EECS490: Digital Image Processing

=7 Lecture #8

e Fourier Transform
— Fourier series
— 2-D basis functions
— 2-D Fourier Transform
o Sampling and band-limited functions
— Aliasing
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The Fourier Series

Is the decomposition of a A-periodic signal into a sum of sinusoids.

f@t)=4, +iAn cos(antj+Bn sin (2”7”1)

n=1

periodic: dAe R such that f(tinxl)=f(t).i

The representation of a
function by its Fourier
Series is the sum of sinu-
soidal "basis functions”

A, _2 Jf(t)—cos(ant , ﬂdt forn=0

ﬂdtforn>0

multiplied by coefficients.

Fourier coefficients are
generated by taking the
inner product of the

function with the basis.

1999-2007 by Richard Alan Peters II
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o ek The Fourier Series

can also be written in terms of complex exponentials

oo

N ELL - ][220 v,
f(t)zzcne S5 =Z|Cn|e J( A ¢)

n=-—oo n=-—oco

:Z|C" |cos(2%t+¢n)+j.|cn |sin (MTHI+¢H)

n=—co

tj

e’ =cosxzx jsinx

ft+nd)=£(1)

for allintergers n

1999-2007 by Richard Alan Peters II
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Nk Why are Fourier Coefficients Complex
[ e Numbers?

e+j¢n .

- +jzﬂt
f(t):ZCne * where C,=|C,

C,, represents the
amplitude, A=|C,|,

and relative phase, ¢, |
of that part of the . /\ [ /\ / \ /\ / \>
original signal, f (t), V \/ \ \/ V

that is a sinusoid of
frequency w,=n/A.

A intensity

,,,,,
HeEQuctivy

1999-2007 by Richard Alan Peters II
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Fourier Series of a Square Wave

Z erjka
f=—o0
( % k=0

0 k even

%nk k odd
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The Fourier Transform

IS the decomposition of a nonperiodic
signal into a continuous sum” of sinusoids.

F(w)=| F(0)| ™ = [ f(5)e ™ di

= ]:f(t)[cos(Zﬂ:a)t)+jsin (2rwt) |at

—00

f(t): F(Q)) e—j27w)tdw: 'HF((U) ‘ e—j(antHD(w)) do

= | F(0)| cos(2701) - jsin (2701) | do

]O | F(o) || cos(2mat + ®(w))- jsin(2nwt + ®(w)) |do

1999-2007 by Richard Alan Peters II "i.e., an integral.
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The Discrete Fourier Transform

A discrete signal, { h, | k=0,1,2,... N-1 }, of finite length N can be repre-

sented as a weighted sum of N sinusoids, { e "N n=0,1,2,...,N- 1}

through N1
hk — 2 Hne—jZﬂ'kn/N
n=0

where the set, {Hn n=012,...,N —l}are the Fourier coefficients
defined as the projection of the original signal onto sinusoid, n, given by :

1 N-1
_ +j2mkn/N
H,=— Y he
k=0

1999-2007 by Richard Alan Peters II
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The Two-Dimensional Fourier
Transform

Primary Uses of the FT in Image Processing:

For feature detection and enhancement, especially
edge detection.

Useful for certain types of noise reduction,
deblurring, and other types of image restoration.

Explains why sampling can add distortion to an
Image and shows how to avoid it.

1999-2007 by Richard Alan Peters II
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*4”” The Fourier Transform: Discussion

\ Rafael C. Gon
{ Richard E. Woods

The expressions

' continuous signals

F(a)): Jf(t) e el gy =<f(t), e+12”a”> 1 defined over all

' real numbers

and
1 Nl S S discrete signals
Hn=—2 hke_]”"N=<hk, e’ ””N> . with N ferms or
N .5 - samples.

for the Fourier coefficients are “inner products” which
can be thought of as measures of the similarity between

the functions  £(¢) and e*/**" for t € (—oo,o0) or
v j2mkn/N } N-1

between the sequences { &, } ZZ:) and { e o

1999-2007 by Richard Alan Peters II
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Processing

@ The Fourier Transform: Discussion (cont’d.)

“In the context of inner products, the complex exponentials

— 2wt —j2mkn/N
{e Ar i | weNR and a)e(—°°,°°)} and {6 SR |""_2’_1’0’1’2"” }

are called “orthogonal sets” since they have the property:

(e o]

' j 1 ; oo, if =W
—j2rw, t —j2rw,t . —j2rw,t _+j2mw,t . » T =05
<e > € > - je € dt = 10, ifo, 0,
—jemjnIN  _—j2mknIN\ _ Nz_: _j2mjnIN _+j2mknin _ ) © iJ=K
4 , € = 2. € € = Yo, ifjzk s
n=0

The function
sets are called
“orthogonal
basis sets”

They are called “basis sets” since for any function?, f (t), of a real
variable there exists a complex-valued function F(w), and for any
sequencel, h,, there exist complex numbers, H, such that

f(t)= [F(@)e ™ do and h, =3 H,e >,

Lwith finite energy.

