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Abstract 
This paper presents an application of image morphology 

and segmentation in the field of medical imaging for the 

use of ascertaining the number of axons from cross section 

images of an optic nerve. Because of the complexity of the 

nerve and inconsistency of individual axon sizes and 

shapes, a general approach is conceived to provide an accu-

rate estimation of the number of axons present.  By taking 

into account image statistics and evaluating regions accord-

ing to their characteristics, results can be obtained that 

count axons to within a few percent of the actual number 

present.   

KEYWORDS 
Axon Counting, Normal Optic Nerve, Image Processing, 

Computer Vision, Segmentation, Morphology 

INTRODUCTION 
Axons are fiber-like extensions of the nerve cell through 

which electrical impulses propagate in the nervous system.  

Nerve cells (neurons) are composed of bundles of these 

axons.  They are similar to fiber optic cables and carry out-

going messages.   

Currently there is research being conducted in the area of 

retinal sensing in mice, and it is necessary to count the 

number of rods and cones.  Unfortunately, the curved retina 

makes it problematic to count these sensors.  As an alter-

nate solution, it is possible to take a nerve bundle cross 

section and analyze the number of axons present.  Professor 

Howell at Case Western Reserve University is cutting opti-

cal nerve bundles from mice which connect the retinal sen-

sors to the brain.  He creates microscope images of cross 

sections of these nerve bundles after staining the nerve to 

enhance the neural connections (axons).  Presently, axons 

are counted manually by specialists who are experienced at 

properly identifying the fibers. 

There are many groups developing automated cell counting 

systems to speed up the process and produce more precise 

results.  One such group is counting Erythrocytes (red 

blood cells) to aid in determining the presence of certain 

diseases.  The synthesis of their algorithm involves the first 

step of image segmentation in which a histogram is created 

and a suitable threshold is selected.  Next, image condition-

ing provides for hole-filling and removing borders or un-

wanted particles. Finally, the image analysis step counts the 

Erythrocytes [6]. 

Another group is currently using a technique that involves a 

hybrid (raster and vector) algorithm that separates the ob-

jects of interest (axons) from the background.  This algo-

rithm uses edge detection to create an edge map which is 

then optimally thresholded with a Fuzzy C-Means method.  

After thoroughly skeletonizing the image, the outline of all 

closed shapes allows the program to decide whether or not 

the shape is an axon.  The classification is based on pa-

rameters such as size, intensity, grouping characteristics 

and shape complexity.  The results of this research are fre-

quently within the 95% confidence interval but tend to 

count more axons than are actually present [1]. 

A recent endeavor in tumor cell counting utilizes a robust 

local adaptive thresholding method to segment regions of 

interest from the background.  Such thresholding improves 

results in feature extraction for tumor cell identification [4]. 

Still further efforts in the biomedical applications of digital 

image processing include research on counting cancerous 

cells in a tissue with breast cancer.  The concept presented 

in this paper will closely resemble the scheme devised by 

this Thai research team.  In their approach, local adaptive 

thresholding is applied after noise removal.  Next morpho-

logical operations assist in categorizing the cells by size 

and obtain a practical cell count of cancer cells.  To further 

ensure this result, a watershed segmentation operation is 

performed.  This solution produced outcomes comparable 

to the manual counts of specialists [5]. 

Axons are typically one micrometer in diameter and require 

the use of a microscope to see.  They are found in clusters 

and range in sizes that include extremely small and large 

axons.  Using digital image processing, several morpho-

logical techniques are explored to create regions that alleg-

edly represent these individual axons.  Given sample im-

ages of nerve bundles, it is possible to count the individual 

axons manually and write a program to achieve a similar 

count.  The goal is to write an algorithm which locates and 

counts these sample axons with reasonable accuracy so that 

the program can be used on an entire cell image containing 

tens of thousands of axons. 

This problem demands a solution that is able to count only 

objects of interest.  A well known and widely used way to 

extract image components is morphology.  This type of 

image processing relies on mathematical morphology 

which is founded on set theory.  Morphological operations 

typically deal with the processing of binary images to rep-



resent the ordering of pixels in an n-dimensional Euclidean 

space (as opposed to numerical value) [2]. 

Structuring elements are relied on to search the image for 

certain properties.  These subimages help assess images 

based on which pixels are members of its matrix and which 

are not.  Many useful tools such as erosion, dilation, open-

ing, closing, skeletonization, and pruning rely on such 

structuring elements.  The careful design of an appropriate 

structuring element can be extremely effective when at-

tempting to extract axons from an image, especially when 

used on an optimally thresholded image. 

