
EECS490: Digital Image Processing

Lecture #27

• Mean Square Estimation*

• Kalman Filter**

• Kalman Tracking

* See Section 8.3 Linear Mean-Square Estimation, Dwight F.Mix,
Random Signal Processing, Prentice-Hall, 1995.

** See Section 8.6 Recursive Filtering, Dwight F.Mix, Random
Signal Processing, Prentice-Hall, 1995.
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Stochastic processes & ensembles

• A stochastic process produces an
output waveform rather than just a
number

• A specific output waveform is
denoted by X(t, i)
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Stochastic processes & ensembles

• A collection of time functions X(t, i)
is called an ensemble

• This illustrates an ensemble

t

i
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Mean Square Estimation

• Let                where    is the error
between the random variable     and our
estimate

• The mean squared error is:

• The value of     which minimizes
is the minimum mean-square estimate of

e = X X̂
X

X̂

e

X̂ E e2( )

X

E e2( ) = E X X̂( )
2

This is basically what we did in the Weiner filter
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Estimating points on a line (1)

• Estimate the value of X given Y by points on a straight line

• Write the mean square error as

• Set partial derivative of mean square error wrt b equal to
zero to get b

X̂ = aY + b

E e2( ) = E X X̂
2

{ } = E X aY + b( )
2{ }

b
E e2( ) = E 2 X aY b[ ] 1( ){ } = 2E X( ) + 2aE Y( ) + 2b = 0

b = E X( ) aE Y( ) = mX amY

Compute mY, Y
2

Compute mX, X
2X

Y

-2

4

-1

1

0

0

1

1

2

4

3

9

Definition of a random variable X Y

X Estimating a line

through data points is

an example of a

minimum mean

square estimator

X̂ = aY + b
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Estimating points on a line (2)

• Substituting our result for b into that for the error E(e2) we
get

• Take the derivative wrt a and set equal to zero to get

• We can calculate the means and variances of the data and,
after substitution, get a and b as

where

This gives

E e2( ) = E X aY mX + amY[ ]
2{ } = E X mX( ) a Y mY( )

2

{ }
E e2( ) = E X mX( )

2
2a X mX( ) Y mY( ) + a2 Y mY( )

2{ } = X
2 2aμ11 + a

2
Y
2

a =
μ11

Y
2

a =
μ11

Y
2
= 0.319 b = mX amY = 0.5 0.319( ) 3.17( ) = 0.5

X̂ = 0.319Y 0.5

μ11 = E x mx( ) y my( )
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Continuous Waveform Measures

• The inner product

• The norm or length

• Distance metric

v1 t( ) | v2 t( ) = v1 t( )v2 t( )dt

v t( ) = v2 t( )dt

d v1,v2( ) = v1 t( ) v2 t( )
2
dt

We want to treat waveforms like vectors and matrices
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Discrete Waveform Calculations
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Random Variable Measures

• The inner product

• The norm or length

• Distance metric

• Orthogonality requires

X |Y = E XY( )

E X( ) = E X 2( )

d X,Y( ) = X Y = E X Y( )
2( )

X |Y = E XY( ) = 0

Expand idea of functions as vectors to random variables.  Note
the use of E( ) throughout (see slide 46 of Lecture 25).
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Random Variable Measures

• Now expand to discrete functions

E g x( ) = g x( ) p x( )dx
+

E g x( ) = g xi( )P xi( )
i=1

N

continuous

discrete
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Linear estimator

where x(i) is the data, the hi’s are constants,
and     is the estimate of the output d

In general                              where s is the
actual signal and w is white noise

Extrapolation:                       estimate a future value

Interpolation:                      estimate a previous value

Smoothing:                      estimate the current value

 
d̂ = h0x n( ) + h1x n 1( ) + h2x n 2( ) + h3x n 3( ) +…+ hpx n p( )

d̂
x n( ) = s n( ) + w n( )

d̂ n( ) = s n + k( )
d̂ n( ) = s n k( )
d̂ n( ) = s n( )

We want to make an estimate of d which is a linear function
of p+1 previously known, NOISY inputs
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Orthogonality Principle

