The system

[image: image1.wmf]
can be written in matrix form as:

[image: image2.wmf]
 A system of this type has the form Ax = b, so we can enter these numbers into MATLAB using the following commands:

>> A = [2 -1 1; 1 2 3; 3 0 -1]

>> b = [8; 9; 3]

(Notice that for the column vector b, we include semicolons after each entry to ensure that the entries are on different rows.

 The command

>> x = A\b

will find the solution to our equation Ax = by Gaussian elimination. In this case, MATLAB tells us

x =

 2.0000

 -1.0000

 3.0000

Now consider a system of equations with 18 equations in 11 unknowns which came up in a camera calibration problem. This system is over-determined and does not have a square matrix A. Let’s suppose we write it in matrix form as Ax=b where A is now a rectangular matrix (18 rows x 11 columns) of coefficients, x is a column matrix (11 rows x 1 column) of the unknowns, and b is a column matrix (11 rows by 1 column) of constants. This equation can be solved as X=(ATA)-1Ab where (ATA)-1A is known as the pseudo-inverse.

This can also be calculated in MATLAB as

>> X=A\b
Or you can write it directly as

>> X=INV(A’*A)*A’*b
where INV calculates the normal matrix inverse and ‘ denotes the transpose of the matrix.

MATLAB doesn't solve these equations the way you would do by hand. Instead, MATLAB analyzes the dimensions of the matrices and automatically determines the best method of solving the system of equations.

The pseudoinverse is described in more detail in Ballard and Brown. Check out References>Computer Vision>AppendixA1.

Consider this system of equations described by:

U=[0 0 0 1 0 0 0 0 0 0 0;

 0 0 0 0 0 0 0 1 0 0 0;

 1.72 1.95 0 1 0 0 0 0 -61.92 -70.2 0;

 0 0 0 0 1.72 1.95 0 1 -82.56 -93.6 0;

 0 0.05 0.24 1 0 0 0 0 0 -2.4 -11.52;

 0 0 0 0 0 0.05 0.24 1 0 -1.8 -8.64;

 0.64 3.04 0 1 0 0 0 0 -23.04 -109.44 0;

 0 0 0 0 0.64 3.04 0 1 -15.36 -72.96 0;

 2.76 5.88 0 1 0 0 0 0 -66.24 -141.12 0;

 0 0 0 0 2.76 5.88 0 1 -66.25 -141 0;

 0 1.22 4 1 0 0 0 0 0 -137.86 -452;

 0 0 0 0 0 1.22 4 1 0 -43.92 -144;

 3.57 0.26 0 1 0 0 0 0 -128.52 -9.36 0;

 0 0 0 0 3.57 0.26 0 1 -328 -23.92 0;

 3.38 0 3.44 1 0 0 0 0 -311.974 0 -316.48;

 0 0 0 0 3.38 0 3.44 1 -310.96 0 -316.48;

 0 1.16 2.84 1 0 0 0 0 0 -106.72 -261.28;

 0 0 0 0 0 1.16 2.84 1 0 -41.76 -102.24]

and

b=[48; 48; 36; 48; 48;36; 36; 24; 24; 24; 113; 36; 36; 92; 92; 92; 92; 36]

which came up in a camera calibration problem. We simply type

x=U/b

to get the result

x =

 -2.4685

 -3.1246

 17.4947

 45.7472

 14.6804

 -10.4759

 1.3922

 42.9907

 0.0082

 -0.0239

 0.0072

which represents the camera calibration parameters.

You could also type

>> x=inv(A'*A)*A'*b

x =

 -2.4685

 -3.1246

 17.4947

 45.7472

 14.6804

 -10.4759

 1.3922

 42.9907

 0.0082

 -0.0239

 0.0072

to get the same results.

You can cut and paste these numbers into MATLAB to verify the methods..
