step 5 for univer-
sal operation. This last step prevents “spurs” from being
recorded as complete boundaries [2]. Spurs are small tan-
gents of a larger boundary. An example of the significance
of step 5 is illustrated in Figure 3[1]. Without the qualifier
for verifying the location of b1, the image on the left of
Figure 3 would be improperly characterized. While it
would find the first two points easily, as shown in the mid-
dle image, the image on the right would consider the
boundary complete without checking against b1. When
step 5 is incorporated, the algorithm would understand the
right side of Figure 3 as a “spur” and decide to traverse the
lower part of the object [2].

Figure 3[1] – Note the smaller boundary that would be

defined if step 5 was not included in the algorithm.

A notable benefit to using boundary following over other
image segmentation operations (i.e. the watershed algo-
rithm) is the allowance for recognition of boundaries
within boundaries. This is especially important for the
images related to this paper because distinguishing the in-
side and outside of boundaries is often difficult. This char-
acteristic makes it possible for algorithms to recognize an
empty area surrounded by bundles as a false-bundle. This
error is rarely seen and thus acceptable. However, it is
possible for a significant number of bundles to be present
as an “island” inside of the “false-boundary.” Because
boundary following searches for boundaries within
boundaries, these extra bundles would still be counted.
However, the watershed operation would fail to identify the
bundles within false-bundles, dramatically increasing inac-
curacies. This point is illustrated below in Figure 4.

Figure 4 – The false boundary is highlighted in red; the
true boundaries inside of the false boundaries are high-

lighted in green.

This additional benefit of increased accuracy does not
come without a cost. The boundary following operation is
much more computationally intensive than the watershed
method. However, in this biological application the opti-
mization of accuracy is preferred over time-course of
analyses; thus, the boundary following method is imple-
mented.

DEVELOPMENT OF THE PROGRAM
Figure 5 shows an excellent example of the type of image
that must be processed to determine a final bundle count.

Figure5– Note the low contrast, random shapes, and color
similarities between the inside and outside of each bundle.

The first challenge of the program was to implement a
meaningful application of the boundary following algo-
rithm defined in the previous section. Fortunately,
MATLAB has a built-in function in the Image Processing
Toolbox that implements Moore’s Algorithm called
‘bwboundaries’.[3]

However straightforward the implementation of the bound-
ary following application may be, getting the image to a

point that will allow accurate execution of the bwbounda-
ries function creates a challenge. The image shown in Fig-
ure 5 must be converted to a binary image that accurately
defines the boundaries. Additionally, the program must be
able to accommodate images that may have different con-
trast, brightness, or resolution than the one shown in Figure
5.

A complicated and computationally intensive method such
as edge detection could be selected to convert the color
image to binary. However, the information in the image is
simple and somewhat underdefined by the lack of contrast
and similar boundary intensity. Therefore a thresholding
operation would prove to be more efficient without sacri-
ficing conversion quality or edge definition.

Any function that requires parameterization to operate cor-
rectly carries with it the difficulty of setting the correct
parameters. Image variety introduces the highest level of
error when attempting to create a binary image with an
intensity threshold.

The preferred method to determine the optimum threshold
intensity is by creating a histogram of the image. The
threshold is then set at the peak intensity level of the histo-
gram for images such as the optical nerve in Figure 5. The
histogram that relates to a grayscale version of Figure 5 is
shown below as Figure 6.

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

7000

8000

Figure 6 – Histogram of the image shown in Figure 5.

The ultimate goal stated in the introduction is to optimize
for count accuracy. Two situations can arise to skew re-
sults based on a binary image created from a single thresh-
old parameter for all images. Firstly, there may be sec-
tions of the image that are not representative of the optical
nerve, such as a border on the image, creating errors in the
histogram. Secondly, the threshold set at the peak of the
image may be good, but may not be the optimal intensity
level at which to create a binary image.

To overcome these two hurdles and get the highest accu-
racy possible, the user is requested to make two selections
interactively. First, the user is directed to select a small
area of bundles representative of the image. A histogram
is performed on the small image to find its peak. The bi-
nary image is then created using twelve threshold levels
close to the peak value on the histogram. A brief analysis
of the ‘bwboundaries’ function is completed on the small
selected area utilizing twelve different binary images. The
boundaries are displayed over the original small image sec-
tion to allow the user to easily define the best outcome.
The user is then asked to select the image which represents
the optimal threshold level for that particular image. A
sample of the twelve different options is shown below in
Figure 7.

Image #1 Image #2 Image #3 Image #4

Image #5 Image #6 Image #7 Image #8

Image #9 Image #10 Image #11 Image #12

Figure 7 – Note the precision gained by having the user
help the program select the optimal threshold level.

The two user input steps above allow for the histogram-
based threshold to be set at the optimal level for each im-
age. Although this increases the algorithm’s ability to ac-
curately count the bundles in a variety of images, it does
move away from the goal of minimizing user input. How-
ever, the program is written to have all user input com-
pleted at the beginning of the program’s operations. All
calculations needed for the user input are based on small
versions of the image, ensuring that the user does not have
to wait for the computer to process what could be a very
large image. Regardless of the image size, the user can
select the file to be analyzed, define the representative area
and the optimal threshold in less than one minute. The
additional user input was deemed insignificant by the au-
thor compared to the increase in accuracy.

With the optimal threshold set by the computer’s histogram
and the image-based selection made by the user, the ‘be-
boundaries’ function can be invoked to apply boundaries to
the entire image. The ‘bwboundaries’ function only re-
quires an input of the binary image, but has 4 outputs: B, L,
N, and A.

