EECS490: Digital Image Processing

Lecture #26

Moments; invariant moments

Eigenvector, principal component analysis
Boundary coding

Image primitives

Image representation: trees, graphs

Object recognition and classes

Minimum distance classifiers

Correlation

Statistical pattern recognition; Bayes decision rule
Neural network classifiers



b Moments
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' The calculation of moments of for images and

objects in images is very similar to that used to
calculate statistical moments

oo +oo

J j v f(x,y)dxdy

—00 —OO

| For an LxL discrete image we can write
L-1L-1
=3 >y (%)

i=0 j=0
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............

Moments

] We can also define central moments in a similar manner
L-1L-1
My = EZ(XI' _)_C)p (yj _y)qf(xi’yj)

i=0 j=0
| Some simple moments and means
L-1L-1
Hoo = My = ZZf(xi’yj)
L-1L-1 =070 L-1L-1
m,, = Zinf('xi’yj) my, = ZZyif(xi’yj)
i=0 j=0 i=0 j=0
¥ = y = Z—(‘:
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Moments

L-1L-1 e B L-1L-] \2 _
Hay = (xi_xi) f(xi’yj):mZO_meO Moy = (yj_yj) f(xi’yj):mOZ_ymOI
i=0 j=0 i=0 j=0
JLLZO JLLOZ
My = N =
My My

We can use these second moments to define the first
iInvariant moment

O, =Ny + Mo,
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Invariant Moments

O, =My + My,
0, = (7720 — Ty, )2 + 477121
O, = (7730 — 31, )2 T (7721 — 37703 )2

O, = (37721 — 7703)(7730 T 7712)|:(7730 1, )2 - 3(7721 T Nos )2}

+(37712 — T3 )(7721 + 7703)[3(7730 + 1, )2 _ (7721 T Nos )2:|
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Moments

a
b ¢
de
FIGURE 11.25
Images used to
demonstrate
properties of
moment
invariants (see
Table 11.3).

Reduced 50% in ' Mirrored

sSize

'Rotated 2° 'Rotated 45°
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Moments

There are seven moments which are invariant to

translation, rotation, and scale.

Each row in this table should remain constant.
The constancy shows the utility of the moment

Invariant (Log)  Original Half Size = Mirrored Rotated 2° Rotated 45°
&by 6.249 6.226 6.919 6.253 6.318
&, 17.180 16.954 19.955 17.270 16.803
s 22.655 23.531 26.689 22.836 19.724
N 22.919 24.236 26.901 23.130 20.437
s 45.749 48.349 53.724 46.136 40.525
e 31.830 32.916 37.134 32.068 29315
by 45.589 48.343 53.590 46.017 40.470

TABLE 11.3
Moment
invariants for the

images in
Figs. 11.25(a)-(e).
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e veb s Moments
Translated

Reduced
50% in

| Mirrored

| Rotated 45°

Rotated
90°

FIGURE 11.37 (a) Original image. (b)—(f) Images translated, scaled by one-half, mirrored, rotated by 45° and
rotated by 90°, respectively.

© 2002 R. C. Gonzalez & R. E. Woods
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“4;" Representation and Description

' Each row in this table should also remain
constant. The constancy shows the utility of the
moment

Moment  Original TABLE 11.5
Invariant Image Translated Half Size Mirrored Rotated 45° Rotated 90° Moment
o 2.8662 2.8662 2.8664  2.8662 2.8661 2.8662 mva,rlants ff)r
&, 7.1265 7.1265 71257 7.1265 7.1266 7.1265 the images in
b3 10.4109  10.4109  10.4047 10.4109 10.4115 10.4109 Fig. 11.37.
by 10.3742  10.3742 103719 10.3742 10.3742 10.3742
s 21.3674  21.3674  21.3924 21.3674 21.3663 21.3674
&g 13.9417  13.9417  13.9383 13.9417 13.9417 13.9417
by —20.7809 —20.7809 —20.7724 20.7809  —-20.7813  —20.7809

This example is much better than the example
from the 2nd edition

© 2002 R. C. Gonzalez & R. E. Woods



EECS490: Digital Image Processing

Processing
.......

