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Abstract 
This paper presents an algorithm for the automated count-
ing of axons in microscope images of cross-sections of the 
optic nerve. The approach uses a hole-filling algorithm to 
identify closed bundles in the image. Six images in which 
axons were labeled by a trained observer (TO) were used as 
test data for the algorithm. Results show that the algorithm 
counted the axons with an average relative error (n=5) of 
(34±11) %. This error is far too large for the algorithm to 
be useful at present. It is believed however that this error is 
due primarily to the image segmentation method used, and 
that the algorithm could be improved with some modifica-
tions to increase performance.  
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INTRODUCTION 
The ability to accurately count the number of axons in a 
cross-sectional microscope image of the optic nerve may 
serve as a method by which to quantify the number of rods 
and cones present on the retina. Manually counting the 
axons in such an image, and especially in large sets of such 
images, would prove to be an overwhelming task. A fully 
automated method which could reliably count the axons in 
such an image would allow for large data sets to be quickly 
analyzed. 
Commercial software for histological evaluation is availa-
ble (e.g., BioQuant). However, the purpose here was to 
develop an algorithm customized to the specific application 
presented above. The goal was to develop an approach 
which is specific to the types of data available for such re-
search so as to optimize the ability to quantify such images. 
The problem of axon counting is really one of segmenta-
tion. The ideal algorithm would count every axon in the 
image while correctly rejecting extracellular space. The 
difficulty in accomplishing such a task lies in the low con-
trast between the interiors of axons and the space between 
axons (see Figure 1 below). There is, however, a good deal 
of contrast in such images between the borders of axons 
and the rest of the image (i.e. both the regions inside of 
axons and between axons). It is for this reason that the 
scope of the problem was narrowed to correctly labeling 
only axons which are completely contained within the im-
age. Thus, the axon borders could be segmented and under 

this construct, an axon could be viewed as a closed object 
completely contained within the image. 
This definition of an axon is not sufficient for segmenta-
tion, as it is quite probable that extracellular space exists 
within the image as a closed object. Methods for distin-
guishing such regions are proposed in the discussion that 
will follow. However, it was believed that a good deal of 
extracellular space could be correctly rejected by the appli-
cation of a hole-filling morphological algorithm. Such an 
algorithm is normally used to fill holes in an image, as the 
name would suggest. However, in order to accomplish this, 
the holes themselves must be identified. By applying a 
hole-filling algorithm and considering not the filled image 
which is normally desired, but rather the holes as calculated 
by such an algorithm, one can isolate all of the closed ob-
jects contained within an image. 
The approach of this work was to study whether or not such 
a design would produce good results, as compared to the 
axon counts supplied by a trained observer. Additionally, 
the question of whether or not such an approach is plausi-
ble, despite the results obtained, was posed and discussed. 
 
IMPLEMENTATION 
The basic idea of the algorithm was to use a hole-filling 
morphological process [1] to identify and count closed 
bundles in the image. Some pre-processing of the image 
was required to provide a suitable format for this approach 
(a segmented binary image.) Additionally, some post-
processing was used to remove small bridges between ob-
jects, merge objects in close proximity to one another, and 
shrink objects to single points to identify the location and 
number of objects. The images used were supplied in the 
tagged image file format (.tiff). The algorithm was imple-
mented using MATLAB. 
The basic outline of the algorithm is as follows: (1) import 
the .tiff  input file into the workspace; (2) translate the im-
age to grayscale; (3) adjust image contrast to span full 0-
255 range; (4) use Otsu’s Method [2] to optimally threshold 
the image; (5) apply morphological hole-filling algorithm 
to identify closed objects in the image; (6) perform a mor-
phological erosion to remove small bridges which may 
connect adjacent closed objects; (7)  morphologically 
shrink the image to reduce closed objects to single points 
(or rings in the case of closed objects with interior black 
pixels); (8) perform  morphological closing of the image to 
merge objects that are located within close proximity of 
one another; (9) Reduce rings to single points by perform-



ing a morphological dilation to widen the single-pixel thick 
ring borders, applying the hole-filling algorithm to fill in 
the rings, and then morphologically shrinking the image  to 
reduce rings to single points; (10) Count the points in the 
image to yield a cell count; (11) Label the original input 
image with the locations of the closed objects 
Many of these steps were performed using functions pro-
vided in the MATLAB Image Processing Toolbox, such as 
imerode, imclose, imdilate, and bwmorph. Otsu’s Method 
and the hole-filling algorithm were implemented by the 
author.  The full source code for the algorithm is available 
in Appendix A. 
 