IMAGE ANALYSIS AND PREPROCESSING 
To implement some of the aforementioned morphological 

techniques, it is necessary to first analyze and preprocess 

the image.  First, histograms of the various sample images 

are generated to view the distribution of grayscale intensi-

ties in the images.  The color image is separated into its 

three separate layers: red, green and blue.  Histograms are 

created for each layer to determine if an individual layer 

has more useful characteristics than the others.  Character-

istics such as high contrast make the task of thresholding 

significantly easier. 

Upon observation, the red and green layer distributions are 

practically identical, and the blue layer has a wider distribu-

tion but not enough to be more useful.  Therefore, the con-

clusion is to simply convert the RGB image to grayscale 

and perform all operations on a single layer.  A cross sec-

tion of a few hundred axons in grayscale is used to generate 

the histogram in Figure 1.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Grayscale image of cross section of a few 

hundred axons and its corresponding histogram 

Analyzing Figure 1 reveals that there is not a very wide 

dynamic range of intensity values.  In an attempt to adjust 

the distribution and make it more favorable to thresholding 

by increasing the contrast, histogram equalization was used 

(Figure 2).  However, the resulting histogram had adverse 

effects on the computational portion of the algorithm.  

Therefore, the above histogram is suitable for calculating 

the best threshold. 

 

 

 

 

 

 

 
Figure 2. Histogram equalization of image 

 

THRESHOLD DETERMINATION 
The thresholding step is the most crucial part of the algo-

rithm.  Even the best decision tree will be useless if the 

input image is missing axons that are erroneously thresh-

olded out. Three methods of thresholding were attempted to 

optimize the threshold value for creating a binary image.  

The Otsu method was first used for its renowned ability to 

find the optimum threshold value based on minimizing the 

intraclass variance of the black and white pixels.  Next, the 

Otsu values were compared to an iterative algorithm con-

ceived by Gonzalez and Woods which produced almost 

identical results [2].  Finally, the threshold was computed 

by taking a simple average of the intensity data.  Using all 

three methods on six separate and unique sample images, 

the following results were obtained in Table 1. 
 

Table 1. Table of threshold values obtained from three 
different methods 

Threshold 

Value 

Otsu’s 

Method 

Iterative 

Threshold 

Average 

Threshold 

Sample 1 .2627 .2709 .2183 

Sample 2 .5451 .5447 .5813 

Sample 3 .5451 .5498 .5426 

Sample 4 .4824 .4863 .4515 

Sample 5 .4549 .4589 .4391 

Sample 6 .4510 .4503 .4435 

 

Notice in Table 1 that Otsu’s Method and Gonzalez and 

Wood’s iterative method are very close, whereas the aver-

age threshold is typically 5-20% less.  These results were 

essential to properly assign the appropriate threshold to 

individual images.   

In the algorithm, many methods of computing the threshold 

are involved to provide an optimum range of data points 

that include excessively faint objects.  First the Otsu 

method is used to glean information about the image’s 

brightness.  Using graythresh.m defined in MATLAB’s 

library, a value is returned.  If it is below .4 (namely images 

like Sample 1 with values of .26), additional preprocessing 

must take place to brighten the image.  This is accom-

plished with adapthisteq.m defined in MATLAB’s image 

processing toolbox.  This function is useful because it oper-

ates on regions of the image rather than treating the image 

as a homogenous grouping of objects.  Benefits of this 

technique include its ability to enhance the contrast of re-

gions of the image without amplifying any noise present.  
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Figure 3 displays the result of applying an adaptive histo-

gram to a dark sample image (Sampel_1.tif). 

 

 

 

 

 

 

 

 
Figure 3. Dark image of axons and its corresponding 

image after application of adaptive histogram 

Images that exceed the Otsu threshold value will skip the 

adaptive histogram step and go onto the iterative threshold-

ing method to produce a value to send to the function 

im2bw.m function which will convert the grayscale image 

to black and white (binary) based on the supplied threshold 

(Figure 4). 

 

 

 

 

 

 

 
Figure 4. Binary thresholded image before morphologi-

cal corrections 

MORPHOLOGICAL PROCESSING 
The resulting binary image will contain clusters of white 

pixels and a few stray pixels.  Before applying morphologi-

cal techniques to improve the connectivity of regions, an 

area-based analysis is performed to gain information about 

the nature of the axon sizes.  It is not useful to use large 

scale erosion and dilation techniques on images in which 

the average size of an axon is only 20-50 pixels.  Such an 

oversight would lead to the elimination of many smaller 

sized axons. 

To accommodate images with clusters of unusually small 

axons, MATLAB’s command bwlabel.m is used to create 

matrices for connected regions.  While this will later be 

used as the primary counting tool, it is initially used to as-

sign labels to connected regions.  Each label has region 

properties that can be accessed from their stored structural 

arrays.  One of the region properties available to users is 

the area property.  Each binary image is sent through 

bwlabel.m to compute the minimum, maximum, and aver-

age areas of the axons present.  The resulting areas of the 

six sample images are presented in Table 2. 

