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ABSTRACT 

This paper presents a method for automated identification 

and counting of neural connections (axons) in a microscope 

image of an optical nerve bundle.  The algorithm uses mor-

phological image processing techniques, coupled with tra-

ditional image segmentation methods, to generate a binary 

image suitable for counting features.  Results from gold-

standard images show the algorithm accuracy to be highly 

dependent on both the average size of axons and image 

quality (i.e. sharpness, contrast and resolution).  Input im-

ages containing several axons of similar size show the algo-

rithm to be reasonably accurate and robust.  The algorithm 

breaks-down when processing grainy, pixilated nerve bun-

dles containing few, large axons. 
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INTRODUCTION 

Automatic segmentation of biological images is a highly 

studied topic, driven by the desire for quantitative or high 

throughput analysis of biological features in dense images.  

In this study, researchers investigating retinal sensing are 

interested in counting the rods and cones on the retina of 

mice.  The curved geometry of the retina makes it difficult 

to count these sensors in a reliable, efficient manner.  An 

alternative approach is to cut the optical nerve bundle and 

count the neural connections (axons).  Microscope images 

can be stained to enhance the visual appearance of the 

closed bundles.  In these images, the background intensity 

varies at different locations.  Axons can be tightly clus-

tered, and of varying size, making it difficult for research-

ers to visually determine the boundaries between axons and 

background noise. 

Traditional image segmentation methods such as threshold-

ing, morphological operations, edge-based approaches and 

region-based processing have been successfully applied to 

many applications (refer to [1] as review). 

Revolutionary thresholding techniques using the Otsu algo-

rithm [2–3] are often used for automatic segmentation 

problems.  Otsu [3] selects a threshold automatically from a 

gray level histogram using discriminant analysis, dealing 

directly with the “goodness” of thresholds.  An optimal 

threshold is selected by maximizing the measure of separa-

bility of the resultant classes in gray levels. 

Advanced segmentation methods using the watershed trans-

form have been demonstrated to be more suitable for bio-

logical image processing [4–5].  Watershed transform con-

siders the image as a topographic relief, with the height of 

each point directly related to its gray level.  Consider rain 

falling on this “terrain”, so the watersheds are the lines that 

separate the catchment basins that form.  The transform is 

generally computed on the gradient of the original image, 

so that the basin boundaries are located at high gradient 

points. 

However, when applying either traditional image segmen-

tation techniques or the watershed transform to non-trivial 

applications, issues of noise sensitivity, over-segmentation, 

overlapping features, and discretion between features of 

interest and background features all become problematic.   

The algorithm design will incorporate traditional image 

processing “building-blocks” to process and count axons in 

the images.  In parallel the software explores the advanced 

methods of Otsu thresholding and watershed transform, 

allowing the programmer to visually select a “best 

method”.  Algorithm performance will be judged not only 

on its ability to count axons, but also robustness against 

these issues. 

DEVELOPMENT OF THE ALGORITHM 

To accurately identify and count the axons, several of the 

discussed methods were applied.  To manage the problem, 

several axon image a priori assumptions were determined: 

partial axon bundles along the image border would be con-

sidered, and if the programmer could not distinguish an 

image feature to be that of an axon or background noise, 

then it is unreasonable to expect the algorithm to do so.  

The algorithm (Figure 1) contains many of the standard 

building blocks of traditional image segmentation. 

The image was first filtered using a Gaussian low-pass fil-

ter to provide a smoothing effect and remove any high-

frequency noise.  Notice the low-contrast of a typical image 

and its resulting histogram (shown in Figure 2).  The algo-

rithm uses histogram equalization to prepare the image for 

further filtering and thresholding (resulting image and his-

togram shown in Figure 3).  Next the grayscale image un-

dergoes a top-hat transformation to enhance the detail in 

the shading [6].  This transformation subtracts an opening 

from the image (Equation 1). 

 h = f – (f  b)    (1) 

Simply, the top-hat transformation is the erosion of f by b, 

followed by the dilation of the result by b, subtracted from 

the image.  The “disk” structuring element was chosen due 

to the round geometry of the axons. 



 

Figure 1. Algorithm Functional Block Diagram 

 

    

Figure 2 (a-b). Original Image – Test Image #4 

 

    

Figure 3 (a-b). Histogram Equalization – Test Image #4 

It should be noted that the Otsu thresholding method [3] 

was investigated as the algorithm evolved.  However, when 

compared side-by-side with the top-hat result, the Otsu 

method was abandoned due to inferior performance in this 

particular application. 