“4;"  Eigenvectors and Eigenvalues
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Eigenvectors and Eigenvalues

| For these n registered images we can compute the
mean vector (nx1) and covariance matrix (nxn) for
the set of all x

(x| —E{xl}_
x = x2 m,=E{x}= E{;CZ}
- | E{x,}]
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i B .
. . Bl ¥

Eigenvectors and Eigenvalues
*—-—'67';‘.::.'.::':;:? =

Transform the data by a Hotelling* transformation
y=A(x-m,)

where the rows of A are the eigenvectors of the
covariance matrix C,

T

(5]
T
(=

|
|l

T
e

-7

| * Also known as the Karhunen-Loeve transformation
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w7 Eigenvectors and Eigenvalues

| The transformed variable y has the properties that

A0 0"
0 A :
myzE{y}=O |°”d C,=ACA" =| . ’

0 « v A

where 2 >4, >--->1

C, is diagonal which indicates that the transformedy vectors are
l uncorrelated.
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" Eigenvectors and Eigenvalues

This transformation can be inverted QT
to give back the original image A= A X +m,
vectors X

T
4
| where e

|
|l

I L
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4. Eigenvectors and Eigenvalues
¥k_ ol
What if I replace A by B which has only the k g
eigenvectors corresponding to the k largest e
eigenvalues? B=|"

| We now have an approximation to x given by

x=B'y+m,

The difference (rms error) between this approximation and the
original x is given by the sum of the eigenvalues corresponding
to the removed eigenvectors.

n
Goms = Z )Lj

Jj=k+1
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;" Eigenvectors and Eigenvalues

| The transformed vectors y are orthogonal and form a

—

' orthoginal basis set for describing the original set of images.

'Each y, is an eigenvector of C, and represents a "feature” of
the original set of images. y, corresponds to the most

'significant feature since y; corresponds to the largest

eigenvalue ;. y, corresponds to the next most significant
feature since y, corresponds to the next largest eigenvalue A.,.
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Eigenvector Example

Rafael C. Gonzales 2
E.Woods o

o

Six registered multi-spectral images: blue, green, red, near
infrared, middle infrared, and far (thermal) infrared bands.

abc
de f

FIGURE 11.38 Multispectral images in the (a) visible blue, (b) visible green, (c) visible red, (d) near infrared,
© 2002 R. C. Gonzalez & R. E. Woods (e) middle infrared, and (f) thermal infrared bands. (Images courtesy of NASA.)
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Eigenvector Example

/ FIGURE 11.39
ssses Formation of a
s vector from
cepee corresponding
"“:/" pixels in six
at images.
It
- Jees Spectral band 6
Xy cesee
o /see S tral band 5
“ /: $ pectral ban
X Spectral band 4
X=1 x Spectral band 3
Xs Spectral band 2
| %6 ] Spectral band 1

Each pixel in this multi-spectal image can be described by a six-
| component pixel vector x

These are 384x239 pixels so there are 91776 pixel vectors
| describing the complete image

© 2002 R. C. Gonzalez & R. E. Woods
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Eigenvector Example

We can use a computer program to compute the mean and 6x6
covariance matrix C, for these 91776 pixels. We can then
calculate the eigenvectors e, to e, for C,. For this example the
eigenvalues are

Ay Az A3 A4 As Ag
10344 2966 1401 203 94 31
TABLE 11.6

Eigenvalues of
the covariance
matrices obtained
from the images
in Fig. 11.38.

© 2002 R. C. Gonzalez & R. E. Woods
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Eigenvector Example

These are the six principal component images given by y;=e;"(x-m,)

This is the most
significant image
with the most

information (1,)

This is the least
significant image
with the least

information (1,)

abc This transformation rearranges the information presented in the multi-
de f spectral image.
FIGURE 11. A

Vectors are converted to images by applying Fig. 11.39 in reverse.
© 2002 R. C. Gonzalez & R. E. Woods
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Eigenvector Example

Now reconstruct the six original images using only the fwo most
significant eigenvectors.

. Rafael C. Gonzales
E. Woods ~.“I

NS

FIGURE 11.41 Multispectral images reconstructed using only the two principal component images
© 2002 R. C. Gonzalez & R. E. Woods corresponding to the two principal component images with the largest eigenvalues (variance). Compare

these images with the originals in Fig. 11.38.
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Eigenvector Example

Rafael C. Gonzales
E. Woods \.ﬁl

Original images

abec

al| @] if

FIGURE 11.38 Multispectral images in the (a) visible blue, (b) visible green, (c) visible red, (d) near infrared,
© 2002 R. C. Gonzalez & R. E. Woods (e) middle infrared, and (f) thermal infrared bands. (Images courtesy of NASA.)