 
Table 2. Table of minimum, maximum, and average bi-

nary region areas (axon areas in pixels) 

Area of 

Cells 

Smallest 

Area 

Largest 

Area 

Average 

Area 

Sample 1 4 1261 119.2222 

Sample 2 103 3725 976.8333 

Sample 3 5 787 169.5 

Sample 4 14 457 125.5714 

Sample 5 6 1097 258.75 

Sample 6 7 3029 181.3333 

 

Table 2 provides useful data for interpreting the sizes of 

axons.  Sample images with very large average areas have 

an excessive amount of empty space.  No axons were found 

to be greater than 1000 pixels in area.  Therefore, this was 

set as the global threshold for counting criteria.  It can be 

inferred from the table that samples with rather low average 

areas will contain a lot of delicate data that should be dealt 

with using more moderate morphology techniques. 

Once it is determined whether an image has large or small 

groupings, it will be passed onto the morphological proc-

essing.  Small groupings will be passed to a series of opera-

tions that fill the holes of the binary image.  Erroneous pix-

els and outliers will be eliminated in this stage.  Next, an 

area opening is performed to remove connected compo-

nents that contain fewer than 5 pixels.  Finally, the structur-

ing element sizes are set for the next step of eroding and 

dilating.  This step is crucial to properly separate the indi-

vidual regions.   

For the images that have larger average areas of their re-

gions, they are sent immediately to a more aggressive ero-

sion and dilation procedure.  More specifically, a 1-pixel 

‘disk’ structuring element is used to erode away irrelevant 

pixels followed by a 4-pixel ‘disk’ structuring element used 

to dilate the remaining regions.  Figure 5 shows the image 

after this morphology stage. 

 

 

 

 

 

 

 
Figure 5. Binary thresholded image after morphological 

corrections 

Notice that small regions were preserved in Figure 5, but 

some larger regions remained connected which will feed 

the counting stage of the algorithm with some false data. 

AXON COUNTING 
After the morphology has cleaned the image up and re-

duced it to separate regions, the binary image is passed to 

bwlabel.m again to count the connected regions with 4-

point connectivity.  The function will return the number of 

regions present in the image, but it has not taken into ac-

count the “empty space.”  Therefore, a final correction is 

implemented by subtracting the total number of regions 

with an area greater than 1050 pixels from the final count.  

Many images will have anywhere from 1-5 areas that are 

too big to be axons.  This check is a safe way to avoid 

counting the background. 

RESULTS AND DISCUSSION 
This method of axon counting achieved reasonably accept-

able results.  Table 3 summarizes the experimental results 



of the described algorithm.  The hand count column repre-

sents the number of axons in the image according to the 

manual count of a medical expert.  The automated count 

column tabulates the number of axons determined to exist 

by the computer.  The False Areas column indicates how 

many regions were found to be too large to be an axon and 

therefore classified as the image background.  Finally, the 

% error column displays the percentage deviation of the 

experimental value from the actual value. 
 

Table 3. Table of results comparing actual and experi-
mental numbers of axons present in six sample images 

# of Axons Hand 

Count 

Automated 

Count 

False 

Areas 

% error 

Sample 1 40 35 0 12.5 

Sample 2 4 5 1 25 

Sample 3 32 28 1 12.5 

Sample 4 37 36 0 2.7 

Sample 5 13 15 2 15.38 

Sample 6 33 28 1 15.15 

 

Figure 6 is an example of a low contrast image with smaller 

axons that received a more gentle morphological procedure 

than other images.  While only 35 of 40 axons were 

counted, it is evident that all regions were identified cor-

rectly but were not able to be separated.  To achieve this 

separation may jeopardize the integrity of smaller axons.  

With a 12.5% error, this image represents a fairly success-

ful trial. 

 

 

 

 

 

 
Figure 6. Sample_1.tif – original image, processed re-

gions, and official counted image 

Figure 7 is a less complex image with four large axons pre-

sent.  The algorithm counted 6 regions and correctly re-

moved the large area that constitutes empty space, reducing 

the count to 5 axons.  The correct number is 4, but it ap-

pears that the corner of the image has interfered with the 

count.  The corner is surrounded by thick edges which 

make it look like an axon and therefore produced a false 

positive.  This is a shortcoming in the algorithm. 

 

 

 

 

 

 
 

Figure 7. Sample_2.tif – original image, processed re-
gions, and official counted image 

Figure 8 is an example of axons with axon edges that are 

somewhat blurry and less defined.  The right side of the 

image segments well, but the left side is plagued by false 

connections, bringing the final count to 28, which is 4 less 

than the actual count.  Also, the algorithm subtracted one 

from the count because it thought the connected cells were 

part of the background.  This is an unintended consequence 

of failing to distinguish the axons. 

