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Abstract 
This paper presents the design of an algorithm that uses 

various image enhancement and image processing tech-

niques to count axons in the optical nerve of a mouse.  The 

digital image is the cross section of the nerve stemming 

from the eye in route to the brain.  The goal of the algo-

rithm is to be able to accurately detect the axons and give 

the user a count of the number axons present in the image.  
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INTRODUCTION 

Determining the number of axons in the optical nerve is 

largely dependant on being able to correctly determine, 

among proper regions of interest, the edges of the shapes.  

One of the challenges faced during this exercise is being 

able to overcome a low contrast image; or so it would 

seem.  Eddins suggests that the contrast actually doesn’t 

contribute much to the success of segmenting the shapes 

[2], [4]. Instead, creating a high contrast is merely to aid the 

user.  There can be different approaches to segmenting 

shapes that aren’t uniform.  Hodnelad et al uses a method 

of level set for watershed image segmentation [1].  Water-

shed seems to be a common method.  Yan et al also use the 

Watershed method to identify cell phase identification with 

their algorithm [3].  All users seem to do a significant 

amount of pre processing to any of the images being ana-

lyzed. Other typical preprocessing methods include mor-

phological operations including dilations, erosions, open-

ings, etc  [3, 5]. The Otsu thresholding technique is another 

technique that is commonly used.  The Otsu can have some 

drawbacks as although it is designed to minimize variance 

in a histogram, it can be processing time intensive.  Also, as 

with any global threshold, Otsu doesn’t lend itself to doing 

a very good job where there is a low contrast image.  One 

method to account for this, is to separate your image into 

different regions and determine an Otsu threshold for each 

of the regions of your image.  Recombining the image fol-

lowing after processing each region independently typically 

will yield better results.  An alternative to breaking your 

image apart and having to create multiple segments and 

using the labor-intensive code, one can instead use a 

method called adaptive thresholding [3].  Adaptive thresh-

olding uses an averaging filter combined with local neigh-

borhood filtering to compare the current data location to the 

mean of the specified window or neighborhood size.  If the 

user chooses, they can use the local median as the decision 

point [5,3].  Using a local neighborhood accounts very well 

for non-uniformities of grayscale intensities within the 

same image.  This eliminates the need for any complex 

image partitioning.  After the image is thresholded, the 

edges can be found.  Or, depending on the technique used, 

the edges could be found while thresholding, as in the case 

with the Canny filter.  In this case, much like that of Eddins 

[5], if a good job is done up front in the preprocessing, 

simply being able to identify the perimeter of the image 

segments, axons, will serve the same function as identify-

ing an edge.  After creating an image that shows where the 

distinct edges of the axons are, counting is the last remain-

ing task at hand.  There are various techniques for this as 

well, but there are already tools built into Matlab for ac-

complishing this feat, so it won’t be explored in great de-

tail. 

 

AUTOMATED AXON DETECTING ALGORITHM 

The algorithm and method of detecting and counting the 

number of axons present in an image will now be pre-

sented.  All of the images presented for processing were in 

a three-layer RGB format.  In an effort to work with a sin-

gle layer, the color image is transformed into a gray scale 

or intensity image.  While this can be done via a basic im-

age processing formula: 
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it isn’t necessary to complete the transformation.  As any-

