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Undersampling in 2-D
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FIGURE 4.15
Two-dimensional
Fourier transforms
of (a) an over-
sampled, and

.-y (b) under-sampled

band-limited
function.

If the 2-D samples
impulses are too far
apart (undersampling)
their 2-D Fourier
transforms will overlap.
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Undersampling in 2-D
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FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function.
(Interference from adjacent periods is shown dashed in this figure). (b) The same ideal
lowpass filter used in Fig. 4.8(b). (c) The product of (a) and (b). The interference from
adjacent periods results in aliasing that prevents perfect recovery of F(w) and,
therefore, of the original, band-limited continuous function. Compare with Fig. 4.8.
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e ehs Undersampling in 2-D

16 pixel
squares

6 pixel
squares

0.4798 pixel
squares

0.9174 pixel
squares

FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares
are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c¢) and (d), the
sides of the squares are 0.9174 and 0.4798 pixels, respectively, and the results show
significant aliasing. Note that (d) masquerades as a “normal” image.

Results of checkboard images sampled) with a 96x96
pixel resolution sensor. Sensor max resolution=1 pixel.
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FIGURE 4.17 Illustration of aliasing on resampled
(b) Result of resizing the image to 50% of its oy
(c) Result of blurring the image in (a) with a 3 X\3
more blurred than (b), but aliasing is not longe
Compression Laboratory, University of California, S

gs. (a) A digital image with negligible visual aliasing.
1 size by pixel deletion. Aliasing is clearly visible.
eraging filter prior to resizing. The image is slightly
ectionable. (Original image courtesy of the Signal
a Barbara.)

Note the aliasing
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“Jaggies”

1024x1024-> 256x256
Bilinear interpolation

followed by pixel Use 5x5 smoothing
replication back to prior to processing to
1024x1024 band-limit function

abc

FIGURE 4.18 lllustration of jaggies. (a) A 1024 X 1024 digital image of a computer-gencrated scene with
negligible visible aliasing. (b) Result of reducing (a) to 25% of its original size using bilinear interpolation.
(c) Result of blurring the image in (a) with a 5 X 5 averaging filter prior to resizing it to 25% using bilinear
interpolation. (Original image courtesy of D. P. Mitchell, Mental Landscape, LLC.)

© 2002 R. C. Gonzalez & R. E. Woods
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256x256-> 256x256->
1024x1024 1024x1024
using pixel using bilinear
replication interpolation

FIGURE 4.19 Image zooming. (a) A 1024 X 1024 digital image generated by pixel
replication from a 256 X 256 image extracted from the middle of Fig. 4.18(a).
(b) Image generated using bi-linear interpolation, showing a significant reduction in

jaggies.
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Moire effect
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FIGURE 4.20
Examples of the
moiré effect.
These are ink
drawings, not
digitized patterns.
Superimposing
one pattern on
the other is
equivalent
mathematically to
multiplying the
patterns.
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Moire effect
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FIGURE 4.21

A newspaper
image of size

246 X 168 pixels
sampled at 75 dpi
showing a moiré
pattern. The
moiré pattern in
this image is the
interference
pattern created
between the +45°
orientation of the
halftone dots and
the north-south
orientation of the
sampling grid
used to digitize
the image.
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Moire effect
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FIGURE 4.22
A newspaper
image and an

enlargement
showing how
halftone dots are
arranged to
render shades of

gray.
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The Power Spectrum

The power spectrum of a signal is the square of
the magnitude of its Fourier Transform.

|I(u,v)|2 =1(uv)(u.v)
=[ReI(uv)+ jImI(uv)][Rel(wv)- jImI(uv)]
— [ReI(u,v):I ¥ [Iml(u,v)] :

At each location (u,v) it indicates the squared intensity of the
frequency component with period A =1/Juz+vz and orientation

0 =tan"'(v/u)

1999-2007 by Richard Alan Peters II
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The power spectrum (PS) is defined by PS(1)= ‘ F {I(u,v)}.‘z

We take the base-e logarithm of the PS in order to view it. Otherwise its dynamic range could be
too large to see everything at once. We add 1 to it first so that the minimum value of the result is
0 rather than —infinity, which it would be if there were any zeros in the PS. Recall that

log(f2) = 2log(f). For display, the log of the power spectrum is usually used.