TESTING 
Given that the algorithm was designed to label only closed 
objects contained completely within the borders of the im-
age, it was understood that axons which crossed the image 
border would not be recognized. Each result of the algo-
rithm was therefore compared only to the number of axons 
counted by the TO which did not intersect the borders of 
the image (hereafter referred to as a standard count (SC)). 
The absolute and relative errors between the algorithm 
axon count (AC) and the SC were calculated for each of the 
six images (except one image in which the SC was zero and 
the relative error could not be computed.)  The mean and 
standard deviation of the relative errors was then computed. 
 
RESULTS AND DISCUSSION 
Each of six images of the cross-section of an optic nerve 
was processed using the algorithm described above. The 
results were examined visually to ensure that the algorithm 
did indeed label closed objects contained completely within 
the images. Each of the labeled images along with its cor-
responding TO labeled image is shown in Figure 1. Figure 
2 illustrates the performance of the algorithm on a larger 
image for which no TO labeled image was provided (and 
thus for which no analysis was performed.) 
Upon examination of Figure 1, it is clear that the algorithm 
does in fact label some of the closed objects completely 
contained within the images. Some of the closed objects, 
however, are not labeled. It is believed that this is due to 
the low contrast in the images. In the initial development of 
the algorithm, a simple thresholding scheme was used in 
which the user adjusted the threshold level until it could be 
asserted visually that a good segmentation was achieved. In 
order to automate the algorithm, this approach was replaced 
with Otsu’s Method for optimal thresholding which max-
imizes the between-class variance of the result. It is be-
lieved that this method is not sufficient to segment all of 
the closed objects. For example, in images A, C, and F it is 
clear that some of the closed objects are not labeled and 
were not segmented properly. If a better segmentation me-
thod were used, the results obtained may improve. Other 
approaches, such as fuzzy c-means classification, may per-

form better than the thresholding method that was imple-
mented.  
Another issue that has not been addressed is that of the pos-
sibility of closed extracellular space in the image. The hole-
filling approach was implemented because of its ability to 
remove extracellular space connected to the edge of the 
image and isolate only closed objects. However, if an area 
of closed extracellular space, for example, within a ring of 
axons were present in the image, this area too would be 
improperly labeled as an axon. An advanced approach 
might use other characteristics besides a closed border to 
label axons. For example, shape and size along with other 
criteria might be used for segmentation after an initial clas-
sification has been performed. 
The algorithm was never intended to count neurons which 
crossed the image border. Therefore if this approach is to 
be further developed it is suggested that after labeling the 
data a region of interest be defined which extends only to 
the labeled axons which are closest to the border. The 
number of axons per unit area could then be calculated, and 
an adjustment made to the final axon count to correct for 
the lost area in the image. Alternatively, a separate algo-
rithm could be implemented to isolate only the axons which 
cross the image border, and the two counts could then 
simply be summed.  
Values for the AC and SC of each image along with the 
errors associated with these values are shown in Table 1. 
The average relative error (n=5) was (34±11) %. The algo-
rithm is obviously not sufficiently developed for use in 
practical application. By visually examining the results, 
however, it is clear that the algorithm does have some po-
tential as it is successful in labeling closed objects. The 
idea of using a hole-filling algorithm for this particular ap-
plication is novel, but the question must be raised as to 
whether or not such an approach would offer an improve-
ment over a good segmentation algorithm. The reasoning 
behind using this approach was that it would eliminate 
extracellular space connected to the border of the image. 
However, if is eventually going to be necessary to imple-
ment other criteria for the labeling of axons, such as size 
and shape, there may be no need to worry about eliminating 
these regions as these characteristics may provide enough 
information to rule them out. If so, then using both steps in 
the same algorithm would be unnecessary and redundant. 
 
SUMMARY 
A hole-filling algorithm for the labeling and counting of 
axons in cross-sectional microscope images is presented. 
The algorithm was tested on six reference images which 
had been previously labeled by a trained observer (TO). 
The number of axons labeled by the TO is compared to the 
number labeled by the algorithm. The algorithm does not 
demonstrate adequate performance. Possible reasons for 
this are discussed, along with suggestions for future devel-
opment. 
 



