
EECS490: Digital Image Processing

Lecture #9

• Sampling and band-limited functions

– Aliasing & Jaggies

– Moire

• Power Spectrum

• MATLAB

– Power Spectrum

– Edges

– Geometric Transforms

• Properties of the 2-D DFT

– Centering, rotation

– Magnitude and phase

EECS490: Digital Image Processing

Undersampling in 2-D

If the 2-D samples
impulses are too far
apart (undersampling)
their 2-D Fourier
transforms will overlap.

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Undersampling in 2-D

High frequencies from
adjacent spectra will
“alias” as lower
frequencies in the
reconstructed image

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Undersampling in 2-D

Results of checkboard images sampled) with a 96x96
pixel resolution sensor. Sensor max resolution=1 pixel.

16 pixel
squares

6 pixel
squares

0.9174 pixel
squares

0.4798 pixel
squares

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Aliasing

Note the aliasing

3x3 averaging prior to sampling
to band-limit image50% pixel deletion

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

“Jaggies”

1024x1024-> 256x256
Bilinear interpolation
followed by pixel
replication back to
1024x1024

Use 5x5 smoothing
prior to processing to
band-limit function

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

256x256->
1024x1024
using pixel
replication

“Jaggies”

256x256->
1024x1024
using bilinear
interpolation

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Moire effect

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Moire effect

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Moire effect

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

The power spectrum of a signal is the square of

the magnitude of its Fourier Transform.

I u,v()
2
= I u,v()I* u,v()

= ReI u,v() + j Im I u,v() ReI u,v() j Im I u,v()

= ReI u,v()
2
+ Im I u,v()

2
.

At each location (u,v) it indicates the squared intensity of the

frequency component with period and orientation 22/1 vu +=

()./tan
1

uv=

The Power Spectrum

 1999-2007 by Richard Alan Peters II

EECS490: Digital Image Processing

The power spectrum (PS) is defined by .

We take the base-e logarithm of the PS in order to view it. Otherwise its dynamic range could be

too large to see everything at once. We add 1 to it first so that the minimum value of the result is

0 rather than –infinity, which it would be if there were any zeros in the PS. Recall that

log(f 2) = 2log(f).

Multiplying by 2 is not necessary if you are generating a PS for viewing, since you'll probably

have to scale it into the range 0-255 anyway. It is much easier to see the structures in a Fourier

plane if the origin is in the center. Therefore we usually perform an fftshift on the PS before it is

displayed.

 >> PS = fftshift(2*log(abs(fft2(I))+1));

 >> M = max(PS(:));

 >> image(uint8(255*(PS/M)));

If the PS is being calculated for later computational use -- for example the autocorrelation of a

function is the inverse FT of the PS of the function -- it should be calculated by

 >> PS = abs(fft2(I)).^2;

PS I()= F I u,v(){ }

2

 1999-2007 by Richard Alan Peters II

MATLAB/The Power Spectrum

For display, the log of the power spectrum is usually used.

EECS490: Digital Image Processing

MATLAB/Calculating Edges

MATLAB’s edge detection routines

% [g,t] = edge (f, ‘method’, parameters)
% f is input image, g is output image
% t is an optional threshold for the output image
% ‘method’ can be sobel, prewitt, roberts, laplacian of a gaussian,
% zero crossings, or Canny

>> f=imread(‘fig10.10(a).jpg’); % load in building figure
>> [g_sobel_default,0.074]=edge(f,’sobel’); % figure 10.7(a)
>> [g_log_default, 0.0025]=edge(f,’ log’); % figure 10.7(c)
% log is short for laplacian of a Gaussian
>> [g_canny_default, [0.019,0.047]]=edge(f,’canny’); % figure 10.7(e)

% hand optimized functions
>> g_sobel_best=edge(f,’sobel’, 0.05); % figure 10.7(b)
%0.05 is a threshold for the output
>> g_log_best=edge(f,’ log’,0.003, 2.25); % figure 10.7(d)
%0.003 is the output threshold and 2.25 is the standard deviation of the Gaussian
>> g_canny_best=edge(f,’canny’, [0.04,0.10],1.5); % figure 10.7(f)
%0.04 and 0.10 are the output thresholds and 1.5 is the standard deviation of the Gaussian

SEE GWE, Section 10.1.3 Edge Detection Using Function edge

EECS490: Digital Image Processing

Common Gradient Masks

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Second Derivatives: the LoG

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Derivative Examples

x-directed gradient magnitude |Gx|

y-directed gradient magnitude |Gy| |Gx|+|Gy|

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

x-directed gradient magnitude |Gx|

y-directed gradient magnitude |Gy| |Gx|+|Gy|

Smoothed with
a 5x5 averaging
filter

Derivative Examples

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

MATLAB/Calculating Edges

MATLAB’s edge detection routines

% [g,t] = edge (f, ‘method’, parameters)
% f is input image, g is output image
% t is an optional threshold for the output image
% ‘method’ can be sobel, prewitt, roberts, laplacian of a gaussian,
% zero crossings, or Canny