—— ——T—————— —

N —m

Multiplying by 2 is not necessary if you are generating a PS for viewing, since you'll probably
have to scale it into the range 0-255 anyway. It is much easier to see the structures in a Fourier

plane if the origin is in the center. Therefore we usually perform an fftshift on the PS before it is
displayed.

>> PS = fftshift(2*log(abs(Fft2(1))+1));
>> M = max(PS(:));
>> image(uint8(255*(PS/M)));

If the PS is being calculated for later computational use -- for example the autocorrelation of a
function is the inverse FT of the PS of the function -- it should be calculated by

>> PS = abs(fft2(1)).72;

1999-2007 by Richard Alan Peters II
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MATLAB’s edge detection routines

% [g,t] = edge (f, ‘method’, parameters)

% f is input image, g is output image

% t is an optional threshold for the output image

% ‘method’ can be sobel, prewitt, roberts, laplacian of a gaussian,

% zero crossings, or Canny

>> f=imread(‘figl0.10(a).jpg’); % load in building figure
>> [g_sobel default,0.074]=edge(f, 'sobel’); % figure 10.7(a)

>> [g_log default, 0.0025]=edge(f,’ log’); % figure 10.7(c)

% log is short for laplacian of a Gaussian
>> [g canny default, [0.019,0.047]]=edge(f,’'canny’); % figure 10.7(e)

% hand optimized functions

>> g sobel best=edge(f,’sobel’, 0.05); % figure 10.7(b)

%0.05 is a threshold for the output

>> g log_best=edge(f,’ log’,0.003, 2.25); % figure 10.7(d)

%0.003 is the output threshold and 2.25 is the standard deviation of the Gaussian
>> g canny best=edge(f,’'canny’, [0.04,0.10],1.5); % figure 10.7(f)

%0.04 and 0.10 are the output thresholds and 1.5 is the standard deviation of the Gaussian

SEE GWE, Section 10.1.3 Edge Detection Using Function edge
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FIGURE 10.8

A3 X 3region of z z z

an image (the z's ’ s ?

are gray-level

va]t_les) and‘ 4 0 0 4

various masks

used to compute

the gradient at 0 1 1 0

point labeled zs.

Roberts
-1 -1 -1 -1 0 1
0 0 0 -1 0 1
1 1 1 -1 0 1
Prewitt
-1 -2 -1 -1 0 1
0 0 0 -2 0 2
1 2 1 -1 0 1
Sobel
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FIGURE 10.14
Laplacian of a
Gaussian (LoG).
(a) 3-D plot.

(b) Image (black
is negative, gray is
the zero plane,
and white is
positive).

(¢) Cross section
showing zero
Crossings.

(d) 5 X 5 mask
approximation to
the shape of (a).
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Derivative Examples
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FIGURE 10.10

(a) Original
image. (b) |G,
component of the
gradient in the
x-direction.
(©)|G,].
component in the
y-direction.

(d) Gradient
image, |G| + |G,/

x-directed gradient magnitude |G, |

y-directed gradient magnitude |G, |

© 2002 R. C. Gonzalez & R. E. Woods
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x-directed gradient magnitude |G, |

 FIGUKE TU.IT
Same sequence as
in Fig. 10.10, but
with the original
image smoothed
withasd X 5
averaging filter.

Smoothed with
a 5x5 averaging
filter

y-directed gradient magnitude |G, |

_— T ——
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MATLAB/Calculating Edges

MATLAB’s edge detection routines

% [g,t] = edge (f, ‘method’, parameters)

% f is input image, g is output image

% t is an optional threshold for the output image

% ‘method’ can be sobel, prewitt, roberts, laplacian of a gaussian,

% zero crossings, or Canny

>> f=imread(‘figl0.10(a).jpg’); % load in building figure
>> [g_sobel default,0.074]=edge(f, 'sobel’); % figure 10.7(a)

>> [g_log default, 0.0025]=edge(f,’ log’); % figure 10.7(c)

% log is short for laplacian of a Gaussian
>> [g canny default, [0.019,0.047]]=edge(f,’'canny’); % figure 10.7(e)

% hand optimized functions

>> g sobel best=edge(f,’sobel’, 0.05); % figure 10.7(b)

