
Automated Axon Counting via Digital Image
Processing Techniques in Matlab

Joshua Aylsworth

Department of Electrical Engineering and Computer Science,

Case Western Reserve University, Cleveland, OH

Email: joshua.aylsworth@cwru.edu

Abstract
This paper presents the design of an algorithm that uses

various image enhancement and image processing tech-

niques to count axons in the optical nerve of a mouse. The

digital image is the cross section of the nerve stemming

from the eye in route to the brain. The goal of the algo-

rithm is to be able to accurately detect the axons and give

the user a count of the number axons present in the image.

KEYWORDS

Cell Segmentation, Image Segmentation, Axons, Image

Processing, Adaptive Thresholding, Watershed, Matlab,

Morphological

INTRODUCTION

Determining the number of axons in the optical nerve is

largely dependant on being able to correctly determine,

among proper regions of interest, the edges of the shapes.

One of the challenges faced during this exercise is being

able to overcome a low contrast image; or so it would

seem. Eddins suggests that the contrast actually doesn’t

contribute much to the success of segmenting the shapes

[2], [4]. Instead, creating a high contrast is merely to aid the

user. There can be different approaches to segmenting

shapes that aren’t uniform. Hodnelad et al uses a method

of level set for watershed image segmentation [1]. Water-

shed seems to be a common method. Yan et al also use the

Watershed method to identify cell phase identification with

their algorithm [3]. All users seem to do a significant

amount of pre processing to any of the images being ana-

lyzed. Other typical preprocessing methods include mor-

phological operations including dilations, erosions, open-

ings, etc [3, 5]. The Otsu thresholding technique is another

technique that is commonly used. The Otsu can have some

drawbacks as although it is designed to minimize variance

in a histogram, it can be processing time intensive. Also, as

with any global threshold, Otsu doesn’t lend itself to doing

a very good job where there is a low contrast image. One

method to account for this, is to separate your image into

different regions and determine an Otsu threshold for each

of the regions of your image. Recombining the image fol-

lowing after processing each region independently typically

will yield better results. An alternative to breaking your

image apart and having to create multiple segments and

using the labor-intensive code, one can instead use a

method called adaptive thresholding [3]. Adaptive thresh-

olding uses an averaging filter combined with local neigh-

borhood filtering to compare the current data location to the

mean of the specified window or neighborhood size. If the

user chooses, they can use the local median as the decision

point [5,3]. Using a local neighborhood accounts very well

for non-uniformities of grayscale intensities within the

same image. This eliminates the need for any complex

image partitioning. After the image is thresholded, the

edges can be found. Or, depending on the technique used,

the edges could be found while thresholding, as in the case

with the Canny filter. In this case, much like that of Eddins

[5], if a good job is done up front in the preprocessing,

simply being able to identify the perimeter of the image

segments, axons, will serve the same function as identify-

ing an edge. After creating an image that shows where the

distinct edges of the axons are, counting is the last remain-

ing task at hand. There are various techniques for this as

well, but there are already tools built into Matlab for ac-

complishing this feat, so it won’t be explored in great de-

tail.

AUTOMATED AXON DETECTING ALGORITHM

The algorithm and method of detecting and counting the

number of axons present in an image will now be pre-

sented. All of the images presented for processing were in

a three-layer RGB format. In an effort to work with a sin-

gle layer, the color image is transformed into a gray scale

or intensity image. While this can be done via a basic im-

age processing formula:

3

BGR ++
 (1)