one who is accustomed to using Matlab for image process-

ing purposes knows, there is an extensive toolbox already 

built in that accomplishes much of the legwork for you – 

even when building complex algorithms.  The real art in 

creating a good algorithm is knowing how the tools work 

and determining when to use the right tool and which tool 

to use. This discussion aside, the actual transformation was 

performed by employing the rgb2gray function. This func-



tion takes an input image, f, and outputs, g, which is the 

grayscale version of the color f.  The algorithm written for 

determining the proper number of axons uses f_gray as its 

handle.  In order to study some of the basic properties of 

the image of interest, it is always a good idea to look at the 

distribution of gray levels.  After looking at the distribu-

tion, one can determine probabilistic characteristics of the 

image which opens up doors for lots of different opportuni-

ties in the image processing world.  While this algorithm 

didn’t use probabilities in the strict sense, probabilities cer-

tainly come into play regarding where an edge may be 

called an edge or the probability that a pixel is thresholded 

correctly.  These cases will certainly be a factor when try-

ing to determine where the axons are in the image.  Again, 

making good use of Matlab’s extensive image processing 

toolbox, one can view the histogram of gray levels in an 

image by using the imhist command.  In an image where 

there may be a significant amount of noise combined with 

relevant image information, averaging helps to make the 

noise less dominant.  Averaging, or applying a low-pass 

filter is a common technique used in image processing to 

exaggerate changes. A preferred method of low- pass filter-

ing is a Gaussian filter.   Using the Matlab command fspe-

cial and designating the argument of ‘gaussian’ one can 

create a Gaussian low pass filter of size MxN where M is 

the number of rows and N is the number of columns.  Typi-

cally, a square matrix is used. In this algorithm a 5x5 

square Gaussian low pass filter was used to ‘smooth’ the 

image.  After smoothing the image, the histogram was ex-

amined again to see what kind of impact was made on the 

distribution of pixels.   Many times this can help exaggerate 

a difference in a bi-modal distribution of gray levels mak-

ing further image processing quite easier.  In other cases 

where the original was very close to a normal distribution, 

there is very little impact made on the histogram. At this 

point in the algorithm, there are many roads to travel.  One 

leads you in the way of morphological gradients, Laplacian 

gradients or any other method of determining the edges.  

Matlab has a built in edge tool that lets the user select from 

a half dozen or so different options.  The main goal to keep 

sight of is that the user eventually wants to obtain the edges 

of all of the axons in the image so that some counting tech-

nique can be applied.  In an ideal case, the edges should be 

contain no breaks in them so that there can be formed a 

complete perimeter. The edges are nearly always in a logi-

cal image, white on black to make it easy for the user to 

interpret where they are.  In order to get this binary image, 

one has to determine the value in the gray level distribution 

in which every pixel above is white, and on the contrary, 

every pixel below is black. A very crude way of doing this 

is by trial and error; most likely starting in the center of the 

distribution, unless there is an obvious point that stands out.  

This is not efficient and certainly there has got to be a more 

advanced method.  This is where Otsu’s technique could 

potentially come into play.  The aim of Otsu’s thresholding 

technique is to minimize the variation between segments.  

Otsu’s technique is built into Matlab as well and can be 

exercised by using the graythresh command.  As is com-

mon knowledge among image processors, typically a sim-

ple global threshold does not perform very well unless 

there is an obvious break in the histogram from one distri-

bution to the next.  Moving along with this possible tech-

nique, it would be advised to partition the image into mul-

tiple areas and determine an Otsu threshold value for each 

of the areas.  After doing this, one can threshold the image 

in a more localized manner.  A different approach, the ap-

proach that was taken in this algorithm was to use an adap-

tive threshold.  By doing so, the non uniformities can be 

taken into account throughout the image.  Instead of having 

to partition an image or use a global threshold, the user can 

choose an MxM square matrix and determine whether they 

wish to use a median or mean of a local MxM neighbor-

hood to determine a pixel’s fate.  This method says that if 

the pixel of interest is below the local median, then it will 

be a 0, or a black pixel.  If above the mean or median, then 

that pixel will be a 1, or a white pixel [3] [4].  There is a 

function called adaptivethreshold that can be downloaded 

from the Mathworks website that performs this for the user 

in Matlab. The output is a black and white logical image.  

Now this image will require a little bit of cleaning up in 

order to make it easier to find the proper edges. The first 

step in making the image more manageable is to fill in all 

of the holes. Since the shapes of the axons, while not circu-

lar, typical resemble some sort of ring, there is always an 

outside and an inside.  The idea is the fill in the in side so 

that there is one solid white shape instead of a white ring 

with a black center.  Using the command imfill and specify-

ing the ‘holes’ method, this exact task is performed. Next, 

to remove spurs, there is applied some morphological op-

erations.  Using a structuring element of ones sized 5x5, an 

opening is performed via the imopen function in Matlab. 

An opening is the morphological equivalent of first per-

forming an erosion and then following with a dilation.   

Now having studied the images of interest, and knowing a 

little bit about them, it is safe to say that we’d like to re-

move small pixel formations. The risk here of course is that 

we may actually remove an axon, but this step helps to 

eliminate any surviving noise clusters.  Using the 

bwareaopen function in Matlab, small white pixel groups 

are removed successfully.   Now that the binary image is 

cleaned up, one can make use of the bwperimeter tool in 

Matlab.  This tool will create a second image that contains 

only the edges of each of the axons. The last thing that re-

mains is to count the number of perimeters, axons, that are 

in the image. This action is performed by evoking the 

bwlabel command. Also, in an effort to see how well this 

algorithm performed in comparison to the original image, 

one can search mathworks.com for the imoverlay tool. Hav-

ing this tool the image obtained from using the bwperime-

ter tool can be overlaid as any color onto the original im-

age.  

