
EECS490: Digital Image Processing

Lecture #26

• Moments; invariant moments

• Eigenvector, principal component analysis

• Boundary coding

• Image primitives

• Image representation: trees, graphs

• Object recognition and classes

• Minimum distance classifiers

• Correlation

• Statistical pattern recognition; Bayes decision rule

• Neural network classifiers
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Moments

mpq = x pyq f x, y( )dxdy
++

The calculation of moments of for images and
objects in images is very similar to that used to
calculate statistical moments

mpq = xi
pyj

q f xi , yj( )
j=0

L 1

i=0

L 1

For an LxL discrete image we can write
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Moments

We can also define central moments in a similar manner

μpq = xi x( )
p
yj y( )

q
f xi , yj( )

j=0

L 1

i=0

L 1

μ00 = m00 = f xi , yj( )
j=0

L 1

i=0

L 1

m10 = xi f xi , yj( )
j=0

L 1

i=0

L 1

m01 = yi f xi , yj( )
j=0

L 1

i=0

L 1

x =
m10

m00

y =
m01

m00

Some simple moments and means
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Moments

We can use these second moments to define the first
invariant moment

μ20 = xi xi( )
2
f xi , yj( )

j=0

L 1

i=0

L 1

= m20 xm10

20 =
μ20

μ00
2

Computing higher moments and means

μ02 = yj yj( )
2
f xi , yj( )

j=0

L 1

i=0

L 1

= m02 ym01

02 =
μ02

μ00
2

1 = 20 + 02
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Invariant Moments

1 = 20 + 02

2 = 20 02( )
2
+ 4 11

2

3 = 30 3 12( )
2
+ 21 3 03( )

2

7 = 3 21 03( ) 30 + 12( ) 30 + 12( )
2
3 21 + 03( )

2

+ 3 12 30( ) 21 + 03( ) 3 30 + 12( )
2

21 + 03( )
2
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Moments

Reduced 50% in
size

Rotated 2˚

Mirrored

Rotated 45˚

Original
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There are seven moments which are invariant to
translation, rotation, and scale.

Each row in this table should remain constant.
The constancy shows the utility of the moment

Moments
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Moments

© 2002 R. C. Gonzalez & R. E. Woods 

Reduced
50% in
size

Rotated
90˚

Translated

Rotated 45˚

Original

Mirrored
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Representation and Description

© 2002 R. C. Gonzalez & R. E. Woods 

Each row in this table should also remain
constant.  The constancy shows the utility of the
moment

This example is much better than the example
from the 2nd edition
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x =

x1
x2
x3

=

R

G

B

 

x =

x1
x2

xn

Eigenvectors and Eigenvalues

For RGB images (with 3 components)
we can write each pixel as x

For registered multi-spectral images
(with n components) we can write x as

n=6 components
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For these n registered images we can compute the
mean vector (nx1) and covariance matrix (nxn) for
the set of all x

 

x =

x1
x2

xn
 

mx = E x{ } =

E x1{ }
E x2{ }

E xn{ }

 

Cx = E x mx( ) x mx( )
T{ } =

E x1 m1( ) x1 m1( ){ } E x1 m1( ) x2 m2( ){ } E x1 m1( ) xn mn( ){ }
E x2 m2( ) x1 m1( ){ } E x2 m2( ) x2 m2( ){ }

E xn mn( ) x1 m1( ){ } E xn mn( ) xn mn( ){ }

Eigenvectors and Eigenvalues
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Transform the data by a Hotelling* transformation

y = A x mx( )

 

A =

e1
T

e2
T

en
T

Eigenvectors and Eigenvalues

where the rows of A are the eigenvectors of the
covariance matrix Cx

* Also known as the Karhunen-Loeve transformation
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The transformed variable y has the properties that

my = E y{ } = 0

 

Cy = ACxA
T
=

1 0 0

0 2

0 n

 1 > 2 > > n

Eigenvectors and Eigenvalues

Cy is diagonal which indicates that the  transformed y vectors are
uncorrelated.

where

and
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x = AT y + mx

 

A =

e1
T

e2
T

ek
T

Eigenvectors and Eigenvalues

This transformation can be inverted
to give back the original image
vectors x

where
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The difference (rms error) between this approximation and the
original x is given by the sum of the eigenvalues corresponding
to the removed eigenvectors.

 

B =

e1
T

e2
T

ek
T

x̂ = BT y + mx

erms = j
j= k+1

n

Eigenvectors and Eigenvalues

What if I replace A by B which has only the k
eigenvectors corresponding to the k largest
eigenvalues?

We now have an approximation to x given by
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Eigenvectors and Eigenvalues

The transformed vectors y are orthogonal and form a
orthoginal basis set for describing the original set of images.

Each yi is an eigenvector of Cx and represents a “feature” of
the original set of images. y1 corresponds to the most
significant feature since y1 corresponds to the largest
eigenvalue 1. y2 corresponds to the next most significant
feature since y2 corresponds to the next largest eigenvalue 2.

x̂ = ai yi
i=1

k
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Eigenvector Example

© 2002 R. C. Gonzalez & R. E. Woods 

Six registered multi-spectral images: blue, green, red, near
infrared, middle infrared, and far (thermal) infrared bands.
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Eigenvector Example

© 2002 R. C. Gonzalez & R. E. Woods 

Each pixel in this multi-spectal image can be described by a six-
component pixel vector x

These are 384x239 pixels so there are 91776 pixel vectors
describing the complete image
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Eigenvector Example

© 2002 R. C. Gonzalez & R. E. Woods 

We can use a computer program to compute the mean and 6x6
covariance matrix Cx for these 91776 pixels.   We can then
calculate the eigenvectors e1 to e6 for Cx.  For this example the
eigenvalues are
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Eigenvector Example

© 2002 R. C. Gonzalez & R. E. Woods 

This is the most
significant image
with the most
information ( 1)

This is the least
significant image
with the least
information ( 1)

These are the six principal component images given by yi=ei
T(x-mx)

This transformation rearranges the information presented in the multi-
spectral image.

y1 y2 y3

y4 y5 y6
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Eigenvector Example

© 2002 R. C. Gonzalez & R. E. Woods 

Now reconstruct the six original images using only the two most
significant eigenvectors.

y = A x mx( )

Compute

B =
e1
T

e2
T

Use only

x̂ = BT
y1
y2

+ mx

Invert
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Eigenvector Example

© 2002 R. C. Gonzalez & R. E. Woods 

Original images
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Eigenvector Example

© 2002 R. C. Gonzalez & R. E. Woods 

Differences
between the
original
images and
the images
reconstructed
using only two
eigenvectors.
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Eigenface Analysis

© 2002 R. C. Gonzalez & R. E. Woods 

Original dataset of registered
faces

http://www.geop.ubc.ca/CDSST/eigenfaces.html.

Corresponding 15 eigenfaces

Eigenvector vector expansions have been
finding increasing application in such areas
as face recognition.
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Eigenvalues & Eigenvectors

The first eigenvector e1 corresponds to the axis of
largest variance, i.e., the principal axis.

Translating the object
to its centroid (mean)
and aligning the principal
axes (variances) can
often be used to
facilitate object
analysis and recognition.
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Eigenvector Example #2

© 2002 R. C. Gonzalez & R. E. Woods 

1. Represent
the boundary
points of an
object as a set
of 2-D vectors
x and compute
Cx

2. Compute the eigenvectors of Cx

3. Compute the mean mx and
translate the mean to the origin

4. Rotate the object
so that e1 corresponds
to the horizontal axis
and e2 to the vertical
axis.
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Manual Eigenvector Example

© 2002 R. C. Gonzalez & R. E. Woods 

This is a
simple
boundary
analysis
which you can
replicate by
hand.
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Relational Descriptors

© 2002 R. C. Gonzalez & R. E. Woods 

This is similar
to the texture
grammars
which we
discussed
earlier.

These are the re-writing rules which
can be used to generate abab… from
S

a,b are the elements shown above; S is the
starting symbol; A is a variable

S
aA
abS
abaA
abab

etc.
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Representation and Description

© 2002 R. C. Gonzalez & R. E. Woods 

S
aA
abS
abaA
abab

The rules can be
repeated to describe
larger objects. The
numbers correspond to
the rules which were
applied.
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Representation and Description

© 2002 R. C. Gonzalez & R. E. Woods 

Object boundaries can be coded using head-
to-tail connected directed line segments.
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Representation and Description

© 2002 R. C. Gonzalez & R. E. Woods 

More
complex
relationships
can be
defined for
directed line
segments.
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Representation and Description

© 2002 R. C. Gonzalez & R. E. Woods 
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Representation and Description

© 2002 R. C. Gonzalez & R. E. Woods 
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Object Recognition

This shows a clearly defined region for Iris
setosa based upon petal length and width.

© 2002 R. C. Gonzalez & R. E. Woods 
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Object Recognition

Signatures can be used to code objects to be
recognized.

© 2002 R. C. Gonzalez & R. E. Woods 
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Object Recognition

String descriptions can also be used to code objects.

© 2002 R. C. Gonzalez & R. E. Woods 
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Object Recognition

More complex
structures such
as trees are
needed to
describe the
objects in a
typical image

© 2002 R. C. Gonzalez & R. E. Woods 
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition
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© 2002 R. C. Gonzalez & R. E. Woods 

Minimum Distance Classifiers

The prototype for each class (out of W classes) is the mean
vector of that class

mj =
1

N j

x j
x wj

j = 1,2,...,W

Compute “closeness” using Euclidian distance

Dj x( ) = x mj j = 1,2,...,W

Assign x to class j if Dj(x) is the smallest distance
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© 2002 R. C. Gonzalez & R. E. Woods 

Minimum Distance Classifiers

More mathematically the distance from a candidate pattern x
to the pairs of mean vectors mi and mj can be written as

This describes a plane marking the classification boundary
between classes i and j, i.e.,

If dij(x) >0 then assign x to class j otherwise assign to class i

dij x( ) = di x( ) dj x( ) = xT mi mj( )
1

2
mi mj( )

T
mi + mj( )

dij x( ) = 0
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

d12 x( ) = 0

Decision classifier
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

Check characters are
read horizontally by a
single vertical sensor
which travels from left
to right to generate a
distinct waveform for
each character

The characters and
sensors are optimized to
give distinct responses in
a simple x-y grid.
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

Correlation can be used to
find similar patterns
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition
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© 2002 R. C. Gonzalez & R. E. Woods 

Statistical Pattern Recognition

If the class probabilities are not equal we must use a Bayesian
classifier and use the maximum to classify unknown patterns

The threshold for classifying patterns is where the
pdf’s overlap

dj x( ) = p x | j( )P j( ) j = 1,2,...,W
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

In more
dimensions the
classifier forms a
plane (or
hyperplane) for
Gaussian pattern
classes

dj x( ) = lnP j( )
1

2
ln Cj

1

2
x mj( )

T
Cj

1 x mj( ) j = 1,...,W
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

We can use the same registered multi-spectral
image data as input to a pattern classifier
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

Prototypes

(3)
Vegetation
classification

(1) Water
classification

(2) Urban dev.
classification

Errors using
half of the
prototypes to
train, the
other to
classify
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

Bayes classification of pixels in
the training regions 1,2,3
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

The perceptron is an early neural
network architecture for
learning decision classifiers
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

Neural networks can be used to
implement (and learn)
geometrically complex decision
functions.
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© 2002 R. C. Gonzalez & R. E. Woods 

Object Recognition

Multi-layer networks can be used to
approximate (learn) more complex
decision functions.
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© 2002 R. C. Gonzalez & R. E. Woods 

Shape Number Classification

Objects can be
similar up to
different orders
of shape number.
This can be used
to classify
objects.
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© 2002 R. C. Gonzalez & R. E. Woods 

Shape Number Classification