%0.05 is a threshold for the output

>> g log_best=edge(f,’ log’,0.003, 2.25); % figure 10.7(d)

%0.003 is the output threshold and 2.25 is the standard deviation of the Gaussian
>> g canny best=edge(f,’'canny’, [0.04,0.10],1.5); % figure 10.7(f)

%0.04 and 0.10 are the output thresholds and 1.5 is the standard deviation of the Gaussian

SEE GWE, Section 10.1.3 Edge Detection Using Function edge

Canny algorithm:

1. Smooth the image with a Gaussian

2. Compute the gradient magnitude

3. Apply non-maximal suppression to the gradient magnitude image (edge thinning)

4. Use double thresholding and connectivity to detect and link edges. Basically the two
thresholds create strong and weak edges and connectivity analysis is used to link edges
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MATLAB’s image registration routines
>> C=checkerboard(NP, M, N);
% construct a checkboard

% NP is number of pixels on each side of square
% M is number of rows; N is number of columns

Y

MATLAB uses transforms in a t form structure
this is an example of entering an affine transformation

oo

>> T=[2 0 0; 0 3 0; 00 17];
>> tform=maketform(‘affine’,T);

% The MATLAB function imtransform implements inverse (reverse) mapping
>> g=imtransform(f, tform, ‘interp’);
% f is the input image, g is the output image

% ‘interp’ can be nearest, bilinear, or bicubic
% if ‘interp’ is omitted it defaults to bilinear

SEE GWE, Section 5.11 Geometric Transformations and Image Registration
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MATLAB’s image transformation routines using affine transforms

>> f=checkerboard(50);
>> imshow(f);

>> Tscale=[1.5 0 0; 0 2 0; 0 0 17];

>> Trotation=[cos(pi/4) sin(pi/4) 0;-sin(pi/4) cos(pi/4) 0; .1 -.1 1];
>> Tshear=[1 0 0; .2 1 0; 0 0 17;

>> T3=Tscale*Trotation*Tshear;

% combine affine transformations
>> tform3=maketform('affine',T3);

>> Trans_f=imtransform(f,tform3); .
>> imshow(Trans_f) ‘
Warning: Image is too big to fit on screen; displaying at 67% “
> In imuitools/private/initSize at 86

In imshow at 201

SEE GWE, Section 5.11 Geometric Transformations and Image Registration
Also see: http://www.mathworks.com/products/demos/image/create_gallery/tform.html
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MATLAB’s image transformation can also use polynomials

>> pairsl
>> pairs?2

[1 1; 5 21; 17 40; 28 1; 32 20; 45 40; 72 1; 77 20; 90 40];
[1 1; 1 21; 1 40; 20 1; 20 20; 20 40; 40 1; 40 20; 40 40];

% pairsl and pair2 are corresponding pairs of registration points
% (1,1) corresponds to (1,1)

% (5,21) corresponds to (1,21)

% etc.

>> t poly = cp2tform(pairsl, pairs2, 'polynomial',2);

% cp2tform constructs the polynomial transform t poly of the type t form
% t=cp2tform(pairsl, pairs2, ‘type’ );

% cp2tform will calculate the transformation t
% from pairsl to pairs2 of corresponding registration points
% ‘type” includes 'linear conformal’, 'affine’, 'projective’, 'polynomial' (Order 2, 3, or 4)

>> I checkerboard(10,2);
>> J = imtransform(I,t poly);

SEE GWE, Table 5.4
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TABLE 4.2
Summary of DFT
definitions and

Name Expression(s)

1) Discrete Fourier M—1 N—1 ‘
transform (DFT) Flu,v) = 3, > flx, y)ef2ras/MieyiNy corresponding
of flx. y) x=0 y=0 expressions,

2) ::n'..-u_‘sc discrete | Mi] Nil S

ourler transform flx,y)=—— F(u. v) eltmlux/M+vy/N)
(IDFT) of Flu.v) MN = 55
3) Polar representation Flu, v) = |F(u. v)]e/*?
12
4) Spectrum |F (u.v)| = [R Yu, v) + I v)}
R = Real(F), I = Imag(F)
5) Ph | ; an! Iu. v)
ase angle blu, v) = La
5) 1se angle Blu, v) n Riw.0)
6) Power spectrum P(u.v) = |F(u. v}\2
_ | M-1N-1 |
7) Average value flx.y) = N xg[] }guf(x_ y) = WF({I. 0)

(Continued)

© 2002 R. C. Gonzalez & R. E. Woods
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DFT Properties

Name

Expression(s)

8) Periodicity (kq and
k> are integers)

9y Convolution

10) Correlation

11) Separability

12) Obtaining the inverse
Fourier transform
using a forward

transform algorithm.