1999-2007 by Richard Alan Peters II
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W The 2D Fourier Transform of a Digital
R e Im a g e

Let I(r,c) be a single-band (intensity) digital image with R
rows and C columns. Then, I(r,c) has Fourier representation

B R-1C-1 +j27[(z+%j
1(r.e)= Eo go H(vu)e ’ these complex
where exponentials are
2-D sinusoids.
j(v,u) :%R—l Cc-1 I(r,c) e—j2n£E+F)
r=0 ¢=0

i . Note that R and C take on the role of
are the R x C Fourier coefficients. | the period such as you would find in a

1-D time series

1999-2007 by Richard Alan Peters II
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Since we are dealing with space (not
time) w is a spatial frequency

To simplify the situation assume R = C = N.| Then

2 2
i-j27z:(%+£) . ijﬁ(vr+uc) _ ei] 3

where

rsin9+csin9)

What are 2D sinusoids?

(0,0) ®cosH

9 uIs M
| €
e
=

<
<
-
—
—
-
-
~
-~
-

»

v=wsinf, u=wcosh, w=+v'+u’, and 0:tan‘1(§).

Write
Pl Similarly, A is a
o spatial frequency

Then by Euler’s relation,

1

Note: since images are indexed
by row & col with r down and ¢
to the right, 0, is positive in

the counterclockwise direction.

g /Tlrsn0 ecosd) cos| Z(rsinf+ ccosf) | £ jsin| 2(rsin@+ ccosb) |.

Cont’d. on next page.

1999-2007 by Richard Alan Peters II
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kS What are 2D sinusoids? (cont'd.)

Both the real part of this,
Re{ eijZﬂ%(rsin0+ccose)} _ _I_COSI:ZTn'(rSinO + CCOSO):I
and the imaginary part,
Im{ eijzﬂ(rsine“c"se)} = ijsin[%”(r sin 6 + ccos 9)]
are sinusoidal “gratings” of unit amplitude, period A and direction 6.

2 . :
Then %w IS the radian frequency, and % the frequency, of the wavefront

N . .. : : .
and A= - Is the wavelength in pixels in the wavefront direction.

1999-2007 by Richard Alan Peters II
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e, 4 2D Sinusoids:

.. are plane waves with grayscale amplitudes, periods

in terms of lengths, ...

The 1 is added to make the range positive, [0,2] and dividing by
1/2 takes it back to [0,1]. The A is then the peak amplitude of
the grating.

A 27r
|

I(r,c)= cos r-sinf + c- c030)+¢ +1}

$ amplitude A

perlod A

¢ = phase shift

1999-2007 by Richard Alan Peters II



EECS490: Digital Image Processing

2D Sinusoids:

... have specific orientations,
and phase shifts.

1999-2007 by Richard Alan Peters II
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igital 9

..~ The Fourier Transform of an

| Rafael C. Gonzales
Richard E. Woods ~

| Image

Re[F{1}] Im[Al

1999-2007 by Richard Alan Peters II
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Points on the Fourier Plane

The point at column 1 _
freq. u and row freq. v Av=—— Fourier Plane
represents a sinusoid N Ay

with wavelength © and
orientation 0 (if R=C=N).

® = N/, where A is the 1
wavelength and R=C=N., Au=——

1999-2007 by Richard Alan Peters II
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S Points on the Fourier Plane (of a Digital
B Kl ."'Ji‘l.'.‘,f,’.' Im ag e)

In the Fourier transform of an RxC digital -V direction
image the wavelengths, A, and A ,, represent a "

fraction of the R and C values. That is,
Fourier Plane

u

A,=< and A, =% pixels.

The wavefront direction is given by of a digital image

6, = tan™ (Zfrl),

and the wavelength is

T A0

uonoaIIp o-

The frequencies represent fractions of R & C,
f.=%,f=+,and
for = I/J 5 * cycles.

1999-2007 by Richard Alan Peters II
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Points on the Fourier Plane

Fourier Plane

This point represents this particular sinusoidal grating

N

1999-2007 by Richard Alan Peters II

\
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FT of an Image
Magnitude + Phase)

L Rafael C. Gonsales
Richard E. Woods ~—

38 ey

log{| F{1}*+1} Z[J13]

1999-2007 by Richard Alan Peters II
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*' ‘Image -
* Processing
T

-~ &
&t &

of an Image (Real +
| lmaginary)

| Rafael C. Gonzales
Richard E. Woods .