• The error e is the difference between the
estimate ax and the actual d

• We want to choose a so as to minimize e=d-ax

d e

x
ax These are the measurements

For Kalman (and other) filters we minimize e by making e⊥x
where d=a•x, a linear estimator

This is the estimate of d
from the measurements

This is what we want to estimate
minimize the error by making e⊥x
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Single Observation Estimation

• (See Slides 61 and 62 of Lecture 25)

• The cross-correlation of x and y (the moment 11)
is given by

• and

Rxy = 11 = E xy[ ] = xyp x, y( )dxdy
++

E d n( )x n( ) = E s n( )x n( ) = Rsx 0( )

This is always the difference between the times of
the two waveforms— typically the second, x, minus
the first, s.
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Single Observation Estimation

• Given one observation x(n) we want to estimate s(n)

• Require the error                              to be orthogonal to the
data x(n)

• Using the estimate                          gives

• This can be re-arranged to give

• Which says the optimum estimator occurs when

x n( ) = s n( ) + w n( ) d n( ) = s n( )
e n( ) = d n( ) d̂ n( )

E e n( )x n( ){ } = E d n( ) d̂ n( )( )x n( ){ } = 0
d̂ n( ) = h0x n( )

E d n( ) h0x n( )( )x n( ){ } = E d n( )x n( ){ } h0E x n( )x n( ){ } = 0

E d n( )x n( ){ } h0E x n( )x n( ){ } = RSX 0( ) h0RXX 0( ) = 0

h0 =
RSX 0( )

RXX 0( )
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Multiple Observations

• Given two observation x(n) and x(n-1) we want to estimate
s(n)

• Require the error                               to be orthogonal to the
data x(n) and x(n-1)

• Using the estimate                                        now gives two
equations since we require perpendicularity at both data
points

x n( ) = s n( ) + w n( ) d n( ) = s n( )
e n( ) = d n( ) d̂ n( )

E e n( )x n( ){ } = E d n( ) d̂ n( )( )x n( ){ } = 0

d̂ n( ) = h0x n( ) + h1x n 1( )

E d n( ) h0x n( ) h1x n 1( )( )x n( ){ } = E d n( )x n( ){ } h0E x n( )x n( ){ } h1E x n 1( )x n( ){ } = 0

E d n( ) h0x n( ) h1x n 1( )( )x n 1( ){ } = E d n( )x n 1( ){ } h0E x n( )x n 1( ){ } h1E x n 1( )x n 1( ){ } = 0

Current sample and previous sample

E e n( )x n 1( ){ } = E d n( ) d̂ n( )( )x n 1( ){ } = 0
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Multiple Observations

• Rewriting these equations in terms of autocorrelation
functions

• And putting them in matrix form gives

• Which can be solved for h0 and h1.

E d n( )x n( ){ } h0E x n( )x n( ){ } h1E x n 1( )x n( ){ } = RDX 0( ) h0RXX 0( ) h0RXX 1( ) = 0

E d n( )x n 1( ){ } h0E x n( )x n 1( ){ } h1E x n 1( )x n 1( ){ } = RDX 1( ) h0RXX 1( ) h1RXX 0( ) = 0

RXX 0( ) RXX 1( )

RXX 1( ) RXX 0( )

h0
h1

=
RDX 0( )

RDX 1( )
=

RSX 0( )

RSX 1( )
since s(x)=d(x)



EECS490: Digital Image Processing

Single Observation Example

• Find the optimum h0 and minimum mean-square error in
estimating s(n) if the data is x(n)=s(n)+w(n).  The noise w(n) is
white Gaussian noise with zero mean and unit variance.  The
signal, which is zero mean and independent of the noise, has an
autocorrelation function given by RSS(n)=0.9|n|

• The solution requires that we compute both RXX(0) and RSX(0).
• Computing RXX(0)

• Both cross-correlations are zero since the signal is
independent of the noise and for white noise RWW(n)= (n)
giving:

RXX 0( ) = E x n( )x n( ){ } = E s n( ) + w n( )( ) s n( ) + w n( )( ){ }
RXX 0( ) = E s n( )s n( ){ } + E s n( )w n( ){ } + E w n( )s n( ){ } + E w n( )w n( ){ }

RXX 0( ) = RSS 0( ) + RSW 0( ) + RWS 0( ) + RWW 0( )

RXX 0( ) = RSS 0( ) + RSW 0( ) + RWS 0( ) + RWW 0( ) = 0.90 + 0 + 0 + 0( ) = 1+1 = 2

Autocorrelation of signal Autocorrelation of noise is (0)

Cross-correlations

Might be known analytically or a
general model might be known
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Single Observation Example

• Computing RSX(0).

