
Robust Automated Algorithm for Counting Mouse Axions
Anh Tran

Department of Electrical Engineering
Case Western Reserve University, Cleveland, Ohio

Email: anh.tran@case.edu

Abstract:
This paper presents a robust technique for
counting axion cells within a digital image
of a mouse neuron bundle. The method
involves employing Matlab to transform the
color image into grayscale, performing
regional histogram equalization,
thresholding the image, and finally detecting
cell boundary using morphological
technique. This algorithm detects and counts
cell boundaries with 92% accuracy.

Key words:
Mouse Neurons, Cell Counting, Computer
Vision, Background Filtering, Regional
Histogram Equalization, Thresholding,
Image Segmentation, Morphology,
Boundary Detection.

Introduction:
Medical image analysis has become
increasingly important in the clinical
community. Researchers are interested in
analyzing cell images for classification of
types and sizes to extract valuable
information from the sample. Manual cell
counting rests on the shoulders of the
ophthalmologist who looks at the image and
carefully classifies which is and which is not
a cell. Such procedure is time inefficient and
very tedious. [1] Therefore, a computer
aided program designed to accurately count
the cells is absolutely necessary to reduce
analysis time and improves repeatability.
Two common approaches involve pattern
recognition and image segmentation. [1] [2]
[3] [4] However, the difficulty in designing
the automated program surfaces when the
entire image is blurry or tiny cell within the
image overlaps onto each other. The human

eyes can easily detect and count these cells,
and such knowledge is very hard to
duplicate for computer.

Figure 1: Mouse Neuron Bundle

 7608x7244 pixels

Method:
Taking the above considerations into
account, the automated program discussed in
this paper will focus on cells in figure 1 that
have well defined boundary. The cells that
are cut in half at the image’s edge and those
whose boundaries that are below the
threshold will be discarded. Because the
image above is very large (~55million
pixels), computation with the entire image in
Matlab causes significant memory problem.
Therefore, it will be divided into four equal
sub-images for independent processing.
A smaller section of the master image
(Figure 2) will be analyzed first to ensure
that the correct number of cells have been

counted prior to processing of the four larger
sub-images.

Figure 2

The image (Fig 2) in its original form is
RGB. Converting it to its grayscale helps to
reduce computational complexity.

Figure 3: Grayscale

1. Adaptive Region Histogram
Equalization
Matlab provides a function called
adapthisteq to enhance the contrast of the
grayscale image using contrast-limited
adaptive histogram equalization (CLAHE).
Similar to histogram equalization which
operates on the entire image, CLAHE
performs the same operation but on smaller
regions called tiles. This method
significantly brings out boundaries and
edges of blurry cells as shown in Figure 4.

Figure 4: Adaptive Histogram

Equalization

2. Reducing Gray Levels
Grayscale images have full range from 0 to
255 levels of shades of gray. If the number
of levels reduces to 16, neighborhoods of
pixels that have similar values will be
grouped together. This approach allows
choosing a threshold value much simpler.

Figure 5: 16 Gray Levels

3. Thresholding to Eliminate Background
Figure 5 indicates that the lowest pixel
value that still makes up a cell boundary is
160. Therefore thresholding at this value
makes any pixel higher than 160 to be 255,
and those that are lower than 160 to be 0. As
the results, only the cells boundaries remain
in the image as shown in Figure 6.

Figure 6: Threshold at 160

4. Image Segmentation using Morphology
Matlab has a very effective command called
bwmorph to thin the objects to their
boundaries.

Figure 7: Original Structure

Figure 8: Thinned Structure

Figure 9: Diagram from Matlab Help

Next, bwboundaries function traces the
exterior boundaries of objects and returns
the number of objects found.
Therefore, taking the complement of Figure
6 and performs the bwmorph function
followed by the bwboundaries operator,
Matlab returns the boundaries of 260 cells
detected in the image.

Figure 10: Cell Boundaries

Figure 11: Original Image with Detected

Cell Boundaries

For the majority of the cells above, each has
its own boundary to indicate that it has been
accounted for in the total numbers of cells.
However, small regions enclosed inside a
cluster of cells are falsely detected as a cell.
As the result a small margin of error is
unavoidable.

Figure 12: Hand Count (240 Cells)

To determine the accuracy of this algorithm,
the image was hand counted resulted in 240
noticeable cells. The algorithm returned 260,
which is about 8% error or 92 % accuracy
rate.

Processing Large Image:

Figure 13: Top Left_9070 Cells

Figure 14: Close up of Figure 13

Figure 15: Top Right (9110 Cells)

Figure 16: Bottom Left (7756 Cells)

Figure 17: Bottom Right (9540 Cells)

The total number of cells for the entire
master image is approximately 35,476 cells.
The close up image Figure 14 shows that
most of the cells have been accounted for
using this algorithm.

Comparison with Gold Standard Images:

Figure 18: Sample_6.tif (33 cells)

97x113 pixels

Figure 19: Sample_6 (25 cells)

Figure 20: Sample_5 (13 Cells)

Figure 21: Sample_5 (14 Cells)

Figure 22: Sample_2_counted.tif (4 Cells)

96x112 pixels

10 False
Cells

Figure 23: Sample_2 (20 Cells)

Image Size Hand
Count

Automate
d Count

Accuracy

Fig2 610x480 240 260 92%
Large 7608x72

44
-- 35,476 ~90% ?

Sample
6

97x113 33 25 75%

Sample
5

96x112 13 14 92.3

Sample
2

96x112 4 20 20%

Discussion of results:
Base on the results above, this algorithm
only works well if the image is large so that
the regional adaptive histogram equalization
has a higher distribution of pixels to work
with. When the image is too small and there
is a large area of background, adapthisteq
function might return false edges, which will
result in false cells as was shown in Figure
19, 21 and 23.
One minor set back that this algorithm
encounters is that the area enclosed between
cell boundaries will be counted as well. To
alleviate this problem, this method needs an
extra step which looks at the area
distributions of all of the cells. If a cell that
has an area that is much higher than the
average, then it should be discarded.
However, overall, most of the cells in the
large images have been accounted for. Also,

processing each of the four large images
takes only 3 minutes.

Reference:

[1] Foracchia M., Ruggeri A. “Cell
Contour Detection in Corneal
Endothelium In-Vivo Microscopy.”
IEEE: Engineering in Medicine and
Biology Society, (2000). Pages 1033 -
1035 vol.2

[2] Horiuchi, T. Akiba, T. Kakui,
Y. “Development of a Continuous
Imaging System Equipped with
Fluorescent Imaging for Classification
of Phytoplankton.” IEEE: TECHNO-
OCEAN, (2004). Pages 1410 - 1413
Vol.3

[3] Mussio, P. Pietrogrande, M.
“Automatic Cell Count in Digital
Images of Liver Tissue Sections.”
IEEE: Computer-Based Medical
Systems, (1991). Pages 153 –160.

[4] Sokkarie, A. Osborne, J. “Object
Counting and Sizing.” IEEE: Creative
Technology Transfer - A Global Affair
(1994). Pages 380 - 382