L T
i NI — ML T L

Re[H{1}] Im[ F{1}]

1999-2007 by Richard Alan Peters II
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j“ 3 FT of a Rect(t) Function

0 F(w) | F(w)l
AW
A
w/i2 0 W/2 ! _//4”\\ M
_ ._!I),'L ._J/L - ) ’
2/W 2w LW 2/W -+

abec

FIGURE 4.4 (a) A simple function; (b) its Fourier transform; and (c) the spectrum. All functions extend to
infinity in both directions.

A fundamental property of the Fourier transform
relates to W. As the width W of the function increases
in time t its corresponding Fourier transform becomes
narrower indicating that the frequencies are becoming
lower.

© 2002 R. C. Gonzalez & R. E. Woods



Real images are
continuous but most
modern sensors (and
signal processing)
are digital, i.e., the
image is sampled.

© 2002 R. C. Gonzalez & R. E. Woods
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4.7 Sampling a Continuous Function

a
b
©
d

FIGURE 4.5

(a) A continuous
function. (b) Train
of impulses used
to model the
sampling process.
(c) Sampled
function formed
as the product of
(a) and (b).

(d) Sample values
obtained by
integration and
using the sifting
property of the
impulse. (The
dashed line in (c)
is shown for
reference. It is not
part of the data.)
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= V' Image
4 T * Processing

4" Sampling a Band-limited Function
*'ﬁr’::::.‘.,:';::::' &
F(J,u) a

The rate at which /\ band-limited d

we sample the FIGURE 4.6
original function is p (a) Fourier
. 0 transform of a
very lmpor'fanf 7 band-limited
li li (k) function.
sampling replicates (D)(d)

Transforms of the

the original .

_ corresponding
spectrum these o . sampled function
can overlap! under the

. I I I I M conditions of

—2/AT -1/AT 0 L/AT 2/AT over-san‘[pljng,
= critically-
Fiu) sampling, and
under-sampling,
oallte respectively.
critically sampled
| ‘ I ‘ 1
—2/AT —1/AT 0 1/AT 2/AT
F(u)
I I 1 I I I [
=3/AT =-2/AT -1/AT 0 1/AT  2/AT  3/AT

© 2002 R. C. Gonzalez & R. E. Woods
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> Sampling Theorem

F(w) .
b

FIGURE 4.7

(a) Transform of a
band-limited
function.

(b) Transform
resulting from
critically sampling

Samphng theor‘em the same function
requires that we »
Sample GT a PG"'Z AT ~ M max ~0 M max
given by: Fiu
—1 2
AT g 'Ltmax trry T Mmax M max
l s
I 1 T = L
o0 11
2AT 2AT AT

© 2002 R. C. Gonzalez & R. E. Woods
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P ¢
el g Reconstruction Filtering
*Z‘.';'.'.‘u‘.“:.’.‘,‘:.' =

Fu) a

band-limited
1/AT 2/AT function using an
ideal lowpass
filter.

FIGURE 4.8
max Extracting one
cee period of the

| ‘ transform of a
} T T M
|
|
|
|
|
|
|

© 2002 R. C. Gonzalez & R. E. Woods



J EECS490: Digital Image Processing

igital
‘Image
iy Processmg

~

e“" Undersampling = Aliasing

“

-

S Ratael C. Gonsales -
Richard E. Woods ~

F(p)

—3/AT —2/AT —l/Ai 0 II/AT /AT 3/AT "
| |
| HG |
. | |
Frequency domain AT |
view of
undersampling. | .
|
|
F( (k)
|
|
|
|
|
|
' i

“HMmax 0 M max

a
b
©

FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function.
(Interference from adjacent periods is shown dashed in this figure). (b) The same ideal
lowpass filter used in Fig. 4.8(b). (c) The product of (a) and (b). The interference from
adjacent periods results in aliasing that prevents perfect recovery of F(u) and,
therefore, of the original, band-limited continuous function. Compare with Fig. 4.8.

© 2002 R. C. Gonzalez & R. E. Woods
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e
e eeb s Undersampling =2 Aliasing

-

S Ratael C. Gonsales -
Richard E. Woods ~

Time domain view of /
| undersampling. '
—{ AT+

FIGURE 4.10 Illustration of aliasing. The under-sampled function (black dots) looks
like a sine wave having a frequency much lower than the frequency of the continuous
signal. The period of the sine wave is 2 s, so the zero crossings of the horizontal axis
occur every second. AT is the separation between samples.

© 2002 R. C. Gonzalez & R. E. Woods
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2-D Discrete Impulse

We sample pictures
using a 2-D discrete
impulse function.