Thresholding completed, the image is converted to a binary 

image to begin identification of “blobs of interest” which 

will eventually be down-selected as axons.  The result un-

dergoes the first battery of morphological image processing 

to identify blobs.  Image “spurs” are removed using a series 

of erosions and dilations that are handily pre-packaged as a 

morphological operation (refer to [6] to review MATLAB® 

image processing toolbox).  Likewise, the result undergoes 

a “clean” operation in which isolated pixels are removed. 

The gradient magnitude is used to process the image for use 

as a mask.  The gradient magnitude image has high pixel 

values along object edges, and low pixel values elsewhere.  

The Sobel edge operator is used during this operation, as 

recommended for being robust [6].  The resulting gradient 

image is “thinned” and then “opened” to achieve a masking 

of intended “blob boundaries”.  The “blobs of interest” are 

then combined with the boundary masking to separate the 

conjoined axons.  (See Figure 4.a with conjoined blobs of 

interest and Figure 4.b with resulting separation.) 

    

Figure 4 (a-b). Blob Separation – Test Image #4 

The image then undergoes a second battery of morphologi-

cal image processing.  Spurs, created during the masking, 

are removed.  The image is processed to fill around diago-

nally connected pixels.  Finally, the image is “cleaned” of 

rogue pixels. 

In anticipation for creating borders around each blob [7], 

the image is processed to create a white border around the 

image perimeter with a depth of one pixel. 

The resulting image is shrunk to form the blob (axon) bor-

ders as showing in Figure 5.a.  Likewise, the compliment is 

shrunk to create an axon “seed pixel” to be used as markers 

for the watershed transform (see Figure 5.b). 

    

Figure 5 (a-b). Axon Borders, Markers – Test Image #4 



Using the defined axon seeds and boundaries (internal and 

external markers, respectively), the algorithm investigates 

the performance of the marker-controlled watershed trans-

form due to its popularity in the fields of biology and medi-

cine [4-5].  However, when compared side-by-side with the 

results achieved using the methods depicted in Figure 5, the 

watershed transform was set aside as it visually offered no 

additional benefit to the simple border-creation. 

The algorithm takes each identified blob and counts it as an 

axon.  Graphical results are processed and output for man-

ual identification of false-positives and false-negatives. 

RESULTS AND DISCUSSION 

Expert researchers supplied six “test images” (inputs for the 

algorithm) with accompanying “gold-standard” images that 

have identified axons. 

It is important for the algorithm not only to output a nu-

merical result, but also that the numerical result represents 

actual axons and not other image features.  Therefore, when 

discussing results it is critical to examine the amount of 

false-positives and false-negatives.  False-positives are de-

fined to be image features identified as axons by the algo-

rithm, but not listed on the gold-standard image.  False-

negatives are defined to be instances where the algorithm 

fails to identify an axon that has been listed on the gold-

standard image. 

Table 1. Quantized Results – All Test Images 

Test 

Imagge

Gold Std Axoons 

[Goal]

Algorithm Couunt 

[Result]

1 40 31 4 13% 13 33%

2 5 19 14 74% 0 0%

3 32 35 5 14% 2 6%

4 36 33 1 3% 4 11%

5 13 21 8 38% 0 0%

6 33 23 0 0% 10 30%

False 

Positivees

False 

Negativees

 

As evident from the results listed in Table 1, the algo-

rithm’s performance varied greatly from image to image. 

In general, the algorithm worked well on images with tight 

clusters of clearly defined axons having similar size radii 

(i.e.  test images 3, 4). 

The algorithm falls apart with images containing large 

voids between the axons (i.e. test images 2, 5, 6) and dark 

contrast throughout (i.e. test image 1).  These differences 

drive varying results in the thresholding of the original im-

ages, which leads to inconsistent algorithm results. 

For example, Figure 6 shows the results for the algorithm’s 

best result, test image #4.  (Figure 6.a is the original image.  

Figures 6.b, 6.c, 6.d, show the axon boundaries, counted 

axons, and the combination of both, all overlaid with the 

original image, respectively.)  Notice the boundaries are 

accurately identified around most axon bundles.  The single 

false-positive result is labeled by the yellow circle (note: 

this was manually placed for discussion purposes only).  

False-negatives are labeled by green circles.  Two of the 

four false-negatives are sites where two axons were errone-

ously identified as a single blob.  The remaining two were 

small axons residing on the image boundary. 

