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Abstract 
This paper presents an application of image segmentation 
to locate and count individual nerve bundles from the opti-
cal nerve of mice.  Automated image processing techniques 
such as color-space manipulation, histogram analysis, and 
boundary definition are used to reach the solution.  To fur-
ther increase the accuracy of the algorithm, minimal input 
is required from the user to allow the program to automati-
cally set parameters.   
 
KEYWORDS 
Image processing, image segmentation, histogram, binary 
image, nerve bundles 

INTRODUCTION 
The task of counting bundles in an optical nerve is not only 
a tedious task, but one that must be executed by a person 
who is knowledgeable in the field to recognize a legitimate 
bundle as opposed to noise or background.  It makes sense 
that a program is therefore able to help alleviate the lab 
staff’s workload and expedite the time it takes to achieve 
an accurate bundle count.  However, an automated system 
that efficiently recognizes bundles is difficult to realize for 
the same reasons a trained technician is required for man-
ual counting.  While the images are of reasonable resolu-
tion, they have very low contrast and bundles vary indi-
vidually in both shape and size.  Additionally, the area in-
side a bundle can appear homogeneous with the areas be-
tween the bundles.  Bundle counts completed by two dif-
ferent technicians can even produce conflicting data.  An 
example of a full optical nerve is shown below in Figure 1. 

 
Figure 1 – Image of a full optical nerve. 

 
Due to the ambiguities related to the problem, an accept-
able accuracy from the program will be defined as +/-15% 
from an expert’s count.  
Boundary following is a method widely used for image 
representation applications.  The Moore Boundary Track-
ing Algorithm [1968] outlines a reliable method for defin-
ing boundaries in an image.  To ensure simplicity of the 
process, the algorithm can only be run on binary images.  
The five basic steps below complete the algorithm, and are 
illustrated by Figure 2. 

1. Let the starting point, b0, be located in the upper-
left pixel of the binary image of value 1.  C0 is de-
fined by the neighbor directly to the left of b0, and  
must be of value 0 (Figure 2b). Moving from c0 in 
a clockwise direction find the next pixel of value 1 
and define it as b1 and the pixel preceding it as c1. 
[1]  

2. Let b=b1 and c=c1 (Figure 2c).[1] 
3. Perform the same operation as in step 1, looking at 

adjacent pixels beginning with c in a clockwise 
fashion for the next location of value 1.[1] 

4. Name the next pixel b, and the pixel preceding it 
c.  [1] 

5. Repeat steps 3 and 4 until two conditions are met: 
a. B=b0 
b. After completing step 3 once more, the 

next pixel is found to be b1.[1] 
 

 

 



Figure 2 [1] - Illustration of the Moore Boundary Tracking 
Algorithm.  [book] 

 
It is important to note the dependence on step 5 for univer-
sal operation.  This last step prevents “spurs” from being 
recorded as complete boundaries [2].  Spurs are small tan-
gents of a larger boundary.  An example of the significance 
of  step 5 is illustrated in Figure 3[1].  Without the qualifier 
for verifying the location of b1, the image on the left of 
Figure 3 would be improperly characterized.  While it 
would find the first two points easily, as shown in the mid-
dle image, the image on the right would consider the 
boundary complete without checking against b1.   When 
step 5 is incorporated, the algorithm would understand the 
right side of Figure 3 as a “spur” and decide to traverse the 
lower part of the object [2]. 

 
Figure 3[1] – Note the smaller boundary that would be 

defined if step 5 was not included in the algorithm. 
 
A notable benefit to using boundary following over other 
image segmentation operations (i.e. the watershed algo-
rithm) is the allowance for recognition of boundaries 
within boundaries.  This is especially important for the 
images related to this paper because distinguishing the in-
side and outside of boundaries is often difficult.  This char-
acteristic makes it possible for algorithms to recognize an 
empty area surrounded by bundles as a false-bundle.  This 
error is rarely seen and thus acceptable.  However, it is 
possible for a significant number of bundles to be present 
as an “island” inside of the “false-boundary.”  Because 
boundary following searches for boundaries within 
boundaries, these extra bundles would still be counted.  
However, the watershed operation would fail to identify the 
bundles within false-bundles, dramatically increasing inac-
curacies.  This point is illustrated below in Figure 4. 

 

Figure 4 – The false boundary is highlighted in red; the 
true boundaries inside of the false boundaries are high-

lighted in green. 
 
This additional benefit of increased accuracy does not 
come without a cost.  The boundary following operation is 
much more computationally intensive than the watershed 
method.  However, in this biological application the opti-
mization of accuracy is preferred over time-course of 
analyses; thus, the boundary following method is imple-
mented. 