FIGURE 4.12
Two-dimensional
unit discrete
impulse. Variables
x and y are
discrete, and & is
zero everywhere
except at
coordinates

(X0, Yo)-



© 2002 R. C. Gonzalez & R. E. Woods
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2-D Sampling Grid

sataz(t, 2)
FIGURE 4.14
Two-dimensional
| impulse train.
. AZ SR

We use 2-D arrays of 2-D
impulse functions to sample a
continuous image to give a
discrete image.
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z Tmage
" Processing

Lt

n“” 2-D DFT of Rect(x,y)

|F(m,v)]

FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The
block is longer along the f-axis, so the spectrum is more “contracted” along the u-axis.
Compare with Fig. 4.4.

© 2002 R. C. Gonzalez & R. E. Woods
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e Yok 2-D DFT of Rect(x,y)

—y

=

v v

Log transformed

| j—i[RecT(x,y)] |

© 2002 R. C. Gonzalez & R. E. Woods
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Chapter 4
| Image Enhancement in the
Frequency Domain

ab

FIGURE 4.3

(a) Image of a

20 X 40 white
rectangle on a
black background
of size 512 X 512
pixels.

(b) Centered
Fourier spectrum
shown after
application

of the log
transformation
given in
Eq.(3.2-2).
Compare with
Fig. 4.2

© 2002 R. C. Gonzalez & R. E. Woods
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MATLAB Fourier transforms

>> f=imread(‘Figure Rectangle.jpg’);
>> F=fft2(double(f));

>> S=abs(F); calculate magnitude for display

>> imshow(S, [ ]) shows in four corners of display
% [] indicates that MATLAB should scale the image’s minimum and

% maximum values to 0 and 255 respectively

>> Fc=fftshift(F); ¢ shift FFT to center

>> imshow(abs(Fc), [ 1); % show magnitude of FFT in center

load in spatial rectangle

%
% do 2D FFT
%
%

% much tougher to do display transform

>> g=uint8(log(l+double(abs(Fc))));

>> imshow(g, [ ])

% double converts the image to double precision floating point
% uint8 brings the values back to the range [0,255]

SEE GWE, Section 4.2 Computing and Visualizing the 2-D DFT in MATLAB
GWE, Section 3.2.2 Logarithmic and Contrast Stretching Transformations

T
i

FHHT
i



© 2002 R. C. Gonzalez & R. E. Woods
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Undersampling in 2-D

APA R
Va

o/

Footprint of an
ideal lowpass
(box) filter

.
l‘l‘ max

p

:A v
AV

v
.

vmax

ab

FIGURE 4.15
Two-dimensional
Fourier transforms
of (a) an over-
sampled, and

-y (b) under-sampled

4

band-limited
function.

If the 2-D samples
impulses are too far
apart (undersampling)
their 2-D Fourier
transforms will overlap.
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Boged

© 2002 R. C. Gonzalez & R. E. Woods
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Undersampling in 2-D

F(p)

Il |
T T
T 2/AT  3/AT

=S+

I | T
T T I 1
—-3/AT —2/AT —1/ATI 0 1/

H(p)

I
|
|
|
|
|
|
|
|

AT

I

High frequencies from
adjacent spectra will
“alias" as lower

| frequencies in the

“Hmax 0 Fox reconstructed image

|
|
|
I(u)
|
|
i
I
|

a
b
c

FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function.
(Interference from adjacent periods is shown dashed in this figure). (b) The same ideal
lowpass filter used in Fig. 4.8(b). (c) The product of (a) and (b). The interference from
adjacent periods results in aliasing that prevents perfect recovery of F(w) and,
therefore, of the original, band-limited continuous function. Compare with Fig. 4.8.
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e ehs Undersampling in 2-D

16 pixel
squares

6 pixel
squares

0.4798 pixel
squares

0.9174 pixel
squares

FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares
are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c¢) and (d), the
sides of the squares are 0.9174 and 0.4798 pixels, respectively, and the results show
significant aliasing. Note that (d) masquerades as a “normal” image.

Results of checkboard images sampled) with a 96x96
pixel resolution sensor. Sensor max resolution=1 pixel.

© 2002 R. C. Gonzalez & R. E. Woods
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igital
* ‘Image
l”rocessmg

,, Sty . .
b Aliasing
o<y —— . 3x3 averaging prior to sampling
| 50% pixel deletion | to band-limit image

abc

FIGURE 4.17 Illustration of aliasing on resampled
(b) Result of resizing the image to 50% of its oy
(c) Result of blurring the image in (a) with a 3 X\3
more blurred than (b), but aliasing is not longe
Compression Laboratory, University of California, Sg

eraging filter prior to resizing. The image is slightly
ectionable. (Original image courtesy of the Signal
a Barbara.)

Note the aliasing

© 2002 R. C. Gonzalez & R. E. Woods