 

 

 

 

 

 

 
Figure 8. Sample_3.tif – original image, processed re-

gions, and official counted image 

Figure 9 is the most successful of the sample images.  The 

thick and clearly defined edges of the axons allow the algo-

rithm to operate almost perfectly.  The automated count is 

36, which is 2.7% off of the target, 37 axons. 

 

 

 

 

 

 

 
Figure 9. Sample_4.tif – original image, processed re-

gions, and official counted image 

 

 

 

 

 

 

 

 

Figure 10 counted too many regions (15 instead of 13).  

This is due to some background area that was not as large 

as usual and therefore appeared as an axon to the algorithm.  

Otherwise, the segmentation performed reasonably well. 

 

 

 

 

 

 
 

Figure 10. Sample_5.tif – original image, processed re-
gions, and official counted image 

Figure 11 counted successfully where there is a large and 

distinct distribution of axons.  Toward the left of the image 

the axons begin to group into an almost indistinguishable 

blur of small clusters.  The algorithm correctly identified 

and subtracted the background but was unable to separate 

the large space from some of the small neighboring axons.  



The resulting count was 5 less than the known number of 

33. 

 

 

 

 

 

 

 
Figure 11. Sample_6.tif – original image, processed re-

gions, and official counted image 

The next two sets of images are not “gold standard” im-

ages.  Rather, these images were chosen at random from the 

larger nerve bundle and used as test images.  Figures 12 

and 13 demonstrate the algorithm’s effectiveness when 

used in a practical situation.  Figure 12 identifies the most 

obvious axons but leaves out some smaller axons in be-

tween the larger ones.  Figure 13 also suffered from this 

problem.   
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. Sample_7.tif – original image and processed 

regions 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 13. Sample_8.tif – original image, processed re-
gions 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 14. Image Overlay 

 

Figure 14 utilizes an algorithm provided by the Mathworks 

website as a step in the watershed process [3].  This image 

serves to demonstrate what the computer sees in the algo-

rithm.  With the edges overlaid on the original image, it is 

clear where the computer has trouble distinguishing axons. 

  

Some research endeavors have gone to great lengths to ex-

tract axons based on contours (or snakes) to more accu-

rately cater to the physical appearance of axons.  Even with 

such complex optimization schemes, the false detection of 

axons is still unavoidable.  Sometimes insufficient image 

quality and unusual cell features contribute to these errors 

[7].  For the time being, it seems that a small margin of 

false detections will have to be acceptable to the biomedi-

cal community until a better feature recognition system is 

developed.   

SUMMARY 
Knowing the number of cells a priori provided a useful 

means to test the algorithm against actual data.  The main 

problems encountered included the lack of contrast and the 

highly-varied shape of the axons.  Therefore, a uniform 

morphological technique cannot be applied to the image 

with the expectation that all axons will be included.  Most 

previous research efforts encountered similar problems. 

In a project to count hepatocytes in medical images, results 

were plagued by low contrast, uneven illumination, irregu-

lar cell shapes, and gray intensity variety.  The team used a 

similar three stage image processing scheme to assess the 

problem: image conditioning, segmentation, and morphol-

ogy.  A local adaptive thresholding technique was em-



ployed in the segmentation stage cell count and produced 

an 85% success rate [8]. 

Fortunately, processing power is not an issue in this prob-

lem.  Any amount of code complexity is acceptable.  Some 

attempts at noise removal and top-hat operations were 

made but achieved little utility.  The end result was to use 

basic morphological operations such as dilation to expand 

boundaries and erosion to contract boundaries.  Contours 

were smoothed with opening operations and islands and 

sharp peaks were removed.   

CONCLUSION 
This paper discussed a unique approach that involves image 

morphology with a strong emphasis on region areas.  Al-

though the results are not revolutionary, they are certainly 

tolerable compared to what previous endeavors have pro-

duced.  By using adaptive thresholding techniques and 

treating portions of the image according to their respective 

characteristics, axon counting can become more accurate. 

Pruning the six sample images to perfection produces disas-

trous results when new test images are generated.  A cus-

tom algorithm cannot be devised to search for objects that 

have no defined or consistent shape, size, and brightness.  

Threshold values are sensitive, and one or two pixels can 

make the difference of counting 5-10 axons in some clus-

tered images. 

This algorithm is scalable and could be modified to analyze 

the entire nerve in segments.  There would need to be a 

section of code written to tally all segments for the final 

count. 

It is important to acknowledge the limitations of this algo-

rithm and seek future investigations into characterizing the 

shapes of the axons.  Although the edges of the axons are 

not well-defined or predictable, an edge-based detection 

algorithm should be implemented to help separate clusters 

in areas where there is less certainty about the object’s clas-

sification.  This would improve results significantly. 
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