Figure 7 depicts the algorithm’s worst result, test image #2.  

(Again, false-positives identified by a yellow circle.)  

While the algorithm did identify all five axons, it also iden-

tified fourteen false-positives.  This poor result originates 

back to the image output from the histogram equalization 

step.  Due to the large surface area of voids (empty back-

ground) the histogram equalization resulted in a highly-

contoured grayscale image that did not respond favorably 

to the thresholding and subsequent binary conversion.  The 

texture in the background ultimately produced erroneous 

“phantom axons” that the algorithm processed and counted. 

  

  

Figure 6 (a-d). Final Results (Best) – Test Image #4 

 

  

  

Figure 7 (a-d). Final Results (Worst) – Test Image #2 



Figure 8 depicts the algorithm’s results for test image #6.  

(Again, false-negatives identified by a green circle.)  While 

the algorithm did not identify any false-positives, it also 

failed to identify ten axons that were identified in the gold-

standard images.  This image was seemingly taken with a 

given perspective of a curved-section of the nerve bundle.  

Notice the algorithm falls apart on the left boundary of the 

bundles, where the void (empty background) is present. 

  

  

Figure 8 (a-d). Final Results – Test Image #6 

These results highlight several strengths of the algorithm.  

Given an image with reasonable contrast and boundary 

resolution, the algorithm finds and identifies a watershed-

like basin [5] that is an axon boundary.  The algorithm also 

processes and displays the results in a manner that makes 

error-checking straightforward. 

The results also demonstrate the algorithm’s shortcomings.  

Each basin (or boundary) that is identified is assumed to 

contain an axon.  This is not necessarily the case.  The al-

gorithm lacks a method to check the geometry of the identi-

fied feature to see if it is indeed a rounded, oblong-shaped 

axon.  Another inadequacy is that the cookie-cutter ap-

proach to thresholding is not appropriate for the inconsis-

tent sampling of images.  When images vary greatly in con-

trast, perspective, quality and feature size, the fixed-size of 

the structural element (disk) used in the top-hat transforma-

tion leads to variable results. 

An improved algorithm would build upon these results to 

become more robust.  One such method of achieve a more 

versatile algorithm would be to implement region-based 

image processing, to identify regions such as large voids or 

dense bundles of axons during the pre-processing phase.  

Then, the algorithm could decide to vary thresholding pa-

rameters for each region in an effort to minimize the false-

positives seen in Figure 7.  Likewise, a region-based ap-

proach could help increase the sensitivity of the blob detec-

tion to avoid large numbers of false-negatives experienced 

in Figure 8.  Another upside to region-based processing is 

that it will cut-down on computing resources for large input 

images. 

A second area for improvement is refining the “cookie-

cutter” approach to thresholding which uses a fixed-size 

(disk) structural element.  Since it is unreasonable to plan 

for constant-size axons, the size of the structural element 

should adapt to the statistics of the input image.  A crude 

grayscale thresholding could be conducted as a pre-

processing step to identify the largest, most pronounced 

axons in the image.  Then, by declaring a region of interest 

around the largest axons, the algorithm could proceed to 

experimentally determine the appropriate size structural 

element by repeated dilations and erosions. 

Another key aspect of the algorithm’s performance that 

must be mentioned is the quality of images provided as 

inputs.  It is highly unreasonable to expect that a micro-

scopic image of any given quality may be input to the sys-

tem for analysis.  An agreed-upon specification should be 

set between the algorithm designer and researchers regard-

ing critical image criteria.  Included would be focus-

ing/clarity requirements, zoom requirements and lighting 

requirements. 

SUMMARY 

The design and feasibility of an automated algorithm for 

biological image segmentation is presented.  Microscopic 

images of a sliced neural bundle are input and identified 

(counted) bundles of axons result. 

The algorithm design incorporates traditional image proc-

essing building-blocks, including morphological image 

processing and geodesic image segmentation, to process 

and count axons in the images. 

Experimental tests with gold-standard images show the 

algorithm to have issues with robustness across a range of 

image features and qualities.  Several test images yield 

minimal false-positives and false-negatives, while other 

images suggest an over- or under-sensitive axon counting 

algorithm. 

The limitations of the algorithm include an unintelligent, 

non-adaptive thresholding procedure that is the root of the 

robustness problem.  Design and logic refinements, includ-

ing a region-based approach to segmentation, could dra-

matically improve overall performance across the different 

types of test images. 

The results are promising and suggest that further studies of 

this application would result in a system that is both robust 

and versatile. 
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