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Image Processing Example

Laplacian of image

(c) Sharpened by
adding Laplacian

Sobel gradient
image

original image
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Image Processing Example

(e) Blurred Sobel
gradient image Mask = (c) x (e)

Add Mask to original Power Law Intensity
Transform
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Basic Fuzzy Logic

“crisp” membership
function

“fuzzy” membership
function

Probability: there is a 50% chance that a particular person is young
Fuzzy logic: a person’s membership with the set of young people is 0.5

Basically everyone is “young” to some degree. A membership function
represents that degree.
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Basic Fuzzy Logic

=max[ A(z), B(z)] =min[ A(z), B(z)]

OR AND
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Basic Fuzzy Logic

Commonly used membership functions
used to describe inputs and outputs.
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Fuzzy Input Variables

We will use a
single color
to describe a
fruit with a
color that
changes
from green
to yellow to
red as it
ripens.

A particular color zo has a
membership value  green(zo),

yellow(zo), and red(zo) in all three
input membership functions.
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Fuzzy Output Variables

The fruit can be
verdant(unfit to
eat), half-
mature
(ripening), and
mature (ripe) The output variable is

maturity which is hard to
quantify
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Fuzzy System

We now
need to
relate the
input
membership
functions to
the output
membership
functions —
this is
called
implication

input membership output membership

This is a simple plot of
the relationship
between the two
membership functions

This is simply the
membership function for red
AND mature or red  mature

red ature(z,v)=min[ red(z), mature(v)]
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A fuzzy output for a given input

We now
need to
evaluate
each output
membership
function for
the given
input value

Q3(v)=  red(zo) AND red ature(zo,v)
=min[[ red(zo), red ature(zo,v)]

red(zo) is a constant c which clips the output
membership function as shown above

Q3 is still a membership function!
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All fuzzy outputs for a given input

There are 3 different
input membership
functions each of
which can be ANDed
with mature.

This gives three
different output
membership functions.

The system output is
the maximum value at
each point or
Q=Q1 OR Q2 OR Q3.

This is the mature
membership function
for a specific color zo



EECS490: Digital Image Processing

© 2002 R. C. Gonzalez & R. E. Woods 

Defuzzification

The output is still a
set.  The actual
membership value is
the center of gravity
of the output set.

v0 =
vQ v( )

v=1

K

Q v( )
v=1

K
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The Entire Process



EECS490: Digital Image Processing

© 2002 R. C. Gonzalez & R. E. Woods 

IF a pixel is dark THEN make it darker
IF a pixel is gray THEN make it gray
IF a pixel is bright THEN make it
brighter

The output memberships are only three
values.

Fuzzy Contrast Enhancement
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1. Compute the input membership
function AND the output membership
function

2. For a specific value of input gray
level we map onto a single output plane.
The membership is 1 for deep blacks
and gradually decreases to zero.  Do
this for each output.

Contrast Enhancement

3. Determine the total membership
function and compute the center
of gravity of the output

v0 =
μdark z0( ) vdark + μgray z0( ) vgray + μbright z0( ) vbright

μdark z0( ) + μgray z0( ) + μbright z0( )
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Fuzzy Contrast Enhancement
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Original histogram Equalized histogram

Fuzzy membership
functions

Fuzzy contrast
enhanced histogram

Fuzzy Contrast Enhancement
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Fuzzy Boundary Extraction

IF a pixel belongs to a uniform region THEN make it white ELSE make it black

IF d2 is zero AND d6 is zero THEN z5 is white
IF d6 is zero AND d8 is zero THEN z5 is white
IF d8 is zero AND d4 is zero THEN z5 is white
IF d4 is zero AND d2 is zero THEN z5 is white
                                              ELSE z5 is black
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Fuzzy Boundary Extraction Rules
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Fuzzy Boundary Extraction

Input membership function
for ZERO intensity
differences

Output membership function for black
and white
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Fuzzy System

input membership output membership

This is a plot of the
relationship between
the two membership
functions

This is the membership
function for difference AND
white
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A fuzzy output for a given input

We now
need to
evaluate
each output
membership
function for
the given
input value

This would be the output membership for a
specific intensity difference input AND
white
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Fuzzy Boundary Extraction
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Sum of Functions
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The terms shown (blue)

sum to the rippling

square wave (black).

As the number of terms

in the sum becomes large,

it approaches a square

wave (red).
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Fact: Any Real Signal has a Frequency-
Domain Representation

 1999-2007 by Richard Alan Peters II
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The sinusoids are called

“basis functions”.

Any periodic signal can be described by a sum of sinusoids.

The multipliers are called

“Fourier coefficients”.

Frequency-Domain Representation

 1999-2007 by Richard Alan Peters II
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The sinusoids are called

“basis functions”.

Any periodic signal can be described by a sum of sinusoids.

The multipliers are called

“Fourier coefficients”.

Basis
functions

Frequency-Domain Representation

 1999-2007 by Richard Alan Peters II
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The sinusoids are called

“basis functions”.

Any periodic signal can be described by a sum of sinusoids.

The multipliers are called

“Fourier coefficients”.

The Fourier
coefficients
(of a square
wave).

Frequency-Domain Representation

 1999-2007 by Richard Alan Peters II
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The similarity between functions f  and g on the interval  - / 2, / 2( )  

can be defined by

f , g = f t( ) g* t( )
/2

/2

dt

where g* t( )  is the complex conjugate of g t( ). 
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The Inner Product: a Measure of
Similarity

 1999-2007 by Richard Alan Peters II
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f , g = f t( ) cos 2 t( ) j sin 2 t( )
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3 different
representations

Inner Product of a Periodic Function and a
Sinusoid

 1999-2007 by Richard Alan Peters II
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real number results
yield the amplitude
of that sinusoid in
the function.

Inner Product of a Periodic Function and a
Sinusoid

 1999-2007 by Richard Alan Peters II
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Complex number result
yields the amplitude and
phase of that sinusoid in
the function.

Inner Product of a Periodic Function and a
Sinusoid

 1999-2007 by Richard Alan Peters II
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is the decomposition of a -periodic signal into a sum of sinusoids.
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Fourier coefficients are
generated by taking the
inner product of the
function with the basis.

The representation of a
function by its Fourier
Series is the sum of sinu-
soidal “basis functions”
multiplied by coefficients.).()(: tfntf =± that  such   periodic

The Fourier Series

 1999-2007 by Richard Alan Peters II
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can also be written in terms of complex exponentials

f t( ) = Cn

n=

e
+ j 2 n t

= Cn
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The Fourier Series

 1999-2007 by Richard Alan Peters II
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f (t) = Cn

n=

e
+ j 2 n t

  where   Cn = Cn e
+ j n .

Cn represents the

amplitude, A=|Cn|,

and relative phase,  ,

of that part of the

original signal, f (t),

that is a sinusoid of

frequency n = n / .

0

Why are Fourier Coefficients Complex
Numbers?

 1999-2007 by Richard Alan Peters II