Flu,v) = Flu + kyM.v) = Flu. v + kaN)
= F(u + k\M.v + k;N)
flx.y) = fix + kiM. y) = f(x.y + koN)
= f(x + kyM.y + koN)
M—1N-1

flx, y)*hi(x, y) = 2 Ef(m.n)h(x —m.y —n)

m=0 n=0

M-1N-1
flry)thixy) = > D mnhix + my + n)

m=0 n=0
The 2-D DFT can be computed by computing 1-D
DFT transforms along the rows (columns) of the
image, followed by 1-D transforms along the columns
(rows) of the result. See Section 4.11.1.

M—1N-1

MNF'(x.y)= 2 D F (. v)e Ares/Mrumi)

. .o, u=0 v=0 . . " .
Thisequation indicates that inputting F (22, #) into an

algorithm that computes the forward transform

. . . . . ot
(right side of above equation) vields MNF (x, v).
Taking the complex conjugate and dividing by MN
gives the desired inverse, See Section 4.11.2,

TABLE 4.2
(Continued)



= 4
igital '
" Image

" Processing
et Tt Ctions
i< <

% ol @
A
|

L Rafael C. Gonzales
F 4 Richard E. Woods

EECS490: Digital Image Processing

DFT Properties

Name

DFT Pairs

1) Symmetry
properties

2) Linearity

3) Translation
(general)

4) Translation
to center of

rectangle,
(M/2.NI2)

5) Rotation

6) Convolution
theorem!

the frequency

See Table 4.1

afi(x.¥) + bfs(x. y) = aFj(u. v) + bF(u.v)

f{ X, y) o 27 uox/M+wy/N) Flu — wy.v — vy)

Fx = X0y = yo) = F(u.v)e oM o)

fey) (=)™ = Flu — M/2.0 = N/2)
Fx = M/2.y = Nf2) & Flu,0)(—1)*""

f{?’. #+ HEJ) — F{(u. ¢ + H[])

X =rcosf y=rsinfl u=wcosg

flx.y)y*,hix, y)= Flu.v)H(u.v)
flx.yih(x,y)= F(u, v)* H(u, v)

V= wsing

© 2002 R. C. Gonzalez & R. E. Woods

(Continued)

TABLE 4.3
Summary of DFT
pairs. The closed-
form expressions
in 12 and 13 are
valid only for
continuous
variables. They
can be used with
discrete variables
by sampling the
closed-form,
continuous
expressions.
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DFT Pairs

Name DFT Pairs

7) Correlation flx.y)¥&hix, y) = F'(u.v)H(u. v)
theorem’ f*{x. vih(x,y) = Flu,v)¥ H(u.v)
8} Discrete unit dx.y)e=|
impulse
sin{ua) sin(wvb)

9) Rectangle rect|a, b] < ab———— ———— ¢ iTluatd)
= (ua)  (wvb)

10} Sine sin(2mupx + 2rygy) <
1
j;{ﬁ(u + Mug, v+ Nvg) — 6(u— Mug. v — Nz:”}]
11} Cosine cos(2mupx + 2my) =

1
;[ﬁ(u + Muy. v + Nwg) + dlu — Mug. v — Na,'”}]

The following Fourier transform pairs are derivable only for continuous variables,
denoted as before by t and z for spatial variables and by o and v for frequency
variables, These results can be used for DFT work by sampling the continuous forms.
. o d a " i e n
12} Differentiation — | flt.z) & (2ap)"(j2me )" Fuw, v)

. at o
(The expressions <

on the right am (e z) a"f(r. z)
& A s i m et v D) ,
assume that apm < (2mp)"F(p. v); az" < (2mv)"Fye. v)
fl+oo, +00) = 0.)
13} Gaussian A2zrale D) o 4o (0N (4 s a constant)

" Assumes that the functions have been extended by zero padding. Convolution and correlation are asso-
ciative, commutative, and distributive.

