
Image Resizing by Seam Carving in Python and Matched Masks
 Alexander Converse

Department of Electrical Engineering and Computer Science,
Case Western Reserve University, Cleveland, OH, Email: alexander.converse@case.edu

ABSTRACT
This paper explores a recently developed technique called
“seam carving” [1] to remove low energy seams from the
image to create a crop that preserves more information.
Rather than interpolating new pixels or removing a rigid
column of pixels, seam carving removes fluid seams of 8-
connected pixels. It further explores the concept of a
matched mask to prevent distortion.

KEYWORDS
Image, Resize, Crop, Retarget, Seam Carving, Retargeting,
Matched Mask, Python

INTRODUCTION
Shrinking images to fit in a smaller space than the original
image traditionally has employed scaling (e.g. bicubic re-
sizing) or cropping rows and columns edge pixels. Re-
searchers at the Mitsubishi Electric Research Lab have de-
veloped a new technique called seam carving to remove
seams of 8-connected pixels constrained in such a fashion
that there is one pixel per row for vertical seams or per col-
umn for horizontal seams [1].
Seam carving has been grossly popular since its introduc-
tion spawning many implementations [2], [3], [4], [5]. In
photographs of people seams may often travel through fac-
es causing a disproportion perceptional deforming com-
pared to energy removed. To combat this seam carving can
be combined with automatic face detection [6] and a
weighting mask causing marked areas to repel seams.
Another use of this algorithm is to remove unwanted ob-
jects from an image. This can also be achieved with a mask
this time to attract seams to certain areas. The process can
also be used to make images larger by adding seams [1].
The algorithm does cause heavy distortion on some images.
Sometimes it can be combated by a simple mask applied to
the images energy function but sometimes that doesn’t
help. A matched mask can be created to prevent distortion
of a region of interest. This approach does not seem to be
covered in the original literature [1].

ALGORITHM
An energy/complexity function is applied to the image. If
present the mask is applied to the energy function at this
time. A minimal energy seam through the energy image is
calculated at this point. The seam is then removed from the
image shifting pixels left for a vertical seam or up for a

horizontal seem. This process is repeated for each seam to
be removed.
The complexity function chosen was the absolute sum of
gradients:

1[,] [1,] [,]

[1,] [,]

[, 1] [,]

[, 1] [,]

e x y im x y im x y

im x y im x y

im x y im x y

im x y im x y

= − − +

+ − +

− − +

+ −

 (1)

This energy function was one of the two that the original
creators of the technique found most successful [1]. If the
image is color it is converted to grayscale for this step for
computational simplicity, though there is no other reason
why the gradient couldn’t be applied to each channel. Half
point symmetric padding is used at image edges. An exam-
ple of an image and its energy image can be seen in Figures
1 and 2.
If present the area attractance/avoidance matrix is applied
to the energy function by adding four times the green chan-
nel of the mask to the energy image for areas to preserve
and subtracting four times the red channel of the mask to
the matrix for areas to remove. The scaling factor of four is
present in both cases because four absolute gradients are
added.
To find a minimal energy seam, first the energy image is
converted into a cumulative energy image. This is done by
starting one row below the bottom and adding the mini-
mum of the 3 8-conencted pixels from the row below:

[] []
[]
[]
[]

1, ,

1, 1 ,

min , 1 ,

1, 1

cum

cum

cum

cum

e x y e x y

e x y

e x y

e x y

= +

⎛ ⎞− +
⎜ ⎟

+⎜ ⎟
⎜ ⎟+ +⎝ ⎠

 (2)

The direction of the movement is saved in a matching paths
image:

 []
[]
[]
[]

1, 1 ,

, argmin , 1 ,

1, 1

cum

cum

cum

e x y

path x y e x y

e x y

⎛ ⎞− +
⎜ ⎟

= +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

 (3)

This process is repeated for each row working toward the
top of the image. The seam chosen is then the lowest vale
from the top row of the cumulative energy image and the

appropriate movements from the paths matrix. Because
paths converge rapidly the energy and path information
must be computed from scratch for every seam removed.
Removing the best of a set of random seams was suggested
by one implementer in his work [2] and in his response to
others [3]. However, this caused significant performance
degradation in my implementation.
The seam is removes by shifting pixels left or up (for ver-
tical or horizontal seems respectively) in place of the seam.
When both horizontal and vertical seams need to be re-
moved, the seams are removed in alternating order. This is
not ideal removal order but it is close and saves a larger
computation step [1].
There is also a seam visualizer that colors in the seams ra-
ther than removing them. It works by maintaining a map-
ping of pixel positions in the resized image to their original
positions in the original sized image. The mapping is used
to translate the seam to be removed to its original co-
ordinates and color it in on a copy of the original image.
The map is update by removing the seam from the map
after coloring using the exact same method as removing the
seam from the image.
This method requires a storage size of twice the image size
but seems to be the only sane way to deal with crossing the
same seams multiple times and differentiating seam direc-
tion when compensating for removed seams.