Differences
between the
original
images and
the images
reconstructed
using only two
eigenvectors.

© 2002 R. C. Gonzalez & R. E. Woods
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Eigenvector Example

aiblle
de f

FIGURE 11.42 Differences between the original and reconstructed images. All difference images were
enhanced by scaling them to the full [0, 255] range to facilitate visual analysis.
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"é\ & ﬂ&‘i f&‘

e Eigenface Analysis
v:;:.‘.ﬂfxx" -

Original dataset of registered
|faces

l Corresponding 15 eigenfaces

Eigenvector vector expansions have been
finding increasing application in such areas
as face recognition.

http://www.geop.ubc.ca/CDSST/eigenfaces.html.

© 2002 R. C. Gonzalez & R. E. Woods
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3 bohs Eigenvalues & Eigenvectors
fz fz Translating the object
to its centroid (mean)
€l and aligning the principal

axes (variances) can
often be used to

¢ facilitate object
analysis and recognition.

X e'%l “1
(a) (b)

The first eigenvector e, corresponds fo the axis of
l largest variance, i.e., the principal axis.
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o ok Eigenvector Example #2

2. Compute the eigenvectors of C,
Dirﬁ‘:ti;r-] pe.rpen?icular 3
1. Represent wiance m, = M
the boundary N ‘
points of an i v o _[33 z.uu]
bi * 200 3333
object as a set
of 2-D vectors [0.707
x and compute B . o _0.7()7]
QX Y2 Y2 B
[ =0.707
b 271 0707
FIGURE 11.43 . .
(@) An s mj\f/ Contiod 4. Rotate the object
Zli];e\:;i\?e%:tors of its ,5 " SO ThaT gl Corresponds
covariance matri 7 to the horizontal axis
object, obiained and e, to the vertical

using Eq. (11.4-6).

(d) Object 0
translated so that ClX l S .
all its coordinate eee———

:ﬁglllilleglare greater 3. CompUTe the mean mx and
© 2002 R. C. Gonzalez & R. E. Woods Transla'l'e The mean to fhe Of'igin
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’5 : .‘E;E:_éising

o

w2 Manual Eigenvector Example
ﬁ"_:::.:.‘.: Grosonll

X2 X2 ab
clid

— FIGURE 11.44
A manual
example.
— . (a) Original
points.
g (b) Eigenvectors
— Ml of the covariance
A matrix of the
points in (a).
(c) Transformed
points obtained

Thisis a
simple
boundary
analysis
WhiCh YOU Can 0 X1 using Eq. (11.4-6).
o (d) Points from
r‘epllca.‘-e by (c), rounded and

translated so that

h d Y2 2 all coordinate
a n D values are
S — — integers greater

than 0. The
dashed lines are
included to
facilitate viewing.
— They are not part
of the data.
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© 2002 R. C. Gonzalez & R. E. Woods
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Pt 2 ;/f & - o
b e Relational Descriptors
f&".:.::' o
o S L._b i,lb e
This is similar i i.lb F:glﬂﬁ;;;s
to the texture _”.ib ::?Ll]rcﬁsrz
grammars —L e Structure,
which we | L '
discussed L b,
earlier. :
a,b are the elements shown above; S is the
starting symbol; A is a variable
W s | These are the re-writing rules which S
@ A=, can be used to generate abab... from aA
S abs
abaA
abab
etc.

© 2002 R. C. Gonzalez & R. E. Woods O —
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a

b
(1,3)

b
a

b
(1,2,1,3)

S
aA
abS
abaA
abab

“4;" Representation and Description

a FIGURE 11.46

Sample
b derivations for
a the rules
S—aA, A—DbS,
b and A—b.
a

b
(1,2,1,2,1,3)

The rules can be
repeated to describe
larger objects. The
humbers correspond to
the rules which were
applied.
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4/ Representation and Description

/ Boundary

FIGURE 11.47
Coding a region
boundary with
directed line
segments.

Starting

oint
p \

Object boundaries can be coded using head-
‘ to-tail connected directed line segments.

