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Sets and Set Operations

Probability events are modeled as sets, so it is customary to

begin a study of probability by defining sets and some simple

operations among sets.

A set is a collection of objects, with each object in a set often

referred to as an element or member of the set.  Familiar

examples include the set of all image processing books in the

world, the set of prime numbers, and the set of planets

circling the sun.  Typically, sets are represented by

uppercase letters, such as A, B, and C, and members of sets

by lowercase letters, such as a, b, and c.
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Sets and Set Operations (Con’t)

We denote the fact that an element a belongs to set A by

If a is not an element of A, then we write

A set can be specified by listing all of its elements, or by

listing properties common to all elements.  For example,

suppose that I is the set of all integers. A set B consisting

the first five nonzero integers is specified using the

notation
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Sets and Set Operations (Con’t)

The set of all integers less than 10 is specified using the

notation

which we read as "C is the set of integers such that each

members of the set is less than 10."  The "such that" condition is

denoted by the symbol “ | “ .  As shown in the previous two

equations, the elements of the set are enclosed by curly brackets.

The set with no elements is called the empty or null set, denoted

in this review by the symbol Ø.
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Sets and Set Operations (Con’t)

Two sets A and B are said to be equal if and only if they

contain the same elements.  Set equality is denoted by

If every element of B is also an element of A, we say that B is

a subset of A:

If the elements of two sets are not the same, we say that the sets

are not equal, and denote this by



EECS490: Digital Image Processing

Sets and Set Operations (Con’t)

Finally, we consider the concept of a universal set, which we

denote by U and define to be the set containing all elements of

interest in a given situation.  For example, in an experiment of

tossing a coin, there are two possible (realistic) outcomes: heads

or tails. If we denote heads by H and tails by T, the universal set

in this case is {H,T}. Similarly, the universal set for the

experiment of throwing a single die has six possible outcomes,

which normally are denoted by the face value of the die, so in

this case U = {1,2,3,4,5,6}. For obvious reasons, the universal

set is frequently called the sample space, which we denote by S.

It then follows that, for any set A, we assume that Ø  A  S,

and for any element a, a  S and a  Ø.
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Some Basic Set Operations

The operations on sets associated with basic probability theory

are straightforward.  The union of two sets A and B, denoted

by

is the set of elements that are either in A or in B, or in both.  In

other words,

Similarly, the intersection of sets A and B, denoted by

is the set of elements common to both A and B; that is,
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Set Operations (Con’t)

Two sets having no elements in common are said to be disjoint

or mutually exclusive, in which case

The complement of set A is defined as

Clearly, (Ac)c=A.  Sometimes the complement of A is denoted

as    .

The difference of two sets A and B, denoted A  B, is the set

of elements that belong to A, but not to B.  In other words,
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Set Operations (Con’t)

It is easily verified that

The union operation is applicable to multiple sets.  For

example the union of sets A1,A2,…,An is the set of points that

belong to at least one of these sets.  Similar comments apply

to the intersection of multiple sets.

The following table summarizes several important relationships

between sets.  Proofs for these relationships are found in most

books dealing with elementary set theory.
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Set Operations (Con’t)
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Set Operations (Con’t)

It often is quite useful to represent sets and sets operations in

a so-called Venn diagram, in which S is represented as a

rectangle, sets are represented as areas (typically circles), and

points are associated with elements.  The following example

shows various uses of Venn diagrams.

Example:  The following figure shows various examples of

Venn diagrams.  The shaded areas are the result (sets of points)

of the operations indicated in the figure.  The diagrams in the top

row are self explanatory.  The diagrams in the bottom row are

used to prove the validity of the expression

which is used in the proof of some probability relationships.
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Set Operations (Con’t)
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A random experiment is an experiment in which it is not

possible to predict the outcome.  Perhaps the best known

random experiment is the tossing of a coin.  Assuming that

the coin is not biased, we are used to the concept that, on

average, half the tosses will produce heads (H) and the

others will produce tails (T).  This is intuitive and we do

not question it.  In fact, few of us have taken the time to

verify that this is true. If we did, we would make use of the

concept of relative frequency.  Let n denote the total

number of tosses, nH the number of heads that turn up, and

nT the number of tails.  Clearly,

Relative Frequency & Probability
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Dividing both sides by n gives

The term nH/n is called the relative frequency of the event we

have denoted by H, and similarly for nT/n.  If we performed the

tossing experiment a large number of times, we would find that

each of these relative frequencies tends toward a stable, limiting

value.  We call this value the probability of the event, and

denoted it by P(event).

Relative Frequency & Probability
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In the current discussion the probabilities of interest are P(H) and

P(T).  We know in this case that P(H) = P(T) = 1/2.  Note that the

event of an experiment need not signify a single outcome.  For

example, in the tossing experiment we could let D denote the

event "heads or tails," (note that the event is now a set) and the

event E, "neither heads nor tails." Then, P(D) = 1 and P(E) = 0.