MATCHED MASKS
Sometimes due to the nature of the image the seam carving
algorithm causes severe distortion. Additive masks can be
used to adjust this. Additive masks were discussed earlier
in the algorithm section. The problem is that in some areas
that are of equal visual importance energy varies in bands
having some bands of high energy and some of low energy,
this causes seams to condense in the low energy areas. If
the area is irregularly shaped this often causes huge distor-
tion (figures 9-10). The easy solution to this is to equalize
the energy over the area. This is easily accomplished by
taking the energy of the region of interest and subtracting it
from the regions maximum value to create an additive
mask. This however usually causes all seams to avoid the
area causing the area to undesirably dominate the image.
This can be combated by creating a second mask, this time
subtractive, in the same shape but of constant intensity. The
constant intensity should be around or a little below the
average of the additive mask. The mask should be norma-
lized by dividing by the scaling constant used when apply-
ing the mask (in this case 4). An example of such a mask
can be seen in figure 15.

IMPLEMENTATION DETAILS
The algorithm is implemented in python using the Numpy
[7] library for numerical computation and the Python Imag-
ing Library [8] for file input/output. Matrix and vector
computations are used so that the heavy lifting is done in
Numpy’s compiled and vectorized C and FORTRAN in-

stead of element-by-element in Python. The usage of Num-
py disallows the use of more modern, faster, more experi-
mental python interpreters like IronPython, Jython, or Py-
Py. However, the psyco JIT for python can be used to op-
timize code on platforms where it is present and supported.
Scipy’s weave module can be used to further optimize the
code [9].
All algorithms are implemented in the vertical direction
only. Horizontal seam removal is done by the vertical me-
thods after transposition.
The overall performance is a little under 1 second per seam
removed including marking the seams which is unneces-
sary in most cases where analysis afterwards is not re-
quires.

DISCUSSION OF RESULTS
The Lena test image is shown resized from 512x512 to
480x480 in figures 1-4. The seams do a pretty good job of
avoiding the important areas of the image however several
lines go straight through her face causing an odd distortion.
This can be combated by using a weighting mask as shown
in figures 5-7.

Figure 1: Lena Image

F

Figure 3

Figure 2: Lena

3: Lena’s seam

Figure 4: L

a’s energy ma

ms marked for

Lena resized

ap

r removal

F

Fig

Large
In figu
480x64

Figure 5: Addit

ure 6: Seams

Figure 7

resizes can ca
ures 8-10, a p
40. The trees

tive mask app

to be remove

7: Lena resized

ause significant
picture was re

distorted to t

plied to Lena im

ed from maske

d with mask

t distortion in
sized from 76
the level of a

mage

ed Lena

the image.
68x1024 to

Dr. Seuss

illustration, and where the waves start breaking the trunks
get pinched out. The pinching out of the trunks can be re-
moved with a simple mask (figures 11-12). The distortion
of the trunks is a little more complicated. The trunks have a
banded texture that seems to concentrate the seams in bun-
dles on the bands. Making the mask bigger to include the
whole tree trunks causes the trunks to dominate the image
and strange diagonal sheering is visible on the trunks (fig-
ures 13-14).
This problem can be solvable by a variable intensity mask
that evens energy on the trunk (figures 15-16). The
matched mask was generated manually in an image mani-
pulation program but the process could be automated only
requiring manual specification of a region of interest. The
process is described on in the section of this paper titled
Matched Masks. The sky still looks a little damaged but
overall it looks considerable better than the first attempt at
resizing. It is important to remember that in this case over
half of the pixels in the image were removed.

Figure 8: Venice Beach Image

Figure 9: Seams to be removed from Venice Beach

Figure 10: Venice Beach resized

Figure 11: A

Figure 12: Ve

Additive mask
stu

enice Beach re
stu

k to protect Ve
mps

esized with ma
mps

enice Beach

ask protecting

g
Fig

Figure 13: L

gure 14: Venic

Large mask fo

ce Beach resiz

or Venice Beac

zed with large

ch

e mask

O
s
a
r
th
r
p
s
2

Figure 15: M

Figure 16: V

Object removal
subtractive ma
and the image i
resizing in two
he object (figu

required it can
program. The d
significantly on
20), but in mos

Matched mask
additive, red

enice Beach r

l is demonstrat
sk is painted o
is resized in on
dimensions ca

ure 19). If resi
be done is a s

distortion is no
n the seams s
st cases one dim

for Venice Be
is subtractive

resized with m

ted in figures
over the surfer
ne dimension o
auses nasty war
zing in a seco
econd indepen
t universal how
selected in thi
mension will b