• We can evaluate the optimum estimator coefficient as

• The mean squared error is given by

RSX 0( ) = E s n( )x n( ){ } = E s n( ) s n( ) + w n( )( ){ }
RSX 0( ) = E s n( )s n( ){ } + E s n( )w n( ){ }

RSX 0( ) = RSS 0( ) + RSW 0( ) = 0.90 + 0 = 1

h0 =
RSX 0( )

RXX 0( )
=
1

2

E e2( ) = E s n( ) ŝ n( )( ) s n( ) ŝ n( )( )( ) = E s n( ) h0x n( )( ) s n( ) h0x n( )( )( )
E e2( ) = E s n( )s n( )( ) h0E s n( )x n( )( ) h0E x n( )s n( )( ) + h0

2E x n( )x n( )( )

E e2( ) = RSS 0( ) h0RSX 0( ) h0RXS 0( ) + h0
2RXX 0( ) = 0.90

1

2
1

1

2
1+

1

2

2

2 =
1

2

s(n)-s(n) is simply the difference between
the noise-free signal and the estimate
from the noisy values

ˆ
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Two Observation Example

• Expand the previous example to two observations, i.e., find the
optimum h0 and h1 in estimating s(n) if the data is x(n)=s(n)+w(n).
The noise w(n) is white Gaussian noise with zero mean and unit
variance.  The signal, which is also zero mean and is independent of
the noise, has an autocorrelation function given by RSS(n)=0.9|n|

• The solution requires that we evaluate the matrix

• The new quantities to be evaluated are RXX(1), RXX(-1), and RSX(1) .
RXX 1( ) = RSS 1( ) + RSW 1( ) + RWS 1( ) + RWW 1( ) = 0.91 + 0 + 0 + 1( ) = 0.9

RXX 1( ) = RSS 1( ) + RSW 1( ) + RWS 1( ) + RWW 1( ) = 0.9 1
+ 0 + 0 + 1( ) = 0.9

RSX 1( ) = E s n( )x n +1( ){ } = E s n( ) s n +1( ) + w n +1( )( ){ }
RSX 1( ) = E s n( )s n +1( ){ } + E s n( )w n +1( ){ }

RSX 1( ) = RSS 1( ) + RSW 1( ) = 0.91 + 0 = 0.9

RXX 0( ) RXX 1( )

RXX 1( ) RXX 0( )

h0
h1

=
RSX 0( )

RSX 1( )

0

The big difference from the single observation
example is that we need two equations and matrices.
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Two Observation Example

• Evaluating the matrices gives

• Which can be solved to give h0=0.3730 and h1=0.2821. The mean-
square error is calculated as

2 0.9

0.9 2

h0
h1

=
1

0.9

E e2( ) = E s n( ) ŝ n( )( ) s n( ) ŝ n( )( )( ) = E s n( ) h0x n( ) h1x n 1( )( ) s n( ) h0x n( ) h1x n 1( )( )( )
E e2( ) = E s n( )s n( )( ) h0E s n( )x n( )( ) h1E s n( )x n 1( )( ) h0E x n( )s n( )( ) + h0

2E x n( )x n( )( )

+h0h1E x n( )x n 1( )( ) h1E x n 1( )s n( )( ) + h0h1E x n 1( )x n( )( ) + h1
2E x n 1( )x n 1( )( )

E e2( ) = RSS 0( ) h0RSX 0( ) h1RSX 1( ) h0RXS 0( ) + h0
2RXX 0( ) + h0h1RXX 1( )

h1RXS 1( ) + h0h1RXX 1( ) + h1
2RXX 0( )

E e2( ) = 0.90 0.373( ) 1( ) 0.2821( ) 0.9( ) 0.373( ) 1( ) + 0.373( )
2
2( ) + 0.373( ) 0.2821( ) 0.9( )

0.2821( ) 0.9( ) + 0.373( ) 0.2821( ) 0.9( ) + 0.2821( )
2
2( ) = 0.373

RXS 1( ) = RSS 1( ) + RWS 1( ) = 0.9 1
+ 1( ) = 0.9

Remember s(n)-s(n) is the difference between the noise-
free signal and the estimate from the noisy values

ˆ
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Estimator Filter Architecture

The two observation
estimator example can
be drawn as a filter —
which can be
generalized to include
many more
observations.
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Kalman Filter

• What is the optimum estimator filter
for n samples of a signal which is
evolving over time?