it isn’t necessary to complete the transformation. As any-

one who is accustomed to using Matlab for image process-

ing purposes knows, there is an extensive toolbox already

built in that accomplishes much of the legwork for you –

even when building complex algorithms. The real art in

creating a good algorithm is knowing how the tools work

and determining when to use the right tool and which tool

to use. This discussion aside, the actual transformation was

performed by employing the rgb2gray function. This func-

tion takes an input image, f, and outputs, g, which is the

grayscale version of the color f. The algorithm written for

determining the proper number of axons uses f_gray as its

handle. In order to study some of the basic properties of

the image of interest, it is always a good idea to look at the

distribution of gray levels. After looking at the distribu-

tion, one can determine probabilistic characteristics of the

image which opens up doors for lots of different opportuni-

ties in the image processing world. While this algorithm

didn’t use probabilities in the strict sense, probabilities cer-

tainly come into play regarding where an edge may be

called an edge or the probability that a pixel is thresholded

correctly. These cases will certainly be a factor when try-

ing to determine where the axons are in the image. Again,

making good use of Matlab’s extensive image processing

toolbox, one can view the histogram of gray levels in an

image by using the imhist command. In an image where

there may be a significant amount of noise combined with

relevant image information, averaging helps to make the

noise less dominant. Averaging, or applying a low-pass

filter is a common technique used in image processing to

exaggerate changes. A preferred method of low- pass filter-

ing is a Gaussian filter. Using the Matlab command fspe-

cial and designating the argument of ‘gaussian’ one can

create a Gaussian low pass filter of size MxN where M is

the number of rows and N is the number of columns. Typi-

cally, a square matrix is used. In this algorithm a 5x5

square Gaussian low pass filter was used to ‘smooth’ the

image. After smoothing the image, the histogram was ex-

amined again to see what kind of impact was made on the

distribution of pixels. Many times this can help exaggerate

a difference in a bi-modal distribution of gray levels mak-

ing further image processing quite easier. In other cases

where the original was very close to a normal distribution,

there is very little impact made on the histogram. At this

point in the algorithm, there are many roads to travel. One

leads you in the way of morphological gradients, Laplacian

gradients or any other method of determining the edges.

Matlab has a built in edge tool that lets the user select from

a half dozen or so different options. The main goal to keep

sight of is that the user eventually wants to obtain the edges

of all of the axons in the image so that some counting tech-

nique can be applied. In an ideal case, the edges should be

contain no breaks in them so that there can be formed a

complete perimeter. The edges are nearly always in a logi-

cal image, white on black to make it easy for the user to

interpret where they are. In order to get this binary image,

one has to determine the value in the gray level distribution

in which every pixel above is white, and on the contrary,

every pixel below is black. A very crude way of doing this

is by trial and error; most likely starting in the center of the

distribution, unless there is an obvious point that stands out.

This is not efficient and certainly there has got to be a more

advanced method. This is where Otsu’s technique could

potentially come into play. The aim of Otsu’s thresholding

technique is to minimize the variation between segments.

Otsu’s technique is built into Matlab as well and can be

exercised by using the graythresh command. As is com-

mon knowledge among image processors, typically a sim-

ple global threshold does not perform very well unless

there is an obvious break in the histogram from one distri-

bution to the next. Moving along with this possible tech-

nique, it would be advised to partition the image into mul-

tiple areas and determine an Otsu threshold value for each

of the areas. After doing this, one can threshold the image

in a more localized manner. A different approach, the ap-

proach that was taken in this algorithm was to use an adap-

tive threshold. By doing so, the non uniformities can be

taken into account throughout the image. Instead of having

to partition an image or use a global threshold, the user can

choose an MxM square matrix and determine whether they

wish to use a median or mean of a local MxM neighbor-

hood to determine a pixel’s fate. This method says that if

the pixel of interest is below the local median, then it will

be a 0, or a black pixel. If above the mean or median, then

that pixel will be a 1, or a white pixel [3] [4]. There is a

function called adaptivethreshold that can be downloaded

from the Mathworks website that performs this for the user

in Matlab. The output is a black and white logical image.

Now this image will require a little bit of cleaning up in

order to make it easier to find the proper edges. The first

step in making the image more manageable is to fill in all

of the holes. Since the shapes of the axons, while not circu-

lar, typical resemble some sort of ring, there is always an

outside and an inside. The idea is the fill in the in side so

that there is one solid white shape instead of a white ring

with a black center. Using the command imfill and specify-

ing the ‘holes’ method, this exact task is performed. Next,

to remove spurs, there is applied some morphological op-

erations. Using a structuring element of ones sized 5x5, an

opening is performed via the imopen function in Matlab.

An opening is the morphological equivalent of first per-

forming an erosion and then following with a dilation.

Now having studied the images of interest, and knowing a

little bit about them, it is safe to say that we’d like to re-

move small pixel formations. The risk here of course is that

we may actually remove an axon, but this step helps to

eliminate any surviving noise clusters. Using the

bwareaopen function in Matlab, small white pixel groups

are removed successfully. Now that the binary image is

cleaned up, one can make use of the bwperimeter tool in

Matlab. This tool will create a second image that contains

only the edges of each of the axons. The last thing that re-

mains is to count the number of perimeters, axons, that are

in the image. This action is performed by evoking the

bwlabel command. Also, in an effort to see how well this

algorithm performed in comparison to the original image,

one can search mathworks.com for the imoverlay tool. Hav-

ing this tool the image obtained from using the bwperime-

ter tool can be overlaid as any color onto the original im-

age.