  



RESULTS AND DISCUSSION 

Now that the procedural technique of the algorithm has 

been presented, the results will be shown to see how well it 

works.  There are six different images that were supplied. 

The complete algorithm results will be displayed fully for 

one of the best performing cases as well as one of the worst 

performing cases to display instances where the algorithm 

worked very well and to exploit some of its shortcomings. 

As discussed in the previous section, the first order of busi-

ness is to import the image into Matlab.  

Original Image
 

Figure 1 – Sample 4.tif 

 

Figure one is the imported image, original and not en-

hanced.   After importing the image into Matlab, the next 

step was to transform it to a gray scale image.  There isn’t 

much difference visible to the user, but it does turn into a 

single layer intensity image. 

Image transf ormed to Gray scale
 

Figure 2 – Single layer intensity image 

 

Nothing is too apparent in terms of differences that jump 

out at the viewer.  One note of cosmetics is the description 

immediately below each image. This is an imcredit func-

tion written by Eddins [2] [4]. 
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Figure 3 – Histogram of Original Grayscale 

 

After looking at the histogram of the original image, no apparent 

obvious thresholding points are apparent.  Lest the image is low 

pass filtered at any rate to effectively smooth the image. After the 

smoothing is applied, the following is the histogram of the 

smoothed image.  
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Figure 4 – Histogram of Smoothed Image 

 

There is little to no difference in the distribution of pixels, even 

after smoothing.  One can take note of the slightly pronounced 

potential separation of the distribution near the peak.  

 

Binary  Image af ter
Thresholding

 
Figure 5 – Adaptivethreshold applied to image 

 

Obtained is figure 5 after applying the adaptivethreshold 

command in Matlab.  Again, this looks at a local prese-

lected size neighborhood. It is a moving window sized 9x9. 

In the image, some small noisy pixel clusters still remain as 

well as some spurs.  The image will need cleaned up a bit.  

Cleaned up image
 

Figure  6 

 

To clean up the image, first, the rings that represent the axons 

were filled in with white pixels.  Then the morphological erosion 

and dilations via the imopen command were performed.  Then the 

bwareaopen was applied to eliminate the noisy pixel clusters.  

Compared to the original thresholded image, one can see the gen-

eral shape of most of the axons start to be pronounced.  



 

Edges of Axons  
Figure 7 – Edges Obtained 

 

Figure 7 represents the edges of the axons.  These edges 

were obtained using the bwperimeter function in Matlab as 

opposed to using gradient options.  While gradient options 

may or may not have worked well, the following image 

suggests that, in this case, the algorithm did a pretty good 

job at successfully finding the axons.  

 

Axons recognized by  Algorithm  
Figure 8 – Original Image with Edges  

 

Looking at the Gold standard image supplied by the expert in the 

field, a quantifiable conclusion can be drawn regarding the suc-

cess of the algorithm. 

 

 

 
Figure 9 – Gold Standard 

 

All in all, the algorithm did a very nice job accurately selecting 

the axons.  In Sample 4, there are 36 axons in the gold standard 

image identified by the field expert. Of these 36 axons, the algo-

rithm correctly identified 35 of them. This equates to finding 

97.2% of the axons. The algorithm reported finding 39 total ax-

ons. Since 35 of them were correct, this means it triggered 4 false 

positive responses for a 89.7% correct reporting rate and a 10.3% 

false positive rate.  This is certainly not bad given the quality of 

the image with which to work.  

 

Now that one of the most successful cases has been examined, one 

of the lesser successful cases will be presented.  

 

Image transf ormed to Gray scale
 

Figure 10 – Sample 5 after converted to grayscale 

 

Notice the areas as indicated by the arrows.  These areas 

are wide spaces where according to the expert, there is no 

axon present.  However, these areas seem to be nearly en-

closed by a black ring.  This is what typically is the signa-

ture of all other axons.  The algorithm sees the change be-

tween black and white and believes that these are axons and 

the following figures will illustrate this point.  
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Figure 11 – Histogram after Gaussian Low Pass Filter 

 

Again, notice there isn’t an intuitive place to put the threshold. 