>> f=imread(‘fig10.10(a).jpg’); % load in building figure
>> [g_sobel_default,0.074]=edge(f,’sobel’); % figure 10.7(a)
>> [g_log_default, 0.0025]=edge(f,’ log’); % figure 10.7(c)
% log is short for laplacian of a Gaussian
>> [g_canny_default, [0.019,0.047]]=edge(f,’canny’); % figure 10.7(e)

% hand optimized functions
>> g_sobel_best=edge(f,’sobel’, 0.05); % figure 10.7(b)
%0.05 is a threshold for the output
>> g_log_best=edge(f,’ log’,0.003, 2.25); % figure 10.7(d)
%0.003 is the output threshold and 2.25 is the standard deviation of the Gaussian
>> g_canny_best=edge(f,’canny’, [0.04,0.10],1.5); % figure 10.7(f)
%0.04 and 0.10 are the output thresholds and 1.5 is the standard deviation of the Gaussian

SEE GWE, Section 10.1.3 Edge Detection Using Function edge

Canny algorithm:
1. Smooth the image with a Gaussian
2. Compute the gradient magnitude

3. Apply non-maximal suppression to the gradient magnitude image (edge thinning)

4. Use double thresholding and connectivity to detect and link edges. Basically the two

thresholds create strong and weak edges and connectivity analysis is used to link edges

EECS490: Digital Image Processing

MATLAB/Calculating Edges

MATLAB’s image registration routines

>> C=checkerboard(NP, M, N);

% construct a checkboard
% NP is number of pixels on each side of square
% M is number of rows; N is number of columns

% MATLAB uses transforms in a t_form structure
% this is an example of entering an affine transformation

>> T=[2 0 0; 0 3 0; 0 0 1];
>> tform=maketform(‘affine’,T);

% The MATLAB function imtransform implements inverse (reverse) mapping

>> g=imtransform(f, tform, ‘interp’);

% f is the input image, g is the output image
% ‘interp’ can be nearest, bilinear, or bicubic
% if ‘interp’ is omitted it defaults to bilinear

SEE GWE, Section 5.11 Geometric Transformations and Image Registration

EECS490: Digital Image Processing

MATLAB/Image Transformation

MATLAB’s image transformation routines using affine transforms

>> f=checkerboard(50);
>> imshow(f);

>> Tscale=[1.5 0 0; 0 2 0; 0 0 1];
>> Trotation=[cos(pi/4) sin(pi/4) 0;-sin(pi/4) cos(pi/4) 0; .1 -.1 1];
>> Tshear=[1 0 0; .2 1 0; 0 0 1];
>> T3=Tscale*Trotation*Tshear;

% combine affine transformations

>> tform3=maketform('affine',T3);

>> Trans_f=imtransform(f,tform3);
>> imshow(Trans_f)
Warning: Image is too big to fit on screen; displaying at 67%
> In imuitools/private/initSize at 86
 In imshow at 201

SEE GWE, Section 5.11 Geometric Transformations and Image Registration
Also see: http://www.mathworks.com/products/demos/image/create_gallery/tform.html

EECS490: Digital Image Processing

MATLAB/Image Transformation

MATLAB’s image transformation can also use polynomials

>> pairs1 = [1 1; 5 21; 17 40; 28 1; 32 20; 45 40; 72 1; 77 20; 90 40];
>> pairs2 = [1 1; 1 21; 1 40; 20 1; 20 20; 20 40; 40 1; 40 20; 40 40];

% pairs1 and pair2 are corresponding pairs of registration points
% (1,1) corresponds to (1,1)
% (5,21) corresponds to (1,21)
% etc.

>> t_poly = cp2tform(pairs1, pairs2, 'polynomial',2);

% cp2tform constructs the polynomial transform t_poly of the type t_form
% t=cp2tform(pairs1, pairs2, ‘type’);

% cp2tform will calculate the transformation t
% from pairs1 to pairs2 of corresponding registration points
% ‘type” includes 'linear conformal’, 'affine’,'projective’, 'polynomial' (Order 2, 3, or 4)

>> I = checkerboard(10,2);
>> J = imtransform(I,t_poly);

SEE GWE, Table 5.4

EECS490: Digital Image Processing

Summary of DFT Expressions

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

DFT Properties

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

DFT Properties

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

DFT Pairs

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

2-D DFT Symmetry Properties

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

DFT Centering

© 2002 R. C. Gonzalez & R. E. Woods

f x, y()e
j2 u

x0
M

+v
y0
N F u

M

2
,v

N

2

EECS490: Digital Image Processing

Properties of 2-D DFT

|F(u,v)|

Log(1+|F(u,v)|)
Centered F(u,v)

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Properties of 2-D DFT

© 2002 R. C. Gonzalez & R. E. Woods

f x x0 , y y0() F u,v()e
j2 u

x0
M

+v
y0
N

f r, + 0() F , + 0()

EECS490: Digital Image Processing

Properties of ∠2-D DFT

© 2002 R. C. Gonzalez & R. E. Woods

EECS490: Digital Image Processing

Properties of 2-D DFT
∠Woman F-1[∠Woman]

F-1[|Woman|]

F-1[|Rectangle| ∠Woman]

F-1[|Woman| ∠Rectangle]

© 2002 R. C. Gonzalez & R. E. Woods