RESULTS AND DISCUSSION

Now that the procedural technique of the algorithm has

been presented, the results will be shown to see how well it

works. There are six different images that were supplied.

The complete algorithm results will be displayed fully for

one of the best performing cases as well as one of the worst

performing cases to display instances where the algorithm

worked very well and to exploit some of its shortcomings.

As discussed in the previous section, the first order of busi-

ness is to import the image into Matlab.

Original Image

Figure 1 – Sample 4.tif

Figure one is the imported image, original and not en-

hanced. After importing the image into Matlab, the next

step was to transform it to a gray scale image. There isn’t

much difference visible to the user, but it does turn into a

single layer intensity image.

Image transf ormed to Gray scale

Figure 2 – Single layer intensity image

Nothing is too apparent in terms of differences that jump

out at the viewer. One note of cosmetics is the description

immediately below each image. This is an imcredit func-

tion written by Eddins [2] [4].

0 50 100 150 200 250

0

20

40

60

80

100

120

140

160

Histogram of Original Image

Figure 3 – Histogram of Original Grayscale

After looking at the histogram of the original image, no apparent

obvious thresholding points are apparent. Lest the image is low

pass filtered at any rate to effectively smooth the image. After the

smoothing is applied, the following is the histogram of the

smoothed image.

0 50 100 150 200 250

0

20

40

60

80

100

120

140

160

Histogram of Image af ter
Gaussian Filter Applied

Figure 4 – Histogram of Smoothed Image

There is little to no difference in the distribution of pixels, even

after smoothing. One can take note of the slightly pronounced

potential separation of the distribution near the peak.

Binary Image af ter
Thresholding

Figure 5 – Adaptivethreshold applied to image

Obtained is figure 5 after applying the adaptivethreshold

command in Matlab. Again, this looks at a local prese-

lected size neighborhood. It is a moving window sized 9x9.

In the image, some small noisy pixel clusters still remain as

well as some spurs. The image will need cleaned up a bit.

Cleaned up image

Figure 6

To clean up the image, first, the rings that represent the axons

were filled in with white pixels. Then the morphological erosion

and dilations via the imopen command were performed. Then the

bwareaopen was applied to eliminate the noisy pixel clusters.

Compared to the original thresholded image, one can see the gen-

eral shape of most of the axons start to be pronounced.

Edges of Axons
Figure 7 – Edges Obtained

Figure 7 represents the edges of the axons. These edges

were obtained using the bwperimeter function in Matlab as

opposed to using gradient options. While gradient options

may or may not have worked well, the following image

suggests that, in this case, the algorithm did a pretty good

job at successfully finding the axons.

Axons recognized by Algorithm
Figure 8 – Original Image with Edges

Looking at the Gold standard image supplied by the expert in the

field, a quantifiable conclusion can be drawn regarding the suc-

cess of the algorithm.

Figure 9 – Gold Standard

All in all, the algorithm did a very nice job accurately selecting

the axons. In Sample 4, there are 36 axons in the gold standard

image identified by the field expert. Of these 36 axons, the algo-

rithm correctly identified 35 of them. This equates to finding

97.2% of the axons. The algorithm reported finding 39 total ax-

ons. Since 35 of them were correct, this means it triggered 4 false

positive responses for a 89.7% correct reporting rate and a 10.3%

false positive rate. This is certainly not bad given the quality of

the image with which to work.

Now that one of the most successful cases has been examined, one

of the lesser successful cases will be presented.

Image transf ormed to Gray scale

Figure 10 – Sample 5 after converted to grayscale

Notice the areas as indicated by the arrows. These areas

are wide spaces where according to the expert, there is no

axon present. However, these areas seem to be nearly en-

closed by a black ring. This is what typically is the signa-

ture of all other axons. The algorithm sees the change be-

tween black and white and believes that these are axons and

the following figures will illustrate this point.

0 50 100 150 200 250

0

20

40

60

80

100

120

140

160

Histogram of Image af ter
Gaussian Filter Applied

Figure 11 – Histogram after Gaussian Low Pass Filter

Again, notice there isn’t an intuitive place to put the threshold.

Perhaps in the area of the 140 level would be the best place.

Binary Image af ter
Thresholding

Figure 12 – Adaptivethresholded image

Again, take note of the areas in which the algorithm tends to

struggle a bit. This will be further pronounced in the next figure.

Cleaned up image

Figure 13

Notice how the algorithm believes that there are axons in the areas

highlighted by the arrows.