The first important property of P is that, for an event A,

That is, the probability of an event is a positive number

bounded by 0 and 1. For the certain event, S,

Relative Frequency & Probability
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Here the certain event means that the outcome is from the

universal or sample set, S. Similarly, we have that for the

impossible event, Sc

This is the probability of an event being outside the sample

set.  In the example given at the end of the previous

paragraph, S = D and Sc = E.

Relative Frequency & Probability
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The event that either events A or B or both have occurred is

simply the union of A and B (recall that events can be sets).

Earlier, we denoted the union of two sets by A  B.  One often

finds the equivalent notation A+B used interchangeably in

discussions on probability.  Similarly, the event that both A and

B occurred is given by the intersection of A and B, which we

denoted earlier by A  B.  The equivalent notation AB is used

much more frequently to denote the occurrence of both events in

an experiment.

Relative Frequency & Probability
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Suppose that we conduct our experiment n times.  Let n1 be the

number of times that only event A occurs; n2 the number of

times that B occurs; n3 the number of times that AB occurs; and

n4 the number of times that neither A nor B occur.  Clearly,

n1+n2+n3+n4=n. Using these numbers we obtain the following

relative frequencies:

Relative Frequency & Probability
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and

Using the previous definition of probability based on relative

frequencies we have the important result

If A and B are mutually exclusive it follows that the set AB is

empty and, consequently, P(AB) = 0.

Relative Frequency & Probability
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The relative frequency of event A occurring, given that event B

has occurred, is given by

This conditional probability is denoted by P(A/B), where we

note the use of the symbol “ / ” to denote conditional

occurrence.  It is common terminology to refer to P(A/B) as the

probability of A given B.

Conditional Probability
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Similarly, the relative frequency of B occurring, given that A has

occurred is

We call this relative frequency the probability of B given A, and

denote it by P(B/A).

Conditional Probability



EECS490: Digital Image Processing

and

The second expression may be written as

which is known as Bayes' theorem, so named after the 18th

century mathematician Thomas Bayes.

Bayes Theorem
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Example:  Suppose that we want to extend the expression

to three variables, A, B, and C. Recalling that AB is the same as

A  B, we replace B by B  C in the preceding equation to

obtain

The second term in the right can be written as

From the Table discussed earlier, we know that

Bayes Theorem
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so,

Collecting terms gives us the final result

Proceeding in a similar fashion gives

The preceding approach can be used to generalize these

expressions to N events.

Bayes Theorem
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If A and B are statistically independent, then P(B/A) = P(B) and

it follows that

and

It was stated earlier that if sets (events) A and B are mutually

exclusive, then A  B = Ø from which it follows that P(AB) =

P(A  B) = 0.  As was just shown, the two sets are statistically

independent if P(AB)=P(A)P(B), which we assume to be

nonzero in general. Thus, we conclude that for two events to

be statistically independent, they cannot be mutually

exclusive.

Statistical Independence
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For three events A, B, and C to be independent, it must be true

that

and

Statistical Independence
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In general, for N events to be statistically independent, it must be

true that, for all combinations 1  i  j  k   . . .  N

Statistical Independence
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Example:  (a) An experiment consists of throwing a single die

twice.  The probability of any of the six faces, 1 through 6,

coming up in either experiment is 1/6.  Suppose that we want to

find the probability that a 2 comes up, followed by a 4.  These

two events are statistically independent (the second event does

not depend on the outcome of the first).  Thus, letting A

represent a 2 and B a 4,

We would have arrived at the same result by defining "2

followed by 4" to be a single event, say C.  The sample set of

all possible outcomes of two throws of a die is 36.  Then,

P(C)=1/36.

Statistical Independence
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Example (Con’t):  (b) Consider now an experiment in which

we draw one card from a standard card deck of 52 cards.  Let A

denote the event that a king is drawn, B denote the event that a

queen or jack is drawn, and C the event that a diamond-face

card is drawn.  A brief review of the previous discussion on

relative frequencies would show that

and

Statistical Independence
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Example (Con’t):  Furthermore,

and

Events A and B are mutually exclusive (we are drawing only one

card, so it would be impossible to draw a king and a queen or

jack simultaneously).  Thus, it follows from the preceding

discussion that P(AB) = P(A  B) = 0 [and also that P(AB) 

P(A)P(B)].

Statistical Independence
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Example (Con’t):  (c) As a final experiment, consider the

deck of 52 cards again, and let A1, A2, A3, and A4 represent the

events of drawing an ace in each of four successive draws.  If

we replace the card drawn before drawing the next card, then

the events are statistically independent and it follows that

Statistical Independence
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Example (Con’t):  Suppose now that we do not replace the

cards that are drawn.  The events then are no longer statistically

independent.  With reference to the results in the previous

example, we write

Thus we see that not replacing the drawn card reduced our

chances of drawing fours successive aces by a factor of close to

10.  This significant difference is perhaps larger than might be

expected from intuition.

Statistical Independence
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Random variables often are a source of confusion when first

encountered.  This need not be so, as the concept of a random

variable is in principle quite simple.  A random variable, x, is a

real-valued function defined on the events of the sample space,

S.  In words, for each event in S, there is a real number that is

the corresponding value of the random variable.  Viewed yet

another way, a random variable maps each event in S onto the

real line. That is it.  A simple, straightforward definition.

