
Counting Mouse Neuron Cells using
Morphological Image Processing

Dmitri Kourennyi

Introduction

Various methods exist for counting cells in
medical images. Simple statistical methods
exist, such as the Abercrombie and Empirical
methods,which simply use small sections of a
set of images to estimate a full count. These
methods have flaws due to the large number of
assumptions made with them (Hedreen, John C,
1998). Stereoscopic and 3D methods also exist,
but require some kind of 3D information in
order to be effective. In this paper, I have
designed an algorithm that automatically counts
the number of cells in a single, 2D image, with
only minor thresholding adjustments needed
depending on cell sizes and image gamma.

The Algorithm

The entire algorithm is rather short. This is
posssible due to the many built in functions of
matlab. The full code is shown at the end of this
paper. Here, I will go over each of the
algorithm's steps as well as the resulting image
after most of these steps. The original image is
also shown at the end of this paper.

Ioriginal = imread('Image.tif','tif');
Ioriginal = imresize(Ioriginal,0.5,'bicubic');

The program begins by simply reading the
original image and resizing it by 50% with
bicubic interpolation. To the eye, the image
looks better resized, and the interpolation
creates some averaging that removes some of
the noise. At the same time, the image's smaller
size creates smaller cell boundaries and a
sharper result.

I =
adapthisteq(rgb2gray(Ioriginal),'NumTiles',[24
24]);

I = imdilate(I,strel('square',3));

The first line simply performs local equalization
on the image to optimize the contrast. The
result is shown in Figure 1.

The second line performs a dilation with a
square kernel to thin the cell edges and further
remove noise. The results of the dilate operation
is shown in Figure 2.

Figure 1:
Equalization

Figure 2: 3x3 Square
Dilation

I = I<200;
dim = size(I);
I = ~imfill(~I,'holes');

Next the image is threshholded (and inverted in
the process), and I take advantage of Matlab's
fill function to remove holes in the image. I get
an image which is black in cell interiors and
exteriors, and white where cell borders are.
Note that the previous dilation has separated
the cells from each other. Removing the holes
removes the nuclei that are visible in some cells.
I remove these so they don't interfere with the
cell selection step later in the algorithm. The
results of the thresholding and hole filling are
shown in Figures 3 and 4, respectively.

Figure 3:
Thresholding

Figure 4: Holes
Filled

At this point, each black area represents an area
that corresponds either to the interior of a cell,
or the exterior between cells. The next section
of code isolates each separate black region, and
performs some tests on, either confirming or
rejecting it as a cell, and updating a counter and
aggregate image for displaying the final result.
The code loops through the entire image,
testing one pixel at a time.

if(~Ifill(i,j))
 Ifill = imfill(Ifill,[i,j]);
 Idiff= Ifill – I;
 I = Ifill;
 sumarray = horzcat(sumarray,sum(sum(Idiff)));

For efficiency, the algorithm check to see if the
pixel is black. This saves time by avoiding calls
to the imfill function, which is quite slow. If the
pixel is indeed black, imfill flood fills the
connected area with white. The difference is
recorded in Idiff, and I is updated to be ready
for the next difference check. The advantage of
this method is that it avoids double without any
extra images by taking advantage of the fact
that the fill function removes all the connected
black pixels, so they will not be considered
again. Finally, the sum of the isolated region is
appended to an array. This array was used to
obtain histograms of the area distributions of
regions. These are shown at the end of the
paper. An example of the difference is shown in
Figure 5.

Idiff2 = Idiff –
imerode(Idiff,strel('diamond',1));
borderarray =
horzcat(borderarray,sum(sum(Idiff2)));

Next, the difference between the isolated region
and its erosion isolates the border of the region.
8-connectivity was used to utilize the most
degrees of freedom for border approximation.
As before, this border was stored in array in
order to analyze the distribution. An example
border is shown in Figure 6.