each (green is
e)

matched mask

17-21. A simp
r to be remove
only. In this ca
rping in place
nd dimension

ndent pass of th
wever it is base
is image (figu
be mostly undi

ple
ed
se
of
is

he
ed

ure
is-

torted.
undesi

Figu

 The algorithm
irable object de

Figure 17: Im

ure 18: Big Sur

Figure 19:

m does a wond
ead center from

mage of Morro

r reduced by 5

 Mask for rem

derful job of re
m the image.

o Rock at Big S

50 pixels on e

moving a surfe

emoving an

Sur

each axis

er

Figure 19: Big Sur with surfer removed (1-axis)

Figure 20: Big Sur with surfer removed (2-axes)

Figure 21: Selection of seams that causes distortion

FUTURE DEVELOPMENT
There are several changes to this program that can be made
to improve upon it. Image upsizing can be implemented as
seen in the original paper [1]. The code can be optimized
by rewriting functions dedicated to horizontal seams, using
scipy.weave [9], and having an option to turn off drawing
seams. A front end to call the program from The GIMP, a
popular free image editor [10], can be added. Most impor-
tantly, matched mask generation can be automated.

SUMMARY
The techniques developed at M.E.R.L. [1] for image retar-
geting seam to work quite well for simple resizing and ob-
ject removal. Overall the technique is quite sound. The ad-
dition of matched masks seems to help out considerably in
tricky cases. There are many other things that can be ex-
plored based on this including video resizers (as proposed
by the original authors [1]) and new energy functions.

ACKNOWLEDGMENTS
The photographs of the California coast included are public
domain from pdphoto.org. Specifically:

• http://www.pdphoto.org/PictureDetail.php?mat=p
def&pg=5101

• http://www.pdphoto.org/PictureDetail.php?mat=p
def&pg=8165

APPENDIX – CODE LISTING
Seamcarve.py: The image resizer written in python. Re-
quires Numpy [7] and PIL [8].

REFERENCES
[1] S. Avidan and A. Shamir, "Seam carving for con-

tent-aware image resizing." ACM SIGGRAPH
2007 Papers (San Diego, California, August 05 -
09, 2007). SIGGRAPH '07. ACM, New York,
NY, 10.

 URL:
http://doi.acm.org/10.1145/1275808.1276390

 [2] H. Yee, "Seam Carving for Image Resizing - My
Quick and Dirty Implementation," Hectorgon -
Graphics, Books and Technology.

 URL :
http://hectorgon.blogspot.com/2007/08/seam-
carving-my-quick-and-dirty.html

[3] M. Klingemann, "Optimizing Seam Carving,"
Quasimondo - Mario Klingemann's Flash Blog.

 URL:
http://www.quasimondo.com/archives/000652.php

[4] J. Ebert, "Content-aware image resizing,"
blog.je2050.de - blog and database of joa ebert.

 URL: http://blog.je2050.de/2007/09/02/content-
aware-image-resizing/

[5] S. Ramin, "Liquid Resize."
 URL: http://www.thegedanken.com/retarget/
[6] Rein-Lien Hsu; M. Abdel-Mottaleb; and A.K.

Jain, "Face detection in color images," Transac-
tions on Pattern Analysis and Machine Intelli-
gence, vol.24, no.5, pp.696-706, May 2002.

 URL:
http://ieeexplore.ieee.org/iel5/34/21601/01000242.
pdf?isnumber=21601&prod=STD&arnumber=100
0242&arnumber=1000242&arSt=696&ared=706
&arAuthor=Rein-Lien+Hsu%3B+Abdel-
Mottaleb%2C+M.%3B+Jain%2C+A.K.

[7] "Numpy Home Page."
 URL: http://numpy.scipy.org
[8] "Python Imaging Library (PIL)."
 URL: http://www.pythonware.com/products/pil/
[9] "PerformancePython."
 URL: http://www.scipy.org/PerformancePython
[10] "The Gimp."
 URL: GIMP - The GNU Image Manipulation Pro-

gram

	ABSTRACT
	KEYWORDS
	INTRODUCTION
	ALGORITHM
	MATCHED MASKS
	IMPLEMENTATION DETAILS
	DISCUSSION OF RESULTS
	FUTURE DEVELOPMENT
	SUMMARY
	ACKNOWLEDGMENTS
	APPENDIX – CODE LISTING
	REFERENCES