Random Variables
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Part of the confusion often found in connection with random

variables is the fact that they are functions.  The notation also is

partly responsible for the problem.  In other words, although

typically the notation used to denote a random variable is as we

have shown it here, x, or some other appropriate variable, to be

strictly formal, a random variable should be written as a

function x(·) where the argument is a specific event being

considered.  However, this is seldom done, and, in our

experience, trying to be formal by using function notation

complicates the issue more than the clarity it introduces.  Thus,

we will opt for the less formal notation, with the warning that it

must be keep clearly in mind that random variables are

functions.

Random Variables
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Example:  Consider again the experiment of drawing a single

card from a standard deck of 52 cards.  Suppose that we define

the following events. A: a heart; B: a spade; C: a club; and D: a

diamond, so that S = {A, B, C, D}.  A random variable is easily

defined by letting x = 1 represent event A, x = 2 represent event

B, and so on.

As a second illustration, consider the experiment of throwing a

single die and observing the value of the up-face.  We can

define a random variable as the numerical outcome of the

experiment (i.e., 1 through 6), but there are many other

possibilities.  For example, a binary random variable could be

defined simply by letting x = 0 represent the event that the

outcome of throw is an even number and x = 1 otherwise.

Random Variables
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Note the important fact in the examples just given that the

probability of the events have not changed; all a random

variable does is map events onto the real line.

Random Variables
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Thus far we have been concerned with random variables whose

values are discrete.  To handle continuous random variables

we need some additional tools.  In the discrete case, the

probabilities of events are numbers between 0 and 1.  When

dealing with continuous quantities (which are not denumerable)

we can no longer talk about the "probability of an event"

because that probability is zero.  This is not as unfamiliar as it

may seem.  For example, given a continuous function we know

that the area of the function between two limits a and b is the

integral from a to b of the function.  However, the area at a

point is zero because the integral from,say, a to a is zero.  We

are dealing with the same concept in the case of continuous

random variables.

Random Variables
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Thus, instead of talking about the probability of a specific value,

we talk about the probability that the value of the random

variable lies in a specified range.  In particular, we are

interested in the probability that the random variable is less than

or equal to (or, similarly, greater than or equal to) a specified

constant a.  We write this as

If this function is given for all values of a (i.e.,   < a < ), then

the values of random variable x have been defined.  Function F is

called the cumulative probability distribution function or simply

the cumulative distribution function (cdf).  The shortened term

distribution function also is used.

Random Variables
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Observe that the notation we have used makes no distinction

between a random variable and the values it assumes.  If

confusion is likely to arise, we can use more formal notation in

which we let capital letters denote the random variable and

lowercase letters denote its values.  For example, the cdf using

this notation is written as

When confusion is not likely, the cdf often is written simply as

F(x).  This notation will be used in the following discussion

when speaking generally about the cdf of a random variable.

Random Variables
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Due to the fact that it is a probability, the cdf has the following

properties:

where x+ = x + , with  being a positive, infinitesimally small

number.

Random Variables
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The probability density function (pdf) of random variable x is

defined as the derivative of the cdf:

The term density function is commonly used also. The pdf

satisfies the following properties:

Random Variables
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The preceding concepts are applicable to discrete random

variables.  In this case, there is a finite no. of events and we

talk about probabilities, rather than probability density

functions. Integrals are replaced by summations and,

sometimes, the random variables are subscripted.  For example,

in the case of a discrete variable with N possible values we

would denote the probabilities by P(xi), i=1, 2,…, N.

Random Variables
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In Sec. 3.3 of the book we used the notation p(rk), k = 0,1,…, L - 1,

to denote the histogram of an image with L possible gray levels, rk,

k = 0,1,…, L - 1, where p(rk) is the probability of the kth gray level

(random event) occurring.  The discrete random variables in this

case are gray levels.  It generally is clear from the context whether

one is working with continuous or discrete random variables, and

whether the use of subscripting is necessary for clarity.  Also,

uppercase letters (e.g., P) are frequently used to distinguish

between probabilities and probability density functions (e.g., p)

when they are used together in the same discussion.

Random Variables
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If a random variable x is transformed by a monotonic

transformation function T(x) to produce a new random variable y,

the probability density function of y can be obtained from

knowledge of T(x) and the probability density function of x, as

follows:

where the subscripts on the p's are used to denote the fact that

they are different functions, and the vertical bars signify the

absolute value.  A function T(x) is monotonically increasing if

T(x1) < T(x2) for x1 <  x2, and monotonically decreasing if T(x1)

> T(x2) for x1 < x2.  The preceding equation is valid if T(x) is an

increasing or decreasing monotonic function.

Random Variables
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The expected value of a function g(x) of a continuos random

variable is defined as

If the random variable is discrete the definition becomes

Expected Value & Moments
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The expected value is one of the operations used most frequently

when working with random variables.  For example, the expected

value of random variable x is obtained by letting g(x) = x:