B is a P-by-1 cell array, where P is the number of objects
and holes. Each cell contains a Q-by-2 matrix, where Q is
the number of boundary pixels for the corresponding re-
gion. Each row of these Q-by-2 matrices contains the row
and column coordinates of a boundary pixel. The coordi-
nates are ordered in a clockwise direction [3]. L is a two-
dimensional array of nonnegative integers that represent
contiguous regions [3]. N is defined by the number of ob-
jects found and A is an adjacency matrix. A represents the
parent-child-hole dependencies [3].

To find, record, and plot all of the boundaries, all 4 outputs
of the function are required. The program is able to locate
all boundaries as well as denote the parent/child classifica-
tion in variables.

The final step is to plot the boundaries directly over the
original image is used to give the best possible graphical
output to accompany the bundle count. This allows the
technician to review the results for potential errors and in-
accuracies.

RESULTS AND DISCUSSION
To continue with the processing of the image used in fig-
ures 5, 6, and 7, the program was allowed to complete the
processing. Image number 7 was selected to determine the
thresholding parameters. The total bundle count came to
476, and the output image is shown below in Figure 8.

Figure 8 – Output image shown side-by-side with original
image to verify the executed operations. Note the child
boundaries that are highlighted in green. Final bundle
count was 476.

The accuracy of the results of various images are depend-
ant on the image as well as the input provided by the user.
To evaluate the effectiveness of the program, “golden sam-
ples” were created by asking a doctor to identify bundles.
There were 6 samples examined by both the doctor and the
program.
Figure 9 below represents a processed image with very
accurate results. For repeatability, image 11 was selected
by the user causing the program to determine the threshold

value of thresh=0.5184. The results were 97% accurate
when compared to the golden sample, and Figure 9 shows
the correlation between counted boundaries and bundle
edges. The only visible error is seen in the lower-left sec-
tion on the border of the image.

Figure 9 – Program output from analysis of sample4.tif
with 97% accuracy.

Allowing the user to select the histogram characterization
area proved to be valuable when examining the sample
shown in Figure 10. The left side of the image was devoid
of any bundles, and would skew the histogram analysis
because it was of a single intensity. The user was able to
select the area with only bundles to create a threshold level
that provided more accurate results. The final count lo-
cated 85% of the bundles identified by the doctor.

Figure 10 – Result from bundle count of sample6.tif analy-
sis. Accurate count (85%) despite a large section of the
image that has no bundles.

One instance where the algorithm did not yield good results
is shown in Figure 11. This shows the specific weakness
of processing images that do not have many bundles. Fur-
thermore, the fact that the image had very few full bundles
viewed made this image less representative of what would
be expected to be found in a full image. The final count
from processing this image was 240% of the doctor’s
count.

Figure 11 – Result from Sample2.tif analysis. An example
of poor accuracy (240%) due to the small number of bun-

dles and the close-zoom of the image area.

An example of an image that acheived reasonable results is
shown in Figure 12. In this case, there were a few in-
stances of visible errors. The areas highlighted in green
appear to be false-bundles that had been recognized and
counted. While unfortunate, results within 15% of a doc-
tor’s estimate were still acceptable.

Figure 12 – Analysis of Sample5.tif with a total count
115% of the doctor’s count. Note the false bundles in

green.

An example of the program being able to handle an image
of different contrast is shown below in Figure 13. Sam-
ple1.tif resulted in finding 85% of the bundles found by the
doctor. Clearly this image is much darker than the others,
which showed the effectiveness of the histogram analysis
as a means of setting thresholds.

Figure 13 – Sample1.tif was analyzed with 85% accuracy.

The final golden sample named sample3.tif counted 115%
of what the doctor counted and is shown in Figure 14.
Many of these erroneous tallies were a result of partial bun-
dles and partial empty spaces on the border of the image.
While this error would not be accounted for in the pro-
gram, an image with a higher bundle-to-border perimeter
ratio, such as the one shown in Figure 5, would minimize

these errors.

Figure 14 – 15% more bundles were counted compared to

the doctor’s count. Most errors are found to be due to
lines at the border.

Table 1 summarizes the results and the related parameters.
The Sample # column refers to the image sample number.
The Image # column refers to the user-selected image.
Threshold is the variable ‘thresh’ which was set by the his-
togram peak and the user selection. Doc count gives the
total count as tallied by the doctor. Prog Count gives the
total count found by the program.

Sample # Image # Threshold Doc Count Prog Count % of Doc

1 8 0.2475 40 34 85%

2 9 0.7753 5 12 240%

3 9 0.6152 32 37 116%

4 11 0.5184 36 35 97%

5 7 0.4267 13 15 115%

Table 1 – A compilation of a doctor’s count totals com-
pared to the program’s count totals of the golden samples.

SUMMARY

While the program is not as accurate as human analysis, it
is clear that there are circumstances in which it can be used
with acceptable accuracy (i.e. 85%) to execute a count in
images that have a large number of bundles.

ACKNOWLEDGMENTS
This work was done in partial fulfillment of EECS 490,
Digital Image Processing at Case Western Reserve Univer-
sity, Cleveland, Ohio. Course funding was provided by
Keithley Instruments, Cleveland, Ohio.

REFERENCES
[1] R. Gonzolez and R. Woods, "Digital Image Proc-

essing", 3rd ed. vol. 3, M. McDonald, Ed. New
Jersey: Pearson Prentice Hall, 2008, pp. 795-798.

[2] Francis Merat, "Lecture 23," Proceedings from

lecture 23 from the Fall 2007 EECS490 lecture
series on Digital Image Processing, pp. 5-6, 2007.

[3] The Math Works. (2007). Image Processing Tool-

box – bwboundaries. The Math Works, Natick,
MA. [Online]. Available:
http://www.mathworks.com/access/helpdesk/help/
tool-
box/images/index.html?/access/helpdesk/help/tool
box/images/bwboundaries.html

