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Abstract – This paper demonstrates a way to effectively 
identify and count cross-sectioned Axons bundled in a 
tightly packed Optic nerve.  The main challenge in this ap-
plication is the extremely high cellular density and low con-
trast.  The method described in this paper uses local adap-
tive thresholding followed by various morphological 
operations to segment individual cells.  The segmented cell 
candidates are then evaluated for specific physical charac-
teristics and the original image is augmented with an over-
lay showing counted cells and rejected cell candidates.  The 
average accuracy among all 6 test scenarios was 87% cor-
rect identifications and having an overall count 6% below 
counts performed by a trained researcher.  
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I.     INTRODUCTION 
 

Many past and recent biological studies focusing on indi-
vidual single or multi-celled organisms have required study 
of the actual cells, but knowing the size of an entire popula-
tion.  Until recently this had to be completed by hand.  A 
researcher would load slide after slide under a microscope 
and count each individual cell with a hand counter.  This 
process takes a huge amount of time and was most likely 
completed on only a small subset, large enough to estimate 
the entire population. 

 

Recent advents in technology have made it possible to accu-
rately discriminate for and count cells of interest.  The prob-
lem is that many of the optimized scenarios benefit from a 
relatively low cell density, high contrast [5], or the use of 
multicolored stains.  These low cell densities are often 
achieved by placing a sample in suspension allowing he 
cells to float apart for easier identification.  The benefit of 
low cell density is that the cells will only touch on rare oc-
casion as viewed under the slide.  In addition to the low 
density, everything is generally viewed from a top down 
orientation, which yields the most recognizable and repeat-
able patterns.  When multicolored stains are used, simple 
color channel manipulation will often provide an adequate 
means to identify and count cells. 

 

The problem in this case is the cells originate from a cross 
section of an axon nerve bundle.  The nature of a nerve bun-
dle yields an extremely high cell density.  Large portions of 
the evaluated image have many of the cells in direct contact.  
Even with a stain to enhance the cell wall, accurately dis-
criminating two touching cells as two separate cells is diffi-
cult.  Also as a result of using a cell cross section is that the 
cells have no visible nuclei or internal features to aid in 
identification.  Everything must be evaluated on size and 
color of the cell wall. 

 

Common with many microscope images, our samples 
lacked good contrast, consistent focus, and uniform inten-
sity.  These limitations indicated the need for some type of 
local adaptive filter.  Many methods include background 
filtering, histogram equalization [3], and watershed type 
flooding [6].  The industrial manufacturing environment 
also implements local image filtering through an interesting 
moving evaluation frame for stain and pattern detection. 

 

Initial attempts tried implementing some sort of moving 
inspection frame within the target image similar to [2].  The 

Figure 1 – Greatly reduced image of nerve bundle 



results were somewhat positive, but under the conditions of 
extreme gradients or constant intensity it behaved in an un-
desirable manor.  Dark lines would appear in the middle of 
light backgrounds and vise-versa.   Adaptive filtering [7] by 
evaluating each pixel compared to the surrounding NxN 
cells was the next logical choice as a modification to this 
method.  This produced more consistent output across steep 
gradients and solid regions.  It also turns out to be computa-
tionally simpler than a moving inspection window. 

 

II.     METHOD 
 

The basic process for positive cell identification is outlined 
in Figure 1. 

 

SEGMENT BUNDLE EDGE 

The point of this step is to find the absolute outside bound-
ary for the nerve bundle.  This prevents any evaluation out-
side the desired nerve bundle area.  The entire bundle image 
is evaluated at once by subtracting two different black and 
white images created at different threshold values to empha-
size the bundle edge.  All holes are filled in the resulting 
mask and it is eroded and dilated to remove noise.  Any 
portion of the image lying outside of the bundle perimeter is 
changed to the average intensity of the entire bundle image. 

 

ADAPTIVE THRESHOLD 

Prior to filtering the image is symmetrically padded on all 
sides to prevent any error from cells occurring on the edge.  
The adaptive threshold filter then converts the grayscale 
image into a black and white image by evaluating the center 
pixel against a threshold value set by the mean of all pixels 
contained within specified distance from the center.    

 

FILL BLOB HOLES 

After adaptive thresholding the image needs additional proc-
essing to remove noise and separate any joined blobs.  First, 
the black and white image is then evaluated to throw out any 

out any extremely large areas (>3000 pixels).  Any white 
space this large is due to a void within the axon nerve bun-
dle and should be ignored.  Next, the every remaining blob 
has its holes filled to make it a solid object. 

 

ERODE CONNECTIONS 

The white area representing possible cells is now eroded 
back.  This gives two results: First, it helps separate any 
cells that may be touching each other and second, it removes 
some of the noise around the cell boundaries.  The size of 
the structuring element in this step is critical so that it will 
provide proper cell separation, but avoid removing small 
cells. 

 

LABEL EACH BLOB 

At this point the user has the option to remove any cells 
touching the border or let them remain for further analysis.  
Each blob is now given an indexed value using the method 
described in [1] to help individually identify each cell for 
later calculations.  