• Kalman (1960) proposed a signal model
which can be used to recursively
estimate a signal evolving over time.
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Optimum Filtering

• Kalman filters are often used to provide
accurate estimates of position and velocity

• A Kalman filter is an efficient recursive
filter which estimates the state of a
dynamical system from a series of
incomplete and noisy measurements

• Estimates can be
– past time (interpolation or smoothing)
– present time (filtering)
– future time (prediction)
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Design a Kalman Filter for a
simple system

Simple model of the system that generated
the data can be defined in multiple ways:

• Impulse function —

• Transfer function —

• Difference equation —

h n( ) = nu n( )

H z( ) =
1

1 z 1

s n( ) = s n 1( ) + n( )
This is probably the most
commonly used model.
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Kalman signal model

The Kalman signal model for this system is

(n) is the white noise which drives the
system

s(n) is the output signal
w(n) is the white noise in the observations

and is independent of (n)
x(n) is the actual observed output, i.e., s+n
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Recursive Estimation?

d̂ n( ) = And̂ n 1( ) + Knx n( )

In our previous architecture
we needed to compute a new
coefficient and add a delay
(processing block)

Instead, can we recursively do
a mean square estimate of
the signal using the previous
estimate and the new signal
observation? If so, it would
have to behave like

new
estimate

old
estimate

new signal
observation with
a varying gain KnCan we use a fixed length (size) to

recursively update the hi
n?
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The Kalman Filter

• Assume that we can write
• Then the optimum estimator can be written

• The normal form for this is

• Where the first term is called the forward
prediction term and the second is called
the residual or correction term

An = 1 Kn( )

d̂ n( ) = And̂ n 1( ) + Knx n( ) = 1 Kn( ) d̂ n 1( ) + Knx n( )

d̂ n( ) = d̂ n 1( ) + Kn x n( ) d̂ n 1( )

This is insight from Kalman

The purpose here is to get a
specific architecture for
implementation
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The Kalman Filter

• For the specified system, the Kalman filter
uses a time varying gain Kn as shown below
to set the error orthogonal to the signal

The key idea is that everything but Kn is
constant.  Kn is adjusted over time to keep
e(n) orthogonal to x(n).

d̂ n 1( )

d̂ n 1( )

d̂ n( )
Knxn + d̂ n 1( )
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Basic Kalman theory

• The mean square error value is

• Since we are using a mean-square estimator we
want to set the error orthogonal to the data,i.e.,

• Solving this (without proof) requires

• Where

• With initial value

n( ) = E e2 n( ) = E d n( ) d̂ n( )
2

{ } = E d n( ) And̂ n 1( ) + Knx n( )
2

{ }

n( ) = E e n( )d n( )

Kn =
n( )

E w n( ) mw( )
2

=
n( )

W
2

n( ) =
2
+

2 n 1( )
2
+ W

2
+

2 n 1( ) W
2

0( ) = S
2

W
2

S
2
+ W

2

This is the critical Kalman formula for the gain Kn.

(n) is the error which
changes over time .

w
2 is the variance of the noise

which does not changeover time.
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Kalman Filter algorithm

The signal has an exponential autocorrelation function.  The
parameters  and 2 must be known. The additive noise w(n) is
white with known variance W

2. Then

Step 1. Set n=0 and calculate the initial mean square error
Step 2. Calculate the Kalman gain
Step 3. Input the data x(n) and calculate the new estimate.

• For n=0 assume            so that
Step 4. Let n=n+1
Step 5. Update the error

• where
Step 6. Go to Step 2.

0( ) = S
2

W
2

S
2
+ W

2Kn =
n( )

W
2

ŝ n( ) = ŝ n 1( ) + Kn x n( ) ŝ n 1( )

ŝ 0( ) = 0 ŝ 0( ) = Knx 0( )

n( ) =
2
+

2 n 1( )
2
+ W

2
+

2 n 1( ) W
2

2
= 1 2( ) S

2
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Example of Kalman Filtering

Consider a particle moving in the plane at constant velocity
subject to random perturbations in its trajectory. The new
position (x1, x2) is the old position plus the velocity ( x1, x2) X1
plus noise w

We assume we can only measure the position of the particle

x1 t( )

x2 t( )

x1 t( )

x2 t( )

=

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

x1 t( )

x2 t( )

x1 t( )

x2 t( )

+

wx1

wx2

w x1

w x2

y1 t( )

y2 t( )
=
1 0 0 0

0 1 0 0

x1 t( )

x2 t( )

x1 t( )

x2 t( )

+
vx1
vx2

velocities vx,vy
new position x,y

This will be called the A matrix

This will be called the H matrix



EECS490: Digital Image Processing

Example of Kalman Filtering

Suppose we start out at position (10,10) moving to the right with velocity (1,0).
We sampled a random trajectory of length 15. The figures show the filtered
and smoothed trajectories. The mean squared error of the filtered estimate is
4.9; for the smoothed estimate it is 3.2. Not only is the smoothed estimate
better, but we know that it is better, as illustrated by the smaller uncertainty
ellipses

Smoothed (after all data—curve fit)filtered (estimate next value)
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Kalman Filter algorithm
(matrix formulation)

Predict the next state s from the initial state

Update the covariance matrix P for the predicted state

Look for the location of the new feature and measure it.  This is m1
Compute the Kalman gain using this m1 and update the covariance matrix.

Now compute the new prediction for the next state using the Kalman gain K1

And repeat the process.

ŝ1 = As0

P̂1 = AP0A
T
+Q

K1 = P̂1H
T HP̂1H

T
+ R( )

1

P1 = P̂1 + K1HP̂1

m1 = Hs0

ŝ2 = ŝ1 + K1 m1 Hŝ1( )New state

measurement Initial state (previous
measurement)

Q is the noise inherent to the variables

R is the measurement noise, i.e., error

measurement Previous state
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Kalman Filtering applied to Truck
Tracking

Image Processing and Interpretation Center, Steve Mills and
Tony Pridmore, The University of Nottingham

http://www.cs.nott.ac.uk/~tpp/G5BVIS/lectures.html

Using the matrix formulation we just developed.
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Application - Traffic Tracking

We want to track
vehicles on a road

• Eg: The truck in the
images to the right

• They are moving with
a (fairly) constant
velocity

• In each frame we can
measure the position
of a feature on the
vehicle we want to
track

Image Processing and Interpretation

at The University of Nottingham

Track
lower left
hand
corner of
truck
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State Update Equation

• We assume the truck is
moving with a constant
velocity

• Our state is the truck
position (x,y) and
corresponding
velocities (u,v)

• At each time the
velocity changes the
position

s =

x

y

u

v

xt = xt 1 + ut 1 1

yt = yt 1 + vt 1 1

ut = ut 1
vt = vt 1
xt
yt
ut
vt

=

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

xt 1
yt 1
ut 1
vt 1

st = Ast 1

Time
between
steps

State update equation
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Measurement Equation

• At each time we can
detect features in the
image

• These  make our
measurements, mt

• We can directly
measure the position
of the truck, but not
the velocity

mt =
x

y

xt
yt

=
1 0 0 0

0 1 0 0

xt 1
yt 1
ut 1
vt 1

mt = Hst Measurement equation
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An Initial Estimate

• The initial estimate of
the state
– We give a rough

value of x and y to
say which feature
we are tracking

– We probably won’t
have any idea about
u and v

– So we will use

s0 =

100

170

0

0

• We also need to give
the (un) certainty
– Our estimate of the

position is good to
within a few pixels

– Our motion
estimate is not
good, but we expect
the motion to be
small

– We represent this
as a covariance
matrix

Initial
measurement
of corner
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Covariance Matrices

• So what is a covariance
matrix?
– It gives the

relationships between
sets of variables

– The variance of a
variable, x, is
Var(x)=E{(x-x)2}

– The covariance of two
variables, x and y, is
Cov(x,y)=E{(x-x)(y-y)}

x y u v

x

y

u

v

Cxx Cxy Cxu Cxv

Cyx Cyy Cyu Cyv

Cux Cuy Cuu Cuv

Cvx Cvy Cvu Cvv

where Cxy = E x x( ) y y( ) , etc.
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Covariance Matrices

• Given a vector of
variables
x=[x1,x2,…,xk]
– The covariance, C,

is a kxk matrix
– The i,jth entry of C

is Cij=cov(x,y)
– A diagonal entry, Cii,

gives the variance
in the variable xi

– C is symmetric

x y u v

x

y

u

v

Cxx Cxy Cxu Cxv

Cyx Cyy Cyu Cyv

Cux Cuy Cuu Cuv

Cvx Cvy Cvu Cvv
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Covariance in Noise

• The noise terms v (the
measurement noise or
error) and w (the
process noise) need to
be estimated.
– They have zero mean, and

covariance matrices R and
Q respectively.

– We need an estimate of
these matrices. Q and R
say how certain we are
about our model equations.

• To estimate Q (the
process noise)
– Our initial estimate will

be within a few pixels, say
=3

– The velocity is a bit less
certain, but won’t be
large, say =5

– There is no reason to
think that the errors are
related, so the covariance
terms will be zero
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Covariance in Noise

w process noise (white)

v measurement error

Q covariance of process noise (4x4
since there are 4 state variables)

R covariance of measurement error
(2x2 since only two
measurements)
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a priori Estimate Covariance
Matrix

• The variances of x and y are 32=9
• The variances of u and v are 52=25
• Since we assume independence the off-

diagonal entries are all 0

P0 =

9 0 0 0

0 9 0 0

0 0 25 0

0 0 0 25

These are
assumptions

This represents
the variances of
the original state
variables
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Uncertainty in the model

• Our model equations
have noise terms
– v represents the fact

that our state update
model may not be
accurate

– w represents the fact
that measurements will
always be noisy

– We need to estimate
their covariances

• In general
– Often the terms will

be independent. If
this is the case the
off-diagonal entries
will be zero

– Choosing the diagonal
entries (variances) is
often more difficult
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Process Noise Covariance Q

• The state update
equation is not perfect
– It assumes that the

motion is constant but u
and v might change over
time

– It assumes that all the
motion is represented
by u and v but other
factors might affect x
and y

• These errors will
probably be small
– The motion is slow and

quite smooth
– So the variance in

these terms is
probably a pixel or
less, say =1/2

Q =

0.25 0 0 0

0 0.25 0 0

0 0 0.25 0

0 0 0 0.25

Assume the same variance ( =1/2
pixel) for all variables
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Measurement Error Covariance R

• The measurements we
make will not be
perfect
– The features are

located only to the
nearest pixel

– Because of image noise,
aliasing, etc. they might
be off by a pixel or so

• These errors are a
bit easier to estimate
– The feature is

probably in the right
place, or a pixel off

– So the variance in
these terms is
probably 2=1

R =
1 0

0 1
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1. Predict the State

• We can now run the
filter
– First we make a

prediction of the state
at t=1 based on our
initial estimate at t=0

s1 =

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

100

170

0

0

s1 =

100

170

0

0

Initial
position

Prediction of state,
i.e., the next
point—this is where
we will look for the
next state
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2. Update the a priori Prediction
Covariance

P1 = AP0A
T
+Q

P1 =

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

9 0 0 0

0 9 0 0

0 0 25 0

0 0 0 25

1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1

+

0.25 0 0 0

0 0.25 0 0

0 0 0.25 0

0 0 0 0.25

P1 =

34.25 0 25 0

0 34.25 0 25

25 0 35.25 0

0 25 0 25.25

Now update the estimate (prediction) covariance.  A priori is before
measurement.  This tells us how far to look for the next measurement.
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3a. Look for the Next Point

• The state prediction
gives us a guide to
where the feature will
be
– We expect it to be near

(100,170)
– The variance in the x

position is 34.25
– The variance in the y

position is also 34.25

• We can use this to
restrict our search
for a feature
– We are 95% certain

that the feature lies
in a circle of radius of
2  of the prediction

– We look for a feature
in this region

= 34.25 5.85

(100,170)

2

Look for next
measurement of
feature inside this
circle.  Circular
since x

2= y
2=34.25
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3b. Making the Actual
Measurement

Within the search region
• We compute a value

that tells us how likely
each point is to be a
feature (Harris
interest operator)

• We find the point with
the largest value within
this region

• This is m1 =
103

163

We look for a feature
near our predicted value,
and the covariances tell
us how widely to search

Find the corner using image processing
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4. Compute the Kalman Gain

• We now combine the
prediction and
measurement
– We compute the Kalman

gain matrix
– This takes into account

the relative certainty
of the two pieces of
information

– The first components
are close to 1, which
will give more trust to
the measurement

K1 = P1 H
T HP1 H

T
+ R( )

1

K1

0.972 0

0 0.972

0.709 0

0 0.709

This begins the measurement update
(“correction”) phase
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5. Update the a posteriori error
Covariance

P1 = P1 + K1HP1

P1

34.25 0 25 0

0 34.25 0 25

25 0 25.25 0

0 25 0 25.25

+

0.972 0

0 0.972

0.709 0

0 0.709

1 0 0 0

0 1 0 0

34.25 0 25 0

0 34.25 0 25

25 0 25.25 0

0 25 0 25.25

P1 =

0.971 0 0.71 0

0 0.971 0 0.71

0.71 0 7.52 0

0 0.71 0 7.52

This is the updated covariance based upon the measurements just made.
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6. Update estimate with
measurement mk

• The new (a posteriori) state estimate
based upon measurement mk is then

ŝk = ŝk + Kk mk Hŝk( )
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Iteration

• We compute the next state

• And project the error covariance
ahead

ŝk = ŝk 1 + Buk 1

Pk = APk 1A
T
+Q

This tells us where to look next.
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Iteration

• We repeat this cycle
for each frame

• Over time the state
predictions become
more accurate

• The Kalman gain takes
this into account and
places more weight on
the predictions

• To implement the
Kalman filter
– We need a lot of matrix

subroutines
– These are tiresome to

code by hand, but there
are several libraries
available

– Only need basic
operations: +, -,x,
transpose, and inverse
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The Extended Kalman Filter

• The Kalman filter is
limited by its
assumptions
– It assumes that all the

noise/error terms are
Gaussians with known
(co)variance

– It assumes that the
model equations are
linear

• Extended Kalman
filters overcome the
second assumption
– They use a linear

approximation to a non-
linear function

– They depend on the
accuracy of this
approximation

– No proof, but they work
well in practice
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Linear Approximations

• If we have some
function, y=f(x)
– We can approximate this

using

– A is any value we choose
– This approximation is

best when

y f a( ) + f ' a( ) x a( )

y

xa

y = f x( )

y f a( ) + f ' a( ) x a( )

x a
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Linear Approximations

• If we have z=f(x,y) we
get
    z f(a,b)

+fx(a,b)(x-a)
+fy(a,b)(y-b)

– fx and fy are the partial
derivatives of f with
respect to x and y

– This approximates a 2D
surface by a plane

• More generally, given
y=f(x1,x2,…,xk) we have

y f(a1,a2,…,ak)
    +fx1(a1,a2,…,ak)(x1-a1)
    +fx2(a1,a2,…,ak)(x2-a2)
    …
    +fxk(a1,a2,…,ak)(xk-ak)
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Example EKF

• Lines are detected
with the Hough
transform
– The relationship

between the states at
subsequent times is non-
linear

– An extended Kalman
filter allows us to track
groups of lines with a
common motion model
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For more information

• Tracking lines with the EKF
Tracking in a Hough Space with the Extended Kalman Filter,

Steven Mills, Tony Pridmore, and Mark Hills, Proceedings of
the British Machine Vision Conference (BMVC2003), pages
173-182, 2003.

• A useful Java matrix library is JAMA
http://math.nist.gov/javanumerics/jama

• One of the best introductory Kalman filter papers is
Greg Welch and Gary Bishop, “An Introduction to the
Kalman Filter,” TR 95-041,University of North
Carolina at Chapel Hill.