© 2002 R. C. Gonzalez & R. E. Woods
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;" Representation and Description

@ 1
i".".{.;' eod
Abstracted Head Head N
primitive b - c
a+be—t— / a=b / d
Abstracted FIGURE 11.48
primitive a a (a) Abstracted
axb < axh O primitives.
b ) (b) Operations
Tail b among primitives.
Tail (c) A set of
specific primitives.
(d) Stepsin
More building a
structure.
complex A
. . a b c d
relationships
can be

defined for , !

directed line ‘
segments. r

h ¢+ (~d) d+[c+ (~d)]

AN &
N

a+b (a+ b)*c [d+[c+ (~d)]}=[(a +b) =]

© 2002 R. C. Gonzalez & R. E. Woods
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4" Representation and Description

FIGURE 11.49 A

simple tree with
root $ and
frontier xy.

Z y

© 2002 R. C. Gonzalez & R. E. Woods
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“w/" Representation and Description

$ ab
/ \ FIGURE 11.50

(a) A simple

a ‘ composite region.
(b) Tree represen-
tation obtained by
using the

d € relationship

“inside of.”

© 2002 R. C. Gonzalez & R. E. Woods
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2l Object Recognition

X
z FIGURE 12.1
Three types of iris
flowers described
2.5 a [ris virginica A aa by two
o Iris versicolor A éA i R measurements.
o Iris setosa A A "
FAVAVAVLNAN Fay
L ANA A A
— 2.0 N A AN
g MaA A A
2 A u}
E oo [m] A
S L5 0 gD b
3 m] nlunn] A
- 0O g
b Mmoo o
[=¥] [m]
1.0~ 880 m
o
05— o
o fBo o
[e]
[e] o
0 1° | | | | | L, o,
0 1 2 3 4 5 6 7

Petal length (cm)

This shows a clearly defined region for Iris
‘ setosa based upon petal length and width.

© 2002 R. C. Gonzalez & R. E. Woods
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i @ hgital
*’ Imag
= =" Processing
‘L,f,',.“ n-.u..-v.\

3 g Object Recognition

r(0) ab
1 FIGURE 12.2
_VJW A noisy object

and its

corresponding
signature.

Signatures can be used to code objects to be
recognized.

© 2002 R. C. Gonzalez & R. E. Woods
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3o veb Object Recognition

a a ab

lb p FIGURE 12.3
1 (a) Staircase
i a structure.
4‘1 b (b) Structure
a coded in terms of
the primitives a
o Ta_ and b to yield the
i b string description
a_ oo ...ababab ....

| String descriptions can also be used to code objects.

© 2002 R. C. Gonzalez & R. E. Woods
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E. Woods o

EECS490: Digital Image Processing

Object Recognition

More complex
structures such
as trees are
needed to
describe the
objectsina
typical image

© 2002 R. C. Gonzalez & R. E. Woods

FIGURE 12.4
Satellite image of
a heavily built
downtown area
(Washington,
D.C.) and
surrounding
residential areas.
(Courtesy of
NASA.)
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f@gn‘_‘g
/fie.‘f'.,"’ Object Recognition

Image
Downtown Residential
Buildings Highways Housing Shopping Highways
/ \ / ‘ \ / ‘ \ malls / \
High Large Multiple Numerous Loops i
densitity structures intersections Low Small  Wooded Single ~ Few
density structures areas Intersections

FIGURE 12.5 A tree description of the image in Fig. 12.4.

© 2002 R. C. Gonzalez & R. E. Woods
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w27 Minimum Distance Classifiers

| The prototype for each class (out of W classes) is the mean
vector of that class

——Zx =12,...W

] XGW

| Compute "closeness” using Euclidian distance

p,(x)=x-m| =12

| Assign x to class j if D-I(g) is the smallest distance

© 2002 R. C. Gonzalez & R. E. Woods
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; Minimum Distance Classifiers

More mathematically the distance from a candidate pattern x
to the pairs of mean vectors m, and m; can be written as
1 T
T
d;(x)=d (x)-d,(x)=x"(m —mj)—g(m,- —m,) (m,+m,)
This describes a plane marking the classification boundary
| between classes iand j, i.e.,
dij (E) — O

| If di-l(g) >0 then assigh x to class j otherwise assign to class i

© 2002 R. C. Gonzalez & R. E. Woods
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: f'g