 

 EVALUATE SIZE AND SHAPE 

Each cell candidate is evaluated for area and perimeter to 
determine if it a real cell or just debris. Many more factors 
can be analyzed, but my general lack of knowledge in this 
area prevents advanced identification techniques. 

 

OUTLINE GOOD CELLS 

Once the good cells have been identified, the original image 
is overlaid with a green outline of all the identified cells.  
Possible candidates thrown out during size and shape 
evaluation show up as a red overlay.  This step serves pri-
marily as verification for correct identification.  It is also 
helpful to further tune system performance to achieve opti-
mum results. 

 

III.     RESULTS 
 

This algorithm has two main user controllable parameters: 
adaptive filter size and boundary cell exclusion.  The size of 
the adaptive filter is greatly influenced by the average cell 
size.  Too large of a filter window won’t pick up the slight 
variations of small cells and too small of a filter effectively 
enhances noise.  For all of the scenarios presented the adap-
tive filter size stays constant at 11 x 11 pixels.  The bound-
ary cell exclusion flag will discard any cells lying on the 
edge of the image.  For all scenarios presented this flag will 
remain at 1 to discard all edge cells. 

 

SCENARIO 1 

The image given for scenario 1 as seen in Figure 3 is fairly 
dark and has extremely low contrast.  Both the original and 
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Figure 2 – General outline of the algorithm process 



count overlaid images are shown for the first scenario, but 
the original image will be omitted for all remaining scenar-
ios.  Most of the cells are fairly uniform in size with the 
exception of one vastly larger cell on the image edge.  The 
algorithm in this case yielded 4 alpha errors and 3 beta er-
rors.  The overall poor quality of this image gives rise to the 
high alpha and beta error rates.  

 

SCENARIO II 

In figure 4 the overall intensity of the image is much 
brighter.  The algorithm had little trouble picking out the 
inside edge of the large cells.  One will notice that more 
than 2 cells exist in this image but the two cells in the bot-
tom right corner both come into contact with the edge and 
are therefore removed from the initial cell segmentation and 

identification process.  If the user chose to include boundary 
cells then those two cells would also be included.  It was 
particularly difficult to optimize the algorithm to handle 
both low and high contrast images without having to adjust 
parameters in between simulations.  The need to not adjust 
parameters between runs is essential for providing a com-
pletely automated counting process.  The accuracy for this 
image was 100% with no alpha or beta errors. 

 

SCENARIO III 

Figure 5 shows some interesting output evaluations from 
this algorithm.  The two incorrectly identified cells are 
shown with red Xs.  There are also two tightly positioned 
cells incorrectly identified as one cell.  The yellow slash in 
figure 5 indicates the algorithm correctly counted the cell, 
but incorrectly identified the shape of the cell.  It is interest-
ing to point out that one of the other cells on the far left also 
has an incorrectly identified boundary. 

 

Figure 3 – Scenario 1 (original – top / counted – below) 
Green Outlines – Identified Cells 
Red Outlines – Rejected Cells 
Red Xs – False Positives 
Yellow Circles – False Negatives 
Red Slashes – 2 Cells identified as 1 cell 

Figure 4 – Scenario 2 

Figure 5 – Scenario 3 



An interesting aspect of scenario 3 is how the algorithm 
correctly rejected the 7 smaller candidate cells.  This image 
produced an overall accuracy of 89% with 2 alpha errors 
and 1 beta error. 

 

SCENARIO IV 

The algorithm processed the image shown in figure 6 for 
scenario 4 with a great deal of accuracy.  The results were 
almost flawless.  The one problem as shown in figure 6 is 
that again two adjacent cells were identified as a single cell.  
Attempts were made to fix this problem by eroding more of 
the cell away during processing, but that had the adverse 
effect of preventing the smallest cells from being detected.  
The accuracy on this image is 96% with no alpha errors and 
one beta error. 

 

 
SCENARIO V 

The image for scenario 5 was quite different than any of the 
other images.  As seen in figure 7, many of the cells were 
long oval shaped sections surrounded by “white space” that 
is easily confused as a cell.  The 3 alpha errors occur where 
the non-cell area around a cell is a similar size and shape to 
a normal cell.  The completely missed area identified by a 
yellow ellipse does not show the typical cell wall gradient 
on the right side.  This is what caused the algorithm to com-
pletely ignore that area.  It just appears as a large blank area.  
The detection accuracy in this scenario was only 78%. 

 

SCENARIO VI 

This scenario proved to be the most difficult. The image 
provided and shown in figure 8 shows what looks like the 
edge of the nerve bundle where the axons become smaller 
and smaller to seemingly vanish at the edge.  It was very 
difficult for the algorithm to distinguish between cell and 
space along the edge region.  A total of 6 cells were missed 
including the half counted cell to the right of the image.  

Figure 6 – Scenario 4 

Figure 7 – Scenario 5 

Figure 8 – Scenario 6 (original – top / counted – below) 



The algorithm also determined that 4 cells existed in the 
void space to the left when, in fact, nothing does.  The accu-
racy in this image is only at about 80%.  That number is 
deceivingly high since the number of total cells in the image 
is larger than the other images. 