Perhaps in the area of the 140 level would be the best place.  

Binary  Image af ter
Thresholding

 
Figure 12 – Adaptivethresholded image 

 

Again, take note of the areas in which the algorithm tends to 

struggle a bit.  This will be further pronounced in the next figure.  

Cleaned up image
 

Figure 13  

 



Notice how the algorithm believes that there are axons in the areas 

highlighted by the arrows.  

Axons recognized by  Algorithm
 

Figure 14 – Edges detected by algorithm overlaid on original im-

age 

 

 
Figure 15 – Gold Standard of Sample 5 

 

Notice that the algorithm did a very good job at finding all of the 

axons in the gold standard. The biggest draw back is the wide 

open space in between axons in some regions of the image. This is 

where the adaptive threshold actually becomes a little bit of a 

problem for the algorithm.  Since there is a lot of white or gray 

pixels in a wide space where there is no axon, any black pixel 

noise will greatly stand out as being below the local neighborhood 

mean.  Since it stands out the algorithm sets it below the threshold 

and creates a false positive.  The quantifiable statistics are as fol-

lows.  There are 13 axons as identified by the expert in Sample 5. 

The algorithm successfully identified all 13 for a 100% success 

rate in finding axons.  However, the algorithm reported finding 25 

total axons.  This means that only 52% of the axons it reported 

were correctly identified and 48% of them were false positives. 

The following images will illustrate the rest of the samples with 

algorithm-identified axons and the gold standards. 

Axons recognized by  Algorithm
 

Figure 16 – Sample 1 with axons identified 

 

 
Figure 17 – Sample 1 Gold Standard 

 

Axons recognized by  Algorithm  
Figure 18 – Sample 2 Axons Identified 

 

 
Figure 19 – Sample 2 Gold Standard 

 

Axons recognized by  Algorithm  
Figure 20 – Sample 3 Axons Identified 

 

 
Figure 21 – Sample 3 Gold Standard 

 



Axons recognized by  Algorithm
 

Figure 22 – Sample 6 Axons Identified 

 
Figure 23 – Sample 6 Gold Standard 

 

CONCLUSIONS 

When the algorithm is applied to areas of axon clusters where 

there is little wide open space, it does a very good job counting all 

axons present with a minimal number of false positives.  When 

there tends to be more space in the image where no axons are 

present, the algorithm tends to struggle. Perhaps some sort of 

masking technique could be developed.  One command that may 

help is the imclearborder command. This command in Matlab 

eliminates anything that is on the edge of the image from being 

considered.  This might help when using a larger image.  

 

Image

Axons in Goldd 

Standard Imaage

Axons Reportted 

by Algorithm

Axons Reportted 

Correct ly

% Reporteed 

Cor rect

False 

Posit ivees

% Falsee 

Posit ivve

1 4 0 4 4 3 7 84.1% 7 15.9%

2 5 1 0 5 50.0% 5 50.0%

3 3 2 3 7 3 0 81.1% 7 18.9%

4 3 6 3 9 3 5 89.7% 4 10.3%

5 1 3 2 5 1 3 52.0% 1 2 48.0%

6 3 3 3 4 2 9 85.3% 5 14.7% 
Figure 24 – Table of Axon Success Rate 

 

In figure 24, one can see the rate at which the total number of 

axons reported by the algorithm were correct, and the total num-

ber of false positives identified. In images 1,3,4 and 6, the axons 

were grouped much more tightly than in images 2 and 5. This 

supports the ‘wide open space’ conclusion.  

 
Axons in Goldd 

Standard Imagge

Axons in Gold 

Standard Reportted

% Axons in Goldd 

Standard Reportted

Missed 

Axons % Missed

4 0 3 7 92.5% 3 7.5%

5 5 100.0% 0 0.0%

3 1 3 0 96.8% 1 3.2%

3 6 3 5 97.2% 1 2.8%

1 3 1 3 100.0% 0 0.0%

3 3 2 9 87.9% 4 12.1%  
Figure 25 – Table of Axons found compared to Gold Stan-

dard 

 

In figure 25, one can see that, overall, the algorithm did a 

very good job at finding all of the axons present in the im-

age.  On average, over 95% of the real axons are found 

every time.  To make this a most reliable method of axon 

counting, however, as illustrated in figure 24, the number 

of false positives would have to be reduced.  
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