DEVELOPMENT OF THE PROGRAM 
Figure 5 shows an excellent example of the type of image 
that must be processed to determine a final bundle count.   

 

 
Figure5– Note the low contrast, random shapes, and color 
similarities between the inside and outside of each bundle. 

 

The first challenge of the program was to implement a 
meaningful application of the boundary following algo-
rithm defined in the previous section.  Fortunately, 
MATLAB has a built-in function in the Image Processing 
Toolbox that implements Moore’s Algorithm called 
‘bwboundaries’.[3]     

However straightforward the implementation of the bound-
ary following application may be, getting the image to a 



point that will allow accurate execution of the bwbounda-
ries function creates a challenge.  The image shown in Fig-
ure 5 must be converted to a binary image that accurately 
defines the boundaries.  Additionally, the program must be 
able to accommodate images that may have different con-
trast, brightness, or resolution than the one shown in Figure 
5.   

A complicated and computationally intensive method such 
as edge detection could be selected to convert the color 
image to binary.  However, the information in the image is 
simple and somewhat underdefined by the lack of contrast 
and similar boundary intensity.  Therefore a thresholding 
operation would prove to be more efficient without sacri-
ficing conversion quality or edge definition. 

Any function that requires parameterization to operate cor-
rectly carries with it the difficulty of setting the correct 
parameters.  Image variety introduces the highest level of 
error when attempting to create a binary image with an 
intensity threshold.  

The preferred method to determine the optimum threshold 
intensity is by creating a histogram of the image.  The 
threshold is then set at the peak intensity level of the histo-
gram for images such as the optical nerve in Figure 5.  The 
histogram that relates to a grayscale version of Figure 5 is 
shown below as Figure 6. 
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Figure 6 – Histogram of the image shown in Figure 5. 

 

The ultimate goal stated in the introduction is to optimize 
for count accuracy.  Two situations can arise to skew re-
sults based on a binary image created from a single thresh-
old parameter for all images.   Firstly, there may be sec-
tions of the image that are not representative of the optical 
nerve, such as a border on the image, creating errors in the 
histogram.  Secondly, the threshold set at the peak of the 
image may be good, but may not be the optimal intensity 
level at which to create a binary image.   

To overcome these two hurdles and get the highest accu-
racy possible, the user is requested to make two selections 
interactively.  First, the user is directed to select a small 
area of bundles representative of the image.   A histogram 
is performed on the small image to find its peak.  The bi-
nary image is then created using twelve threshold levels 
close to the peak value on the histogram.  A brief analysis 
of the ‘bwboundaries’ function is completed on the small 
selected area utilizing twelve different binary images.  The 
boundaries are displayed over the original small image sec-
tion to allow the user to easily define the best outcome.  
The user is then asked to select the image which represents 
the optimal threshold level for that particular image.  A 
sample of the twelve different options is shown below in 
Figure 7. 

Image #1 Image #2 Image #3 Image #4

Image #5 Image #6 Image #7 Image #8

Image #9 Image #10 Image #11 Image #12

 
Figure 7 – Note the precision gained by having the user 
help the program select the optimal threshold level. 

 

The two user input steps above allow for the histogram-
based threshold to be set at the optimal level for each im-
age.  Although this increases the algorithm’s ability to ac-
curately count the bundles in a variety of images, it does 
move away from the goal of minimizing user input.  How-
ever, the program is written to have all user input com-
pleted at the beginning of the program’s operations.  All 
calculations needed for the user input are based on small 
versions of the image, ensuring that the user does not have 
to wait for the computer to process what could be a very 
large image.  Regardless of the image size, the user can 
select the file to be analyzed, define the representative area 
and the optimal threshold in less than one minute.  The 
additional user input was deemed insignificant by the au-
thor compared to the increase in accuracy. 

With the optimal threshold set by the computer’s histogram 
and the image-based selection made by the user, the ‘be-
boundaries’ function can be invoked to apply boundaries to 
the entire image.  The ‘bwboundaries’ function only re-
quires an input of the binary image, but has 4 outputs: B, L, 
N, and A.   



B is a P-by-1 cell array, where P is the number of objects 
and holes. Each cell contains a Q-by-2 matrix, where Q is 
the number of boundary pixels for the corresponding re-
gion. Each row of these Q-by-2 matrices contains the row 
and column coordinates of a boundary pixel.   The coordi-
nates are ordered in a clockwise direction [3].  L is a two-
dimensional array of nonnegative integers that represent 
contiguous regions [3].  N is defined by the number of ob-
jects found and A is an adjacency matrix.  A represents the 
parent-child-hole dependencies [3].   

To find, record, and plot all of the boundaries, all 4 outputs 
of the function are required.  The program is able to locate 
all boundaries as well as denote the parent/child classifica-
tion in variables. 