% /i‘ d"

e Object Recognition

O [ris versicolor HGU.R'E 12.6
o [ris setosa Decision
boundary of
2.0+ / 28x +10x, -89 =0 minimum distance
classifier for the
—_ classes of Iris
151 versicolor and Iris
= setosa. The dark
E dot and square
F 10 are the means.
&
0.5 .X) — O
0
0

_ : 1 Decision classifier
Petal length (cm)

© 2002 R. C. Gonzalez & R. E. Woods
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3 ok Object Recognition

FIGURE 12.7
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© 2002 R. C. Gonzalez & R. E. Woods
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Object Recognition

S S
r (m-—1)/2
\—Ol‘igm '
(n—1)/2—~
_|+H+|
nm| e
)

Template w /
centered at an arbitrary
location (x, y)

Correlation can be used to
‘ find similar patterns

FIGURE 12.8

The mechanics of
template
matching.
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Object Recognition

ab
@ |l

FIGURE 12.9

(a) Satellite image
of Hurricane
Andrew, taken on
August 24, 1992,
(b) Template of
the eye of the
storm. (c) Corre-
lation coefficient
shown as an
image (note the
brightest point).
(d) Location of
the best match.
This pointis a
single pixel, but
its size was
enlarged to make
it easier to see.
(Original image
courtesy of
NOAA.)
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w7 Statistical Pattern Recognition
*'5,";.::,': ol

pattern classes.
The point xg
shown is the
decision boundary
if the two classes
are equally likely
to occur.

The threshold for classifying patterns is where the
‘ pdf's overlap
If the class probabilities are not equal we must use a Bayesian
l classifier and use the maximum to classify unknown patterns

dj(g):p(gla)j)P(a)j) j=12,...W

o pefen)

Probability density

© 2002 R. C. Gonzalez & R. E. Woods
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Object Recognition

X3
FIGURE 12.11
Two simple
pattern classes
and their Bayes
(0,0,1)

decision boundary
(shown shaded).

5 (0,1, 1)

In more |
dimensions the |
classifier formsa

0, (1,1,1)
plane (or \
hyperplane) for e W 0Lo " ®

Gaussian pattern /
classes v

(1,0,0) L7

(1,1,0)
® € W

0 € W)

c_zj(x)zlnp(wj)——ln\ \——[( -m) M (xmm)| =W

© 2002 R. C. Gonzalez & R. E. Woods
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f ’ Object Recognition

FIGURE 12.12
Formation of a
pattern vector
..... from registered
/:f, by pixels of four
digital images
generated by a
multispectral
scanner.

xl ae

X Spectral band 4
x=|

Xy Spectral band 3

Spectral band 2

Spectral band 1
We can use the same registered multi-spectral
image data as input to a pattern classifier

© 2002 R. C. Gonzalez & R. E. Woods
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igital J
‘Tmage -
=" Processing

& N X o <
vt L o :
) ’i i«

,

-,
Rafael C. Gonzalex -
Richard E. Woods .

Errors using
half of the
profotypes to
train, the
other to

classify

3
Vegetation
classification

(1) Water
classification

FIGURE 12.13 Bayes classification of (2) Ur'ban dZV. ages in the visible blue, visible green,
visible red, and near infrared wavel Classificqﬂon sample regions of water (1), urban
development (2), and vegetation (3). ( se black dots denote points classified
incorrectly. The other (white) points were classified correctly. (g) All image pixels classified as water (in
white). (h) All image pixels classified as urban development (in white). (i) All image pixels classified as
vegetations (in white).

© 2002 R. C. Gonzalez & R. E. Woods
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S igital
* ‘Image
¥ * Processing

B,y
.

3T ol Object Recognition
*g.::::.; el

TABLE 12.1
Bayes classification of multispectral image data.
Training Patterns Independent Patterns
No. of Classified into Class % No. of Classified into Class o
Class Samples 1 2 3 Correct | Class Samples 1 2 3 Correct
1 484 482 2 0 99.6 1 483 478 3 2 989
2 933 0 885 48 94.9 2 932 0 880 52 944
3 483 0 19 464 96.1 3 482 0 16 466  96.7

Bayes classification of pixels in
| the training regions 1,2,3

© 2002 R. C. Gonzalez & R. E. Woods
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Object Recognition

wy

Pattern
vectors 4
X

_ - +1 +1 if d(x)=>0
x; : 0=
. ./ . —1 if d(x)<0
. |
Activation element
W,
Xpw

e The perceptron is an early neural
T network architecture for

learning decision classifiers

Pattern
vectors -+
X

+1 +1 i 2 wix; > — W,
i=1
0=
Bl T "
—1 =1 il z W,
i=1

Activation element

FIGURE 12.14 Two equivalent representations of the perceptron model for two pattern
classes.
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Object Recognition

dix)=-2x;+1=0
X2 *2 :
10 O 10 O
@ O—x O O—x
0 1 0 1
O € w
O €wm

© 2002 R. C. Gonzalez & R. E. Woods

ab

FIGURE 12.15
(a) Patterns
belonging to two
classes.