 
Figure 1 The left column shows the images labeled by a TO; the 

right column shows the corresponding images labeled by the algo-
rithm; the test images will be referred to hereafter from top to 

bottom as A, B, C, D, E, and F 
 

 
Table 1 Standard counts, algorithm counts, and the absolute and 

relative errors between these values for each of the six text images 
 

 
Figure 2 A large image algorithm labeled image 
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Appendix A – Source Code 
 
Main function: 
 
PROCESS IMAGE 
 
function [input labeled_neurons cell_count] = count_neurons(name) 
  
%Read in the input file 
input = read_image(['C:\Jon\eecs 490\Midterm Project\data\' name]); 
  
%Prepare the image (translate to grayscale from RGB, threshold image using 
%optimal Otsu method) 
image = prepare_image(input); 
  
%Calculate the image dimensions for later use 
dim = size(image); 
  
%Isolate the regions of neurons inside the cell membrane and not connected 
%to the border of the image using a hole-filling morphological algorithm. 
%This process will also return extracellular regions which do not intersect 
%the border of the image 
[filled_image holes] = fill_holes(image); 
  
%Remove small bridges which may connect adjacent cells and extracellular 
%areas 
se1 = strel('disk',2); 
eroded_holes = imerode(holes, se1); 
  
%Shrink the objects returned from the hole-filling algorithm to single 
%points 
hole_locations = bwmorph(eroded_holes, 'shrink', Inf); 
  
%Combine objects found in close proximity to one another 
se2 = strel('disk', 5); 
closed_hole_locations = imclose(hole_locations, se2); 
  
%In the case of rings formed by the shrinking algorithm, fill the rings and 
%then reduce rings to single points 
blurred_closed_locations = imdilate(closed_hole_locations, se1); 
filled_image = fill_holes(~blurred_closed_locations); 
hole_locations = bwmorph(filled_image, 'shrink', Inf); 
  
%Count the number of points in the image to calculate the number of cells 
%in the image 
cell_count = sum(sum(hole_locations)); 
  
%Label the objects in the original image which were counted as cells by 
%creating a new image with red dots superimposed over the original image 
labeled_neurons = input; 
for i = 1:dim(1) 
    for j = 1:dim(2) 
        if(hole_locations(i,j)==1) 
            if(i==1) 
                k=0; 



                l=1; 
                m=1; 
                n=1; 
            elseif(i==255) 
                k=1; 
                l=0; 
                m=1; 
                n=1; 
            elseif(j==1) 
                k=1; 
                l=1; 
                m=0; 
                n=1; 
            elseif(j==255) 
                k=1; 
                l=1; 
                m=1; 
                n=0; 
            else 
                k=1; 
                l=1; 
                m=1; 
                n=1; 
            end 
            labeled_neurons(i-k:i+l,j-m:j+n,1) = 255; 
            labeled_neurons(i-k:i+l,j-m:j+n,2) = 0; 
            labeled_neurons(i-k:i+l,j-m:j+n,3) = 0; 
        end 
    end 
end 
 
Other functions: 
 
READ IMAGE 
 
function image = read_image(name) 
%EECS 490 Fall 2007 
%Jonathan Wallace 
% 
%A simple program to load image data into the workspace 
% 
%The user should not need to call this function. 
  
clc 
image = importdata(name); 
 
PREPARE IMAGE 
 
function image = prepare_image(input) 
%EECS 490 Fall 2007 
%Jonathan Wallace 
% 
%The user should not need to call this function. 
  
gray_image= rgb2gray(input); 
enhancontr = imadjust(gray_image, stretchlim(gray_image),[], 1); 



image = otsu_optimal(enhancontr); 
 
OPTIMALLY THRESHOLD IMAGE 
 
function output = otsu_optimal(input) 
%EECS 490 Fall 2007 
%Jonathan Wallace 
% 
%This function uses Otsu's method for optimal thresholding, which maximizes 
%the between-class variance of the output. The user should not have to call 
%this function. 
  
dim = size(input); 
NM = dim(1)*dim(2); 
  
%Compute the normalized histogram of the input 
H = zeros(1,256); 
for i=1:dim(1) 
    for j=1:dim(2) 
        g = input(i,j)+1; 
        H(g) = H(g)+1; 
    end 
end 
p = H./NM; 
  