The final step is to plot the boundaries directly over the 
original image is used to give the best possible graphical 
output to accompany the bundle count.  This allows the 
technician to review the results for potential errors and in-
accuracies. 

 
RESULTS AND DISCUSSION 
To continue with the processing of the image used in fig-
ures 5, 6, and 7, the program was allowed to complete the 
processing.  Image number 7 was selected to determine the 
thresholding parameters.  The total bundle count came to 
476, and the output image is shown below in Figure 8. 

 
Figure 8 – Output image shown side-by-side with original 
image to verify the executed operations.  Note the child 
boundaries that are highlighted in green.  Final bundle 
count was 476. 
 
The accuracy of the results of various images are depend-
ant on the image as well as the input provided by the user.  
To evaluate the effectiveness of the program, “golden sam-
ples” were created by asking a doctor to identify bundles.  
There were 6 samples examined by both the doctor and the 
program.   
Figure 9 below represents a processed image with very 
accurate results.  For repeatability, image 11 was selected 
by the user causing the program to determine the threshold 

value of thresh=0.5184.    The results were 97% accurate 
when compared to the golden sample, and Figure 9 shows 
the correlation between counted boundaries and bundle 
edges.  The only visible error is seen in the lower-left sec-
tion on the border of the image.   

 
Figure 9 – Program output from analysis of sample4.tif 
with 97% accuracy. 
 
Allowing the user to select the histogram characterization 
area proved to be valuable when examining the sample 
shown in Figure 10.  The left side of the image was devoid 
of any bundles, and would skew the histogram analysis 
because it was of a single intensity.  The user was able to 
select the area with only bundles to create a threshold level 
that provided more accurate results.  The final count lo-
cated 85% of the bundles identified by the doctor. 

 
Figure 10 – Result from bundle count of sample6.tif analy-
sis.  Accurate count (85%) despite a large section of the 
image that has no bundles. 
 
One instance where the algorithm did not yield good results 
is shown in Figure 11.  This shows the specific weakness 
of processing images that do not have many bundles.  Fur-
thermore, the fact that the image had very few full bundles 
viewed made this image less representative of what would 
be expected to be found in a full image.  The final count 
from processing this image was 240% of the doctor’s 
count. 

 



Figure 11 – Result from Sample2.tif analysis.  An example 
of poor accuracy (240%) due to the small number of bun-

dles and the close-zoom of the image area. 
 
An example of an image that acheived reasonable results is 
shown in Figure 12.  In this case, there were a few in-
stances of visible errors.  The areas highlighted in green 
appear to be false-bundles that had been recognized and 
counted.  While unfortunate, results within 15% of a doc-
tor’s estimate were still acceptable. 

 
Figure 12 – Analysis of Sample5.tif with a total count 
115% of the doctor’s count.  Note the false bundles in 

green. 
 
An example of the program being able to handle an image 
of different contrast is shown below in Figure 13.  Sam-
ple1.tif resulted in finding 85% of the bundles found by the 
doctor.  Clearly this image is much darker than the others, 
which showed the effectiveness of the histogram analysis 
as a means of setting thresholds.   

 
Figure 13 – Sample1.tif was analyzed with 85% accuracy. 
 
The final golden sample named sample3.tif counted 115% 
of what the doctor counted and is shown in Figure 14.  
Many of these erroneous tallies were a result of partial bun-
dles and partial empty spaces on the border of the image.  
While this error would not be accounted for in the pro-
gram, an image with a higher bundle-to-border perimeter 
ratio, such as the one shown in Figure 5, would minimize 

these errors.  

 
Figure 14 – 15% more bundles were counted compared to 

the  doctor’s count.  Most errors are found to be due to 
lines at the border. 

 
Table 1 summarizes the results and the related parameters.  
The Sample # column refers to the image sample number.  
The Image # column refers to the user-selected image.  
Threshold is the variable ‘thresh’ which was set by the his-
togram peak and the user selection.  Doc count gives the 
total count as tallied by the doctor.  Prog Count gives the 
total count found by the program.  
 

Sample # Image # Threshold Doc Count Prog Count % of Doc 

1 8 0.2475 40 34 85%

2 9 0.7753 5 12 240%

3 9 0.6152 32 37 116%

4 11 0.5184 36 35 97%

5 7 0.4267 13 15 115%

Table 1 – A compilation of a doctor’s count totals com-
pared to the program’s count totals of the golden samples. 

 

SUMMARY 
 
While the program is not as accurate as human analysis, it 
is clear that there are circumstances in which it can be used 
with acceptable accuracy (i.e. 85%) to execute a count in 
images that have a large number of bundles.   
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