Figure 5: Example
Region

Figure 6: Border of
Same Region

temp = 2 * pi * sqrt(sum(sum(Idiff)) / pi) /
sum(sum(Idiff2));
if(sum(sum(Idiff))<1000 && sum(sum(Idiff2))<140
&& temp<1.5 && temp>0.7)
 Iresult = Iresult + Idiff;
 n=n+1;
end

The last part of the algorithm performs checks
on each region to classify it as a cell. 3 checks
are made: First, the region cannot be bigger
than 1000. This eliminates large open areas that
just cannot be cells. Of course, this parameter
depends on the scale of the image. Next, the
border cannot be larger than 140. This
eliminates extremely convoluted borders that
are going to be associated with the empty space
between cells. Finally, the variable temp stores
the ratio of the border to the circumference of a
circle with the same area (some constants not
used). This value is bounded by 0.7 and 1.5, and
eliminates highly eccentric regions. If a region
passes all 3 criteria, a counter is incremented

and the region is added to a seperate image.

The end of the algoritm simply overlays the
resulting image to the original for easy viewing
of the results.

Discussion

There are a number of flaws with the algorithm.
First, although a smaller image is easier to work
with, the loss of data results in smaller regions
when cells are being checked. Smaller regions
suffer from increased error due to the
discretization due to pixels as opposed to a
continuous definition of a circle. A better
alternative would be to increase sharpness,
contrast and remove noise without resorting to
resizing the image, and thus retaining maximal
spatioal information when borders and areas are
determined.

The second major flaw is how cells are
determined. Borders could be more efficiently
calculated by tracing the border and recording
true Euclidean distance (diagonals contribute
√2/2, etc.) The ratio of border length versus
ideal border length should also be standardized
for radius. I tried to implement this, but
pixelation of small regions required more
'generous' cutoff values, and thus make
standardization useless. Also, better methods
can be used for testing. For example, one can
find the center of the region, and then determine
2 circles, one that completely encloses the
region, and one that just touches the inside of
the region. Analyzing the difference between the
radii of these circles can help determine
eccentricity of the region.

Results

Original Image

367 Counted Cells
(Note the false
positives at the top
right and the false
negative at the
bottom caused by
extreme eccentricity)

Region Areas
Histogram

Region Borders
Histogram

'temp' values
Histogram

Resulting counts: 39,7,52,37,30,39

Full Code

Ioriginal = imread('Image.tif','tif');
Ioriginal = imresize(Ioriginal,0.5,'bicubic');
I =
adapthisteq(rgb2gray(Ioriginal),'NumTiles',[24
24]);
I = imdilate(I,strel('square',3));
I = I<200;
dim = size(I);
I = ~imfill(~I,'holes');
sumarray = [];
borderarray = [];
Ifill = I;
n=0;
Iresult = zeros(dim(1),dim(2));
for i=1:dim(1);
 for j=1:dim(2);
 if(~Ifill(i,j))
 Ifill = imfill(Ifill,[i,j]);
 Idiff= Ifill - I;
 I = Ifill;
 sumarray =
horzcat(sumarray,sum(sum(Idiff)));
 Idiff2 = Idiff -
imerode(Idiff,strel('diamond',1));
 borderarray =
horzcat(borderarray,sum(sum(Idiff2)));
 temp =
2*pi*sqrt(sum(sum(Idiff))/pi)/sum(sum(Idiff2));
 if(sum(sum(Idiff))<1000 &&
sum(sum(Idiff2))<140 && temp<1.5 && temp>0.7)
 Iresult = Iresult + Idiff;
 n=n+1;
 end
 end
 end
end
Ioriginal(:,:,1) = Ioriginal(:,:,1) +
128*uint8(Iresult);

imshow(Ioriginal)

References

Hedreen, John C. "What Was Wrong With the
Abercrombie and Empirical Cell Counting
Methods? A Review." The Anatomical Record
250(1998): 373-380.