%Compute the cumulative normailzed histogram 
P = zeros(1,256); 
P(1) = p(1); 
for k = 2:256 
    P(k) = P(k-1) + p(k); 
end 
  
%Compute the cumulative means m 
m = zeros(1,256); 
m(1) = 0; 
for k = 2:256 
    m(k) = (k-1)*p(k)+m(k-1); 
end 
  
%Compute the global intensity mean mg 
mg = 0; 
for k = 2:256; 
    mg = mg + (k-1)*p(k); 
end 
  
%Calculate the between-class variances 
v = zeros(1,256); 
for k = 1:256 
    if(P(k) == 0) 
        v(k) = 0; 
    else 
        v(k) = ((mg*P(k)-m(k))^2)/(P(k)*(1-P(k))); 
    end 
end 
  



%Find the maximum (or maxima) 
thresh = 0; 
maximum = 0; 
maxima = 1; 
for k = 1:256 
    if (v(k)>maximum) 
        maximum = v(k); 
        thresh = k - 1; 
        maxima = 1; 
    elseif (v(k) == maximum) 
        thresh = thresh + k - 1; 
        maxima = maxima+1; 
    end 
end 
thresh = thresh/maxima; 
  
output = (input>=thresh); 
 
FILL HOLES IN IMAGE 
 
function [filled_image holes] = fill_holes(input) 
%EECS 490 Fall 2007 
%Jonathan Wallace 
  
dim = size(input); 
I = ~input; 
Ic = input; 
F = zeros(dim(1), dim(2)); 
  
F(1, :) = ~I(1, :); 
F(dim(1), :) = ~I(dim(1), :); 
F(:, 1) = ~I(:, 1); 
F(:, dim(2)) = ~I(:, dim(2)); 
F = logical(F); 
  
H = ~imreconstruct(F, Ic); 
  
filled_image = H; 
holes = H & Ic; 
 
GENERATE FIGURE 
 
[input_1 counted_1 cell_count_1] = count_neurons('Sample_1.tif'); 
[input_2 counted_2 cell_count_2] = count_neurons('Sample_2.tif'); 
[input_3 counted_3 cell_count_3] = count_neurons('Sample_3.tif'); 
[input_4 counted_4 cell_count_4] = count_neurons('Sample_4.tif'); 
[input_5 counted_5 cell_count_5] = count_neurons('Sample_5.tif'); 
[input_6 counted_6 cell_count_6] = count_neurons('Sample_6.tif'); 
  
standard_1 = read_image('C:\Jon\eecs 490\Midterm 
Project\data\Sample_1_counted.tif'); 
standard_2 = read_image('C:\Jon\eecs 490\Midterm 
Project\data\Sample_2_counted.tif'); 
standard_3 = read_image('C:\Jon\eecs 490\Midterm 
Project\data\Sample_3_counted.tif'); 



standard_4 = read_image('C:\Jon\eecs 490\Midterm 
Project\data\Sample_4_counted.tif'); 
standard_5 = read_image('C:\Jon\eecs 490\Midterm 
Project\data\Sample_5_counted.tif'); 
standard_6 = read_image('C:\Jon\eecs 490\Midterm 
Project\data\Sample_6_counted.tif'); 
  
  
figure 
subplot(6,2,1); imshow(standard_1); 
subplot(6,2,2);imshow(counted_1); 
title('Abs Error = 13, Rel Error = 43%')  
subplot(6,2,3); imshow(standard_2); 
subplot(6,2,4);imshow(counted_2); 
title('Abs Error = 1, Rel Error = N/A') 
subplot(6,2,5); imshow(standard_3); 
subplot(6,2,6);imshow(counted_3); 
title('Abs Error = 10, Rel Error = 50%') 
subplot(6,2,7); imshow(standard_4); 
subplot(6,2,8);imshow(counted_4); 
title('Abs Error = 18, Rel Error = 25%') 
subplot(6,2,9); imshow(standard_5); 
subplot(6,2,10);imshow(counted_5); 
title('Abs Error = 2, Rel Error = 25%') 
subplot(6,2,11); imshow(standard_6); 
subplot(6,2,12);imshow(counted_6); 
title('Abs Error = 7, Rel Error = 29%') 
 
 


