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Abstract 
This paper presents a universal algorithm designed to de-
lineate and count axioms precisely from digitized optic 
nerve cross-sections. The algorithm is designed to be used 
with any sized image and segments the work so it can be 
executed simultaneously on multiple computers and/or 
processors. With the application of filtering, histogram 
adjustments, edge detection, and size masking we are able 
to detect cellular structures in the image precisely while 
removing staining artifacts.  A simple methodology is 
demonstrated in counting cells distorted with myelin-
stained irregularities and its application to multiple samples 
in a production environment.   
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INTRODUCTION 
As medical technology advances, even minor tasks such as 
universal cell segmentation become incredibly complex.   
New scanning technologies allow us to see cross-sections 
of optic nerves in incredible detail outside a laboratory en-
vironment.  A single nerve can have an enormous amount 
of cells that can take incredibly long time to count by hand.    
With the use of computer technology, this task can be 
automated and produce results almost immediately. The 
task of mapping these nerves accurately becomes interde-
pendent on high performance software and hardware.   
While high performance hardware and semi-automated 
counting software is commercially available [1], automated 
software is still in its developmental stages.  This algorithm 
addresses the need for a universal cell segmentation pack-
age that can be customized to a specific application easily 
regardless of the digitized sample’s size or complexity. In 
terms of execution time, each image segment can be proc-
essed independently in separate threads, and distributed to 
multiple processors or to a networked cluster of systems to 
increase productivity when multiples samples are proc-
essed.   
 

ALGORITHM 
1. The Input image is converted to a grayscale intensity 

image by eliminating hue and saturation information 
while retaining luminance [2]. 

2. The Image from (1) is segmented into multiple slices 
to reduce memory allocation requirements during proc-
essing. 

3. The image segment from (2) is top-hat filtered to cor-
rect for uneven background illumination [3]. 

4. The image segment from (2) is added to the top-hat 
filtered image segment from (3). 

5.  The image segment from (4) is then subtracted from a 
bottom-hat filtered image segment from (2). 

6. The filters from (3), (4), and (5) are cascaded together 
and run on the image in multiple epics depending on 
luminance. 

7. The image from (6) is then further segmented into con-
textual regions. 

8. A histogram is then constructed on each region from 
(7), and the gray levels are remapped so the histogram 
is flat. 

9. The processed contextual regions from (8) are recom-
bined to complete the contrasted limited adaptive his-
togram equalization (CLHE ) [4]. 

10. The recombined image segment from (9) is converted 
to a binary image based on a global threshold using 
Otsu’s method [5]. 

11. Background pixels from (10) that are inaccessible from 
the edge of the image are then filled. 

12. Image from (11) is than eroded and dilated using the 
same parameters. 

13. Small connected components in the resulting image 
segment from (12) are removed. 

14. Cell edges from (13) are detected using a canny edge 
detector or by finding foreground pixels that are 4-
connected to background pixels. 

15. Improperly sized artifacts from (14) are masked out of 
the detection for each image segment. 

16. The number of good cells from (15) is counted for 
each segment. 

17. The masked image segment from (15) is recombined 
with the previously processed image segments and the 
total number of cells from (16) is added from all pre-
vious segments cell count itineration’s resulting in a 
grand total cell count. 

 
RESULTS AND DISCUSSION 
Our primary goal was to delineate captured optic nerve 
cross-sections and extract the axioms precisely from the 
background.   Due to memory limitations we must process 
slices of the image individually and recombine them to 



form our final delineated image.  This method is advanta-
geous because failures in the myelin-stained background 
removal are easily detectable (Figure 1) and those slices 
can be re-run by resizing the disk shaped structuring ele-
ment in the cascading image filter. 

 

 
Figure 1: Background removal comparison 

One limitation of the algorithm is when CLHE improperly 
segments a contextual region.  This results in a cell or a 
group of cells with faded contrast and adds to detection 
difficulty.  This is especially pertinent when the cells are 
near an area of background with artifacts. Improper contex-
tual region segmentation was very rare on all the samples 
that were run and was detectable.  The particular image 
segment that has a detected CLHE anomaly can be simply 
rerun after adjusting the cascaded image filter. 

 
Figure 2: Overly aggressive background removal 

Another limitation is oversized cells slipping through the 
background artifact removal filter as shown in Figure 3.  
The filter is optimized for searching for cells with a height 
of 61.6 pixels or less.  Originally, extremely small cells 
with a radius of 1 pixels or less were filtered out. I found 
that if I filled all edge inaccessible background pixels [6], 
including extremely small cells in the filter, it helped com-

pensate for some CLHE failures.  It also allowed the com-
plete removal of the undersized cell filter, which signifi-
cantly decreased the algorithms execution time, and helped 
with the detection of faint cells. If there are a large number 
of stain anomalies the undersized cell filter is a necessity. 

 
Figure 3: Detection failures due to oversized cell 

Six gold standard samples were also processed to check the 
algorithm’s counting accuracy. While these images are 
extremely low resolution and represent a worst case sce-
nario for image quality, the detections were quite accurate 
in all but a single sample.   Sample Five, in the top left of 
Figure 4, has severely blurred areas which don’t compute 
well, and the gold standard sample in the bottom left of 
Figure 4 neglects to take some cells which are off the slide 
into account while it counts others.  In the same figure, 
sample Six on the right has much better detections due to 
the more uniform background.  Detection was optimal with 
this background using a structured element of size 30 and 
rejecting connected pixel sizes less then 0.04 in height. 

