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Abstract: 
This paper presents a robust technique for 
counting axion cells within a digital image 
of a mouse neuron bundle. The method 
involves employing Matlab to transform the 
color image into grayscale, performing 
regional histogram equalization, 
thresholding the image, and finally detecting 
cell boundary using morphological 
technique. This algorithm detects and counts 
cell boundaries with 92% accuracy.  
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Introduction: 
Medical image analysis has become 
increasingly important in the clinical 
community. Researchers are interested in 
analyzing cell images for classification of 
types and sizes to extract valuable 
information from the sample. Manual cell 
counting rests on the shoulders of the 
ophthalmologist who looks at the image and 
carefully classifies which is and which is not 
a cell. Such procedure is time inefficient and 
very tedious. [1] Therefore, a computer 
aided program designed to accurately count 
the cells is absolutely necessary to reduce 
analysis time and improves repeatability. 
Two common approaches involve pattern 
recognition and image segmentation. [1] [2] 
[3] [4] However, the difficulty in designing 
the automated program surfaces when the 
entire image is blurry or tiny cell within the 
image overlaps onto each other. The human 

eyes can easily detect and count these cells, 
and such knowledge is very hard to 
duplicate for computer.  
 

 
Figure 1: Mouse Neuron Bundle 

 7608x7244 pixels 
 

Method: 
Taking the above considerations into 
account, the automated program discussed in 
this paper will focus on cells in figure 1 that 
have well defined boundary. The cells that 
are cut in half at the image’s edge and those 
whose boundaries that are below the 
threshold will be discarded. Because the 
image above is very large (~55million 
pixels), computation with the entire image in 
Matlab causes significant memory problem. 
Therefore, it will be divided into four equal 
sub-images for independent processing.  
A smaller section of the master image 
(Figure 2) will be analyzed first to ensure 
that the correct number of cells have been 



counted prior to processing of the four larger 
sub-images. 

 
Figure 2 

 
The image (Fig 2) in its original form is 
RGB. Converting it to its grayscale helps to 
reduce computational complexity.  
 

 
Figure 3: Grayscale 

 
1. Adaptive Region Histogram 
Equalization 
Matlab provides a function called 
adapthisteq to enhance the contrast of the 
grayscale image using contrast-limited 
adaptive histogram equalization (CLAHE). 
Similar to histogram equalization which 
operates on the entire image, CLAHE 
performs the same operation but on smaller 
regions called tiles. This method 
significantly brings out boundaries and 
edges of blurry cells as shown in Figure 4. 

 

 
Figure 4: Adaptive Histogram 

Equalization 
 

2. Reducing Gray Levels 
Grayscale images have full range from 0 to 
255 levels of shades of gray. If the number 
of levels reduces to 16, neighborhoods of 
pixels that have similar values will be 
grouped together. This approach allows 
choosing a threshold value much simpler.  
 

 
Figure 5: 16 Gray Levels 

 
3. Thresholding to Eliminate Background 
Figure 5 indicates that the lowest pixel 
value that still makes up a cell boundary is 
160. Therefore thresholding at this value 
makes any pixel higher than 160 to be 255, 
and those that are lower than 160 to be 0. As 
the results, only the cells boundaries remain 
in the image as shown in Figure 6. 



 

 
Figure 6: Threshold at 160 

 
4. Image Segmentation using Morphology 
Matlab has a very effective command called 
bwmorph to thin the objects to their 
boundaries.  

 
Figure 7: Original Structure 

 
Figure 8: Thinned Structure 

 

 
Figure 9: Diagram from Matlab Help 

 
Next, bwboundaries function traces the 
exterior boundaries of objects and returns 
the number of objects found. 
Therefore, taking the complement of Figure 
6 and performs the bwmorph function 
followed by the bwboundaries operator, 
Matlab returns the boundaries of 260 cells 
detected in the image.  

 
Figure 10: Cell Boundaries 



 
Figure 11: Original Image with Detected 

Cell Boundaries 
 
For the majority of the cells above, each has 
its own boundary to indicate that it has been 
accounted for in the total numbers of cells. 
However, small regions enclosed inside a 
cluster of cells are falsely detected as a cell. 
As the result a small margin of error is 
unavoidable.  
 

 
Figure 12: Hand Count (240 Cells) 

 
To determine the accuracy of this algorithm, 
the image was hand counted resulted in 240 
noticeable cells. The algorithm returned 260, 
which is about 8% error or 92 % accuracy 
rate.  
 
Processing Large Image: 
 

 
Figure 13:  Top Left_9070 Cells 

 
 
 



 
Figure 14: Close up of Figure 13 

 

 
Figure 15: Top Right (9110 Cells) 

 

 
Figure 16: Bottom Left (7756 Cells) 

 
Figure 17: Bottom Right (9540 Cells) 
 
The total number of cells for the entire 
master image is approximately 35,476 cells.  
The close up image Figure 14 shows that 
most of the cells have been accounted for 
using this algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 



Comparison with Gold Standard Images: 
 

  
Figure 18: Sample_6.tif (33 cells) 

97x113 pixels 
 
 

 
Figure 19: Sample_6 (25 cells) 

 
 

 
Figure 20: Sample_5 (13 Cells) 

 
Figure 21: Sample_5 (14 Cells) 

 

 
Figure 22: Sample_2_counted.tif (4 Cells) 

96x112 pixels 

10 False 
Cells 



 
 

Figure 23: Sample_2 (20 Cells) 
 
   

Image Size Hand 
Count 

Automate
d Count 

Accuracy 

Fig2 610x480 240 260 92% 
Large 7608x72

44 
-- 35,476 ~90% ? 

Sample 
6 

97x113 33 25 75% 

Sample 
5 

96x112 13 14 92.3 

Sample 
2 

96x112 4 20 20% 

 
Discussion of results: 
Base on the results above, this algorithm 
only works well if the image is large so that 
the regional adaptive histogram equalization 
has a higher distribution of pixels to work 
with. When the image is too small and there 
is a large area of background, adapthisteq 
function might return false edges, which will 
result in false cells as was shown in Figure 
19, 21 and 23.  
One minor set back that this algorithm 
encounters is that the area enclosed between 
cell boundaries will be counted as well. To 
alleviate this problem, this method needs an 
extra step which looks at the area 
distributions of all of the cells. If a cell that 
has an area that is much higher than the 
average, then it should be discarded. 
However, overall, most of the cells in the 
large images have been accounted for. Also, 

processing each of the four large images 
takes only 3 minutes.  
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