
Counting the Number of Axons from Mice Optical Bundles using
Morphological Image Segmentation

 Robert Misevski
EECS 490 Mid-Term Project

Case Western Reserve University, Cleveland, OH, Email: rxm183@cwru.edu

Abstract

This paper presents the design of an application with
digital image processing algorithms in MATLAB. This
algorithm allows for this application to count the number of
axons of the optical bundle from mice, which were ob-
tained from an image. The images were supplied by Prof.
Howell at Case Western University who is researching
retinal sensing. He is looking for a way that automates the
location and counting of closed bundles of axons from the
supplied images. This application attempts to do that with
good precision. This GUI application allows a user to open
and display the image that will be counted. The application
uses default values to determine the best threshold for
processing the image (threshold is also user selectable). A
second image then displays the found axons, and a text
field displays the numeric count and processing times.

KEYWORDS
Counting Axons, Morphological Image Segmentation,
MATLAB, Auto Threshold

INTRODUCTION

Morphological Image Segmentation refers to using mor-
phological processing steps in order to separate objects in a
given image. Morphology in general is a segment of biolo-
gy that deals with the appearance of a structure. This might
include an organisms shape, structure, or pattern. Morphol-
ogy in terms of mathematics of image processing, deals
with extracting the general shape of an object that is of
interest [1]. Segmentation is the process of dividing an im-
age up into multiple regions in order to locate objects or
determine boundaries [1]. This project deals with automat-
ing the process of counting axons. The role of the axon is
to carry nerve impulses from the retinal sensors. The retinal
sensors specifically the rods and cones could not be cap-
tured since the retina is curved. Instead the optical nerve
bundle was sliced to capture the image of the axons.
Though it is not fully understood why one would need to
count or automate the counting of these axons. I can de-
duce that this is helping in some type of research, which
might someday help humans fight disease. Since there are a
high amount of similarities between mouse and human
physiology, it has made working on mice the top choice in

research. Hopefully this application can be useful in that
research.
There is much difficulty in processing these biological im-
ages, since they are typically very blurry or noisy. Another
problem is gray scale intensity and shades which very
throughout the image. Lastly the objects of interest are not
the same size and shape as each other making it very diffi-
cult to distinguish the background from the axon. With
these problems and using some other techniques in digital
image processing I have come up with an algorithm with
very good accuracy that counts the axons. I was supplied
with a variety of test images and the algorithm has done a
good job on the ones that had a good contrast ratio (not to
dark). Processing all the test images returned an average of
72% success rate of finding axons versus a trained human.

GUI AND ALGORITHM DEVELOPMENT

 The graphical user interface I developed to showcase the
algorithm using MATLAB is in Figure 1 it consists of 2
display images. Once a user selects the desired image using
the open button, that image gets displayed in the lower left
hand side of the window. The top right of this window con-
sists of the controls to find the axons. The find axon button
performs all the necessary steps in locating the axons. Then
it displays the original image with the located objects out-
lined over the original in the lower right of the window.
The GUI has several features for selecting a threshold
when converting the image to black and white. One can
enter a value between 0 and 1 or use the slide to see active
feedback. If one so chooses the GUI has an auto threshold
check boxes that calculates the best threshold for the given
image, and the then displays that in the text and slider. The
second slider located to the right of the first is used to limit
the detection size of objects (connected pixels). The area
between the two images is reserved for displaying the total
number of axons the algorithm found and how long it took
to find them in seconds. Since this project depended on a
large number of steps to eventually find and count an im-
age, the GUI design helped speed up corrections. With this
GUI I was able to use a multitude of techniques to see
which had the best results among all the images.

Figure 1. The main graphical GUI

The image I chose to demonstrate this algorithm had %100
success rate at finding all 5 axons located in Figure 2,
though the 5th one was not in the correct position as the test
image. I can argue that these test images might not be the
best gold standards to use since there are discrepancies in
what to count within an image. Some images contain par-
tial axons that are sometimes counted and sometime un-
counted. When comparing this to a computerized algo-
rithm, the computer will count all partial axons. An algo-
rithm to subtract all connected pixels that touch the boarder
could have been used but would result in very few counted
axons.