Axons recognized by Algorithm

Figure 14 – Edges detected by algorithm overlaid on original im-

age

Figure 15 – Gold Standard of Sample 5

Notice that the algorithm did a very good job at finding all of the

axons in the gold standard. The biggest draw back is the wide

open space in between axons in some regions of the image. This is

where the adaptive threshold actually becomes a little bit of a

problem for the algorithm. Since there is a lot of white or gray

pixels in a wide space where there is no axon, any black pixel

noise will greatly stand out as being below the local neighborhood

mean. Since it stands out the algorithm sets it below the threshold

and creates a false positive. The quantifiable statistics are as fol-

lows. There are 13 axons as identified by the expert in Sample 5.

The algorithm successfully identified all 13 for a 100% success

rate in finding axons. However, the algorithm reported finding 25

total axons. This means that only 52% of the axons it reported

were correctly identified and 48% of them were false positives.

The following images will illustrate the rest of the samples with

algorithm-identified axons and the gold standards.

Axons recognized by Algorithm

Figure 16 – Sample 1 with axons identified

Figure 17 – Sample 1 Gold Standard

Axons recognized by Algorithm
Figure 18 – Sample 2 Axons Identified

Figure 19 – Sample 2 Gold Standard

Axons recognized by Algorithm
Figure 20 – Sample 3 Axons Identified

Figure 21 – Sample 3 Gold Standard

Axons recognized by Algorithm

Figure 22 – Sample 6 Axons Identified

Figure 23 – Sample 6 Gold Standard

CONCLUSIONS

When the algorithm is applied to areas of axon clusters where

there is little wide open space, it does a very good job counting all

axons present with a minimal number of false positives. When

there tends to be more space in the image where no axons are

present, the algorithm tends to struggle. Perhaps some sort of

masking technique could be developed. One command that may

help is the imclearborder command. This command in Matlab

eliminates anything that is on the edge of the image from being

considered. This might help when using a larger image.

Image

Axons in Goldd

Standard Imaage

Axons Reportted

by Algorithm

Axons Reportted

Correct ly

% Reporteed

Cor rect

False

Posit ivees

% Falsee

Posit ivve

1 4 0 4 4 3 7 84.1% 7 15.9%

2 5 1 0 5 50.0% 5 50.0%

3 3 2 3 7 3 0 81.1% 7 18.9%

4 3 6 3 9 3 5 89.7% 4 10.3%

5 1 3 2 5 1 3 52.0% 1 2 48.0%

6 3 3 3 4 2 9 85.3% 5 14.7%
Figure 24 – Table of Axon Success Rate

In figure 24, one can see the rate at which the total number of

axons reported by the algorithm were correct, and the total num-

ber of false positives identified. In images 1,3,4 and 6, the axons

were grouped much more tightly than in images 2 and 5. This

supports the ‘wide open space’ conclusion.

Axons in Goldd

Standard Imagge

Axons in Gold

Standard Reportted

% Axons in Goldd

Standard Reportted

Missed

Axons % Missed

4 0 3 7 92.5% 3 7.5%

5 5 100.0% 0 0.0%

3 1 3 0 96.8% 1 3.2%

3 6 3 5 97.2% 1 2.8%

1 3 1 3 100.0% 0 0.0%

3 3 2 9 87.9% 4 12.1%
Figure 25 – Table of Axons found compared to Gold Stan-

dard

In figure 25, one can see that, overall, the algorithm did a

very good job at finding all of the axons present in the im-

age. On average, over 95% of the real axons are found

every time. To make this a most reliable method of axon

counting, however, as illustrated in figure 24, the number

of false positives would have to be reduced.

ACKNOWLEDGMENTS

This work was supported by and in support of the Biology

department of the Case Western Reserve University, Cleve-

land, OH.

REFERENCES

[1] Erlend Hodnelad, Xue-Cheng Tai, Joachim

Weickert, Nickolay V. Bukoreshtliev, Arvid Lun-

dervold, and Hans-Hermann Gerdes "Level set

methods for watershed image segmentation"

 [2] Rafael Gonzalez, Richard Woods and Steven Ed-

dins, Digital Image Processing Using Matlab.

[3] Jun Yan, Xiaobo Zhou, Qiong Yang, Ning Liu,

Qiansheng Cheng and Stephen T.C. Wong, "An

Effective System for Optical Microscopy Cell Im-

age Segmentation, Tracking and Cell Phase Identi-

fication"

 [4] www.mathworks.com

[5] Bin Fang, Wynne Hsu and Mong Li Lee, "Tumor

Cell Identification Using Features Rules".