TABLE 4.3
(Continued)
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Spatial Domain’

Frequency Domain'

1)

[E]

53

I

)
)
)
)

N

3

(@)

-~

o e

11
]
1

J

I

)
)
)
)
10)
)
)
)

5

f(x,y)real

f(x,y) imaginary
f(x,y)real

f(x,y) imaginary

f(—=x, —y) real

f(—x, —y) complex

f(x, y) complex

f(x,y) real and even
f(x,y)real and odd
f(x.y) imaginary and even
f(x,y)imaginary and odd
f(x,y) complex and even

f(x,y) complex and odd

(SN 1 T A

—

F(u.v) = F(—u. —v)
F'(—u. —v) = —F(u,v)
R(u,v) even; I(u, v) odd
R(u, v) odd; I(u, v) even
F'(u. v) complex

F(—u, —v) complex
F'(—u — v) complex
F(u, v)real and even

F(u, v) imaginary and odd
F(u, v) imaginary and even
F(u, v)real and odd

F(u, v) complex and even

F(u, v) complex and odd

TRecall that x, y, u, and » are discrete (integer) variables, with x and « in the range [0, M — 1], and v, and
vin the range [0, N — 1]. To say that a complex function is everr means that its real and imaginary parts

arc even, and similarly for an odd complex function.

© 2002 R. C. Gonzalez & R. E. Woods

2-D DFT Symmetry Properties

TABLE 4.1 Some
symmetry
properties of the
2-D DFT and its
inverse. R(u, v)
and /(u, v) are the
real and imaginary
parts of F(u,v),
respectively. The
term complex
indicates that a
function has
nonzero real and
imaginary parts.
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DFT Centering

F(u)

Two back-to-back
periods meet here.

I . H LA u
M2 0 M/’Zfl—/\—M/z —/\M
F(u)
Two back-to-back
periods meet here.
0 Mj2 M-1
|+— One period (M samples) —|
| | | | |
B e S e -
[ [ [ [ : [
| | | | | |
| | | | | |
| + | | | |
| | | | | |
I | L ! |
| I | | 0,0 IN2— N-1—)
I ~_ T R ——
I | L
: F(u v) : : M2 —
I | Four back-to-back I I
I Iperiods meet here.! I
peno M-1 F(u,v)
| | | | g
S L SE s _

Four back-to-back /

periods meet here.
[ J Periods of the DFT.

D M X N data array, F(u, v).

a
b

=lid

FIGURE 4.23
Centering the
Fourier transform.
(a) A 1-D DFT
showing an infinite
number of periods.
(b) Shifted DFT
obtained by
multiplying f(x)
by (—1)* before
computing F(u).
(c) A2-D DFT
showing an infinite
number of periods.
The solid area is
the M X N data
array, F(u,v),
obtained with Eq.
(4.5-15). This array
consists of four
quarter periods.
(d) A Shifted DFT
obtained by
multiplying f(x, y)
by (—1)""

before computing
F(u,v). The data
now contains one
complete, centered
period, as in (b).
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|F(uv)l

v ab
clid
FIGURE 4.24
(a) Image.
(b) Spectrum
showing bright spots
in the four corners.
(c) Centered
spectrum. (d) Result
showing increased
detail after a log
transformation. The
zero crossings of the
spectrum are closer in
the vertical direction
because the rectangle
in (a) is longer in that
direction. The

v coordinate
convention used
throughout the book
places the origin of
the spatial and
frequency domains at
the top left.

| Log(1+[F(uv)l)

| Centered F(u,v)

-

© 2002 R. C. Gonzalez & R. E. Woods ! u
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FIGURE 4.25

(a) The rectangle
in Fig. 4.24(a)
translated,

and (b) the
corresponding
spectrum.

(c) Rotated
rectangle,

and (d) the
corresponding
spectrum. The
spectrum
corresponding to
the translated
rectangle is
identical to the
spectrum
corresponding to
the original image
in Fig. 4.24(a).

f(r,0+6,) e F(w,0+6,)

© 2002 R. C. Gonzalez & R. E. Woods
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FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a), (b) to the translated image in Fig. 4.25(a). and (c) to the rotated image in
Fig. 4.25(c).
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FIGURE 4.27 (a) Woman. (b) Phase angle. (¢) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.
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