Figure 2. This is sample-2 test image that will be used

to describe the algorithm

Figure 3 shows the image sample-2 after a wiener filter was
applied, and then a histogram equalization. A wiener filter
was selected in order to remove and resident noise in the
test image. The function wiener2 uses a low pass-filter on
the image that has been degraded by constant power addi-
tive noise. Wiener2 estimates the local mean and variance
around each pixel [6]. MATLAB employees a nice func-
tion histeq, which enhances the contrast of image. It does
this by a transform that generates an image where the in-
tensity levels cover the entire range of the histogram [2].
The equation of this transform is as follows:

0

() Pr()
r

s T r w dw= = ∫ (1)

Figure 3. Sample-2 after a wiener filter to clean up any
noise and then a histogram equalization to clean up

contrast

The next step in this series is to transform the image to
black and white (binary). The first step in doing this is se-
lecting a threshold. The threshold decides what is an axon,
and what is background information. This was done using
the graythresh function, which employs the Otsu's me-
thod. [4] Otsu's method reduces the within-class variance
defined by the following equation:

σ(t) = q1(t)σ1(t) + q2(t)σ2(t) (2)

In general this algorithm does a good job in determining
how to separate the foreground from the background using
the histogram of the image.
The function im2bw converts the gray scale image to
binary image, based on a threshold input. The output image
replaces all pixels in the input image with either a one or a
zero (black or white) depending on where the luminance
falls on the scale between [0-1] [3]. The resulting black and
white transform of the test image is shown in Figure 4 As
one can see using the auto threshold produces a very good
black and white image. Now that we have the image in
black and white we need to do further processing in order
to reach our goal. As seen in Figure 4. We have a small
white spot in the top left of the image that is not an axon,
neither is the large object that takes up most of the top right
of the image. In the large object we have a black spot that
needs to be taken care of. This image doesn’t show the
problems of having black spots with in our objects.
Regardless we need to eliminate them.

Figure 4. Sample-2 converted to black and white

In Figure 5 we use the MATLAB function imfill to fill

image holes. A hole is a set of background pixels that can-
not be reached by filling in the background from the edge
of the image [7].

Figure 5. Sample-2 after all white objects have been

filled

After we cleaned up the black spots we need to eliminate
false axons produced from the black and white transforma-
tion. In Figure 6 we see using a morphological operation
we can get rid of the small errors. The one I chose was the
opening function imopen which did a good job in eliminat-
ing the small white spot. Opening is erosion followed by
dilation which can be expressed in the following equation:

{() | () }z zA B B B A° = ⊆∪ (3)

This function needs some type of structuring element
which is represented in equation (3) by B. The object is A.
Using the MATLAB function strel I created a structuring
element of a disk with size 3. This did a very good job in
deleting the small spot and smoothing the rough edges.

Figure 6. Sample-2 after an opening function which got

rid of small artifacts

The next function I used bwareaopen is designed to re-
move small objects but in this case was used to remove
large unwanted objects. This function works in finding the
connected pairs and computing the area and discarding the
unwanted objects. The resulting image in Figure 7 shows
using bwareaopen with a input from the GUI on what type
of large object to discarded. It then subtracts that from the
result of doing a bwareaopen that passes all objects. The
resulting operation produces a black and white image that
only shows the axons.

Figure 7. Sample-2 after a function that leaves perimeter

pixels of objects while subtracting larger objects

Figure 8 shows the result of Figure 7 overlaid onto the
original image using imoverlay. Now that we have found
the objects in the image is a large step, but we still have to
find a way to count those objects. The function bwlabel is
the first step. This works by labeling connected compo-
nents in binary image, which can be detailed as follows. [8]
The function goes through the binary image and finds the
connected 1’s that comprise an object. Then it assigns is a
value of 1 for the first, then 2’s for the second and so on. If
you take the max of the max of the matrix you will be left
with the last found object which tells you how many total
objects where found.

Figure 8. Sample-2 is then finally represented with an
overlay of the outlined objects onto the original image

RESULTS AND DISCUSSION

Figures 9-14 show how my algorithm stacked up against
the test images. In Figure 9 we see how the contrast of the
image made it difficult to pick up individual axon in the
middle of this image. The size limit removed the middle
section because it showed up as one large axon. Table 1
shows that the application found 53% of the axons (21/40).

Figure 9. Sample-1, My algorithm vs. human

In Figure 10 and 11 the application had better luck with
images Sample-3 and sample-4 finding (22/32) and (23/36)
about 69% and 64% accuracy. Some error is evident in the
fact some axons are grouped together being counted as one.

Figure 10. Sample-3, My algorithm vs. human

Figure 11. Sample-4, My algorithm vs. human

For the test image sample-5 in Figure 12 the algorithm had
very good luck finding (12/13) axons with an accuracy of
92%. You can even argue that it could have been 100% if
not for a human identifying an axon that is very small and
vague.

Figure 12. Sample-5, My algorithm vs. human

Test image sample-6 in Figure 13 had some trouble picking
up some of the axons. I did very well in discarding the
large portion from the left of the image. This produced 17
of 33 finds, which is 52% accuracy.

Figure 13. Sample-6, My algorithm vs. human

The original proposed image can be viewed in Figure 14
with an overlay of the axons that the algorithm found. I
have no data to compare how well the algorithm worked
when the same image was counted by a human. From a
visual stance it did seem to pick up most of the obvious
axons. Since I’m not a trained eye I done know what is a
valid axon or not. According to Table 1 the algorithm de-
termined that 255 axons were present in that image.

Figure 14. Original Axon Image, My algorithm on the

original
Figure 15 shows the large cross section that was pieced
together to form one image. MATLAB was unable to per-
form any operations on this since the image was too large,
and caused memory problems in MATLAB.

Figure 15. Large Axon Image

Table 1 lists how my algorithm stacked up against a trained
human eye in identifying axons. Table 2 lists the percent
error/success. Since every image was different in the fact
they contained a wide variety of sized objects a different
object pixel limit was required in order to eliminate some
background information. Table 3 shows what limits were
chosen for each test image. 2000 was an average number
for 5 out of 7 images. The processing time was fairly quick
with most of the test images as shown in Table 4. This was
due to the images small size. The original was a much larg-
er image and needed 1 second to complete on my PC.

Table 1. The results from 7 test images. This spread-
sheet includes the number of axons a human identified

vs. the algorithm.

Image Test Image Count Processed Image Count

Sample-1 40 21

Sample-2 5 5

Sample-3 32 22

Sample-4 36 23

Sample-5 13 12

Sample-6 33 17

Original N/A 255

Table 2. The error and success rate of finding axons vs.
a human

Image Error Success Rate

Sample-1 47.50% 52.50%

Sample-2 0.00% 100.00%

Sample-3 31.25% 68.75%

Sample-4 36.11% 63.89%

Sample-5 7.69% 92.31%

Sample-6 48.48% 51.52%

Original N/A N/A

Table 3. The pixel size limit used for each test image

Image Pixel Size Limit

Sample-1 2000

Sample-2 2000

Sample-3 2000

Sample-4 2000

Sample-5 1000

Sample-6 2000

Original 1600

Table 4. The resulting processing time for each test
image

Image Processing Time (s)

Sample-1 0.312002

Sample-2 0.296402

Sample-3 0.296402

Sample-4 0.296402

Sample-5 0.312002

Sample-6 0.296402

Original 1.01401

CONCLUSION

The purpose of this project was to create an automated way
in counting axons from the optical bundle from mice,
which were obtained from an image. The algorithm I chose
used black and white transformation with various morpho-
logical operators. One could have used a variety of other
techniques such as edge operators to tackle this problem. I
had good success with the method I chose. Since the axons
varied so much in size and shape coupled with the poor
quality of the sample images posed the most difficulty. The
other problem was the inconsistencies in what was counted
as an axon and what wasn’t. If a standard were imple-
mented to count the axons that consider a computerized
algorithm, and with better quality images the percent rate
of accuracy would have increased.

REFERENCES

[1] Rafael C. Gonzalez, Richard E. Woods, Digital

Image Processing, 3rd Edition, Prentice-Hall, Inc.,
Upper Saddle River, New Jersey, USA, 2008, pp.
627-809

[2] Rafael C. Gonzalez, Richard E. Woods, Steven L.
Eddins, Digital Image Processing using MATLAB,
Prentice-Hall, Inc., Upper Saddle River, New Jersey,
USA, 2004, pp. 170-172 and 334-48 3

[3] MATLAB HELP version 2007A The MathWorks,
Inc. 3 Apple Hill Drive Natick, MA 01760-2098
UNITED STATES

[4] N. Otsu, “A threshold selection method from
gray-level histograms,” IEEE Trans. Sys., Man.,
Cyber., vol. 9, pp. 62–66, 1979.

[5] Steven L. Eddins, Cell segmentation,
http://blogs.mathworks.com/steve/2006/06/02/cell
-segmentation/, June 2nd, 2006

 [6] Lim, Jae S., Two-Dimensional Signal and Image
 Processing, Englewood Cliffs, NJ, Prentice Hall,

1990, p. 548, equations 9.44 -- 9.46.
[7] Soille, P., Morphological Image Analysis:
 Principles and Applications, Springer-Verlag,

1999, pp. 173-174.
[8] Haralick, Robert M., and Linda G. Shapiro, Com-

puter and Robot Vision, Volume I, Addison-
Wesley, 1992, pp. 28-48.

	INTRODUCTION
	GUI AND ALGORITHM DEVELOPMENT
	CONCLUSION