 

Strong indications about the versatility of this algorithm 
come from the results in scenarios 5 and 6.  The ability and 
accuracy of this algorithm to detect axons of greatly varying 
eccentricity produces a problem if the general population of 
cells contains a high percentage of both oval and circle sil-
houettes.   The problems dealing with large void space in an 
image is apparent in figure 8.  Processing of the entire nerve 
bundle requires some sort of filtering to effectively remove 
all the space around the nerve bundle.  This step would have 
normally filtered out the left part of the image in scenario 6, 
but since only a portion of the axon bundle was processed 
that initial bundle-filtering step did not occur.  Overall the 
total cell count from the algorithm came to 94% of the total. 

 

ADDITIONAL TRIALS 

As a form of comparison between different methods of axon 
counting this algorithm was run on two other larger and 
more complicated images.  The first image, seen in figure 8, 
is roughly 40x larger than the previous scenarios.  It is very 
positive to see that both the 10 or so very large axons are 

detected in addition to many of the smaller axon segments.  
However it is also troublesome that many cells in the image 
are easily identifiable and are not marked as cells.  Looking 
through the multiple states of image processing yielded the 
result that many of the cells have a small portion the “bleeds 
into the surrounding void areas.  If this happens then when 
the large void areas are discarded some of the cells go along 
with it.  Attempts were made to prevent this by eroding im-
ages further.  This often would fix the problem of cell bridg-
ing, but at the same time would discard many of the smaller 
cells that make up a much larger portion of the image.  
While the algorithm does do a good job at identifying the 
cells with a stronger cell wall gradient many of the smaller 
cells with fuzzy or washed out boundaries are omitted.  No 
attempt was made to validate these results to date but the 
evaluated total number of nerve cells produced by the algo-
rithm is 451 cells.  The algorithm was also run on a high-
resolution image of the entire nerve bundle, figure 1.  Since 
the image was so large it was of little benefit to show cell-
tracing accuracy in this paper. Instead figure 10 shows a 
black and white image of the axon nerve bundle reduced b 
82x where each white blob represents a counted axon.   The 
total number of counted axons by the algorithm was 45,167 
cells and if we assume that only 94% were counted as dem-
onstrated in the first 6 scenarios then the total axon count in 
the bundle would be 48,050 cells. 

 

IV.     DISCUSSION 
 
The presented counting algorithm utilizing adaptive thresh-
olding works fairly well for well-behaved cell populations 
and where voids in the inspected image do not resemble 
cells themselves.  For a more robust inspection and counting 

Figure 10 – Low Resolution image representing all of the 
“good” counted cells in the entire nerve bundle 

Figure 9 – Original assignment image (480x610 pixels) 
 



process higher contrast images with greater focus help tre-
mendously.  The greatest challenge was balancing different 
algorithm parameters to provide accurate detection for 
small, large, sharp, fuzzy, low contrast, and high contrast 
cells. 
 
The largest challenge was determining how to select the 
proper thresholding method and how to separate cells that 
joined together during the thresholding and segmentation 
stage.  If these two aspects could be improved the accuracy 
of the automated cell counting algorithm would drastically 
improve.  This method proved a starting point for automated 
cell counting in images with extremely high cell density.  
Inherent limitations in the algorithm and poor image quality 
prevent more accurate results at this time. 
 

V.     FUTURE IMPROVEMENTS 
 

ADAPTIVE THRESHOLD 

While the adaptive threshold model worked well, there were 
still areas within the entire axon that were not properly 
thresholded.  Further study on this matter may be necessary.  
The addition of some type of flooding algorithm [6] in com-
bination with the prior used methods may be beneficial.   

 

Methods for determining cell boundaries through the use of 
snakes and other dark line tracing methods have also been 
previously used [4].  Adaptive thresholding could be used to 
improve the overall contrast within local segments of the 
image.  At this point a snake algorithm could follow the 
darkest portion of a line around each cell.  This would allow 
the counting algorithm to utilize the gradient pattern specific 
to a certain cell family or characteristic.  Now something 
like a void of the same size and shape would not be regis-
tered as a cell.  Instead the algorithm would determine that 
the cell border gradient does not match that of a predeter-
mined cell type and ignore it. 

 

EVALUATE SIZE AND SHAPE 

As mentioned somewhat previously, Cells are not just gov-
erned by a specific size and shape.  Other characteristics 
such as wall thickness and intensity gradient also play a 
factor.  Consultation with a field expert would be required to 
properly gage these characteristics and include them into my 
model.  Once these types of judgments are assigned a nu-
merical value, they can be easily implemented into a soft-
ware package to automatically count cells. 

 

One of the difficult aspects is that it is easy for a trained 
operator to apply years of judgment when identifying cells 
while a computer program has only a limited set of evalua-
tive functions and data to judge from.  Giving a group of 
untrained individuals sample pictures with every good cell 
indicated only provides half of the story. 
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