(b) Decision
boundary
determined by
training.
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e onk Object Recognitic

Input
pattern
vector

R )
J
A

‘V»‘(".‘w
%
A

Layer Q
(output layer)
NQ = W nodes

Layer A Layer B Layer K LayerJ Layer P
N, nodes Ny nodes Ny nodes N; nodes Npnaodes

FIGURE 12.16 Multilayer feedforward neural network model. The blowup shows the basic structure of each neuron element throughout the network.
The offset. ;. is treated as just another weight.

© 2002 R. C. Gonzalez & R. E. Woods
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Object Recognition

0 = h(I)
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FIGURE 12.17
The sigmoidal
activation
function of
Eq. (12.2-47).
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FIGURE 12.18
(a) Reference
shapes and

(b) typical noisy
shapes used in
training the

neural network of

Shape 1 Shape 2 Shape 3 Shape 4 Fig_ 12.19.
(Courtesy of Dr.
Lalit Gupta, ECE
Department,
Southern Tllinois
University.)

Shape 1 Shape 2 Shape 3 Shape 4
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FIGURE 12.20

] R, =00
] Performance of
. the neural
020 R, =0.1 network as a
- - / function of noise
ke ] / level. (Courtesy
S 3 / of Dr. Lalit
= 7 R, =02
7 015- ,/ ' Gupta, ECE
= ] Department,
E ] / / Southern Illinois
5 ] / / University.)
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FIGURE 12.21
Improvement in
performance for
R, = 04 by
increasing the
number of

r R,=04,N =20 training patterns

R,=04,N=10

0.080

(the curve for
. = 0.3 is shown
’ /«— R,=03,N=10 for reference).
(Courtesy of Dr.
R,=04,N =140 Lalit Gupta, ECE
Department,
Southern Illinois
University.)
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Neural networks can be used to
implement (and learn)

geometrically complex decision
functions.
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FIGURE 12.22
(a) A two-input,
two-layer,
feedforward
neural network.
(b) and (c)
Examples of
decision
boundaries that
can be
implemented with
this network.
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Solution to
exclusive-OR
problem
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meshed regions

Most general
decision surface
shapes
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Network Type of
structure decision region
Single layer
Single
/:\ hyperplane
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Open or
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convex
regions
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Arbitrary
(complexity
limited by the
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nodes)

CMIOZ OO

@) (@

&

Multi-layer networks can be used to
approximate (learn) more complex

© 2002 R. C. Gonzalez & R. E. Woods

decision functions.

FIGURE 12.23
Types of decision
regions that can
be formed by
single- and
multilayer feed-
forward networks
with one and two
layers of hidden
units and two
inputs.
(Lippman.)
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Objects can be @ @ @ FIGURE 12.24
similar up to (a) Shapes.

0 (b) Hypothetical
dlffer'enT orders similarity tree.
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FIGURE 12.25

(a) and (b)
e Sample

boundaries of two

different object

classes; (c) and

R| ta 1b 1c 1d le Lf || R| 2a 2b 2c 2d 2e 2f (d) their

La| o 2a| corresponding
Lb| 160 o 2b| 35 = polygonal

le| 96 263 o 2¢| 48 58 e approximations;
1d| 51 81 103 2d| 36 42 193 = (?)—(g) tabula-
le| 47 72 103 142 2¢| 28 33 92 183 tions of R.

LE| 47 72 103 84 237 e ||2f| 26 30 77 135 270 e (Sze and Yang.)

R la 1b 1lec 1d le 1.f

2a| 124 150 132 147 155 148
2b| 118 143 132 147 155 148
2¢| 1.02 118 119 132 139 148
2d| 102 118 119 132 129 140
2e| 093 1.07 108 119 124 1.25
2f| 089 1.02 1.02 124 122 118
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