 
Figure 4: Samples 5 and 6 respectively  

Sample One, in the top left of Figure 5, has a cluster of 
cells in the bottom center whose background luminance 
levels are significantly different from the rest of the image. 
The gold standard sample in the bottom left of Figure 5 
also neglects to take some cells which are off the slide into 
account while it counts others.  In Figure 5, sample two on 
the right, has much better detections due to the more uni-
form background.  Detection was optimal with this back-
ground using a structured element of size 20 and rejecting 



connected sizes less then 0.04 pixels in height.  The upper 
left detection in sample two is an off page cell, but the bot-
tom right detection has the potential to be an off page cell 
as well. However, its surrounding background is eroded too 
aggressively. 

 

Figure 5: Samples 1 and 2 respectively  

Sample Three, in the top left of Figure 6, has a fairly even 
background and its detections compute well. The gold stan-
dard sample in the bottom left of Figure 6 neglects to take 
some cells which are off the slide into account as in previ-
ous samples.  Detection was optimal with this background 
using a bottom structured element of size 190, and top ele-
ment of size 1 and rejecting connected sizes less then 2.2 
pixels in height. In Figure 6, sample four on the right has 
nearly perfect detections including the area in the bottom 
left.  While the large area of this detected cluster is an arti-
fact and smaller area is an off page cell, it is a valid count 
considering the cluster is only detect as one cell. 

 

Figure 6: Samples 3 and 4 respectively  
 

 

 

SUMMARY 
 
All samples and the full sized mosaic were initially run 
through the algorithm with the same universal parameters 
in order to verify its ability to handle any scenario.  In the 
full sized color image mosaic the algorithm routinely found 
57,080 cells using the perimeter edge detector. Although 
this large image was broken into smaller segments, unused 
variables had to be constantly removed from memory to 
avoid any overruns. The universal algorithm used static 
parameters for its cascaded filter and minimum sized cell 
masking was set to zero.  The universal cascaded filter util-
ized a flat disk-shaped structuring element [7] with a radius 
of 20.   
With these universal settings the absolute deviation from 
the number of detections with the algorithm was quite low, 
as seen in Table 1.  Perimeter edge detection was less ag-
gressive with stain anomalies and was faster and more ac-
curate than the Canny edge detection method.  On sample 
number 5 the Canny edge detector took 0.333 seconds* to 
complete while the Perimeter edge detector took only 0.044 
seconds* of execution time.  If execution time is not an 
issue, a more advanced custom morphological edge detec-
tor can be used to produce a better result [8]. 

Table 1: Universal Detection results using filter elements of 
size 20 and no minimum sized cell masking  

Sample # 1 2 3 4 5 6
# of Cells 
(gold 
Standard) 40 5 30 36 13 33
Perimeter 
Edge De-
tector 37 7 28 34 19 34
Absolute 
Deviation 3 2 2 2 6 1
Canny 
Edge De-
tector 37 9 31 35 21 36
Absolute 
Deviation 3 4 1 1 8 3

 

The algorithm was tested using dynamic parameters for the 
top hat and bottom hat filters.  Cell sizes below minimum 
dynamic thresholds are also masked out. This is useful for 
off page anomalies that did not fit the typical cell size ar-
chetype. The dynamic approach resulted in more accurate 
cell detections and a better total count as shown in Table 2.  
Computation times were slower when using a minimum 
cell size greater than zero and significantly slower when 
using large filter elements. Sample number 3 used a very 



large bottom hat filter element which, when combined with 
the small top hat filter element, took a full 3.584 seconds* 
for 2 itinerations.  This is incredibly long when compared 
with the universal detection size of 20 for both combined 
filters that takes only 0.18 seconds* of execution time for 2 
itinerations. 

Table 2: Detection results using dynamic minimum cell sizes 
and filter elements 

Sample # 1 2 3 4 5 6
# of Cells 
(gold Stan-
dard) 40 5 30 36 13 33
Perimeter 
Edge De-
tector 37 7 30 34 19 35
Absolute 
Deviation 3 2 0 2 6 2
Top Hat 
Filter Ele-
ment Size 20 20 1 20 20 30
Bottom Hat 
Filter Ele-
ment Size 20 20 

19
0 20 20 30

Min Cell 
Size Used 0.04 0 2.2 0 0 0.04

 
Regardless of a digitized sample’s size or complexity, uni-
versal detection is viable.  Once the parameters and meth-
odologies are standardized for a set of samples, their digiti-
zation will result in samples with homogenous histograms 
for their backgrounds and foregrounds.  The algorithm can 
then be optimized by a trained observer by manipulating 
three simple parameters shown in Table 2.  Once opti-
mized, an entire batch of samples can be counted fully 
autonomously with the utmost accuracy. 
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*Execution times based on an Intel Core 2 Duo 2.16 GHz 
CPU with 2GB DDR2 667MHz SDRAM running 
MATLAB R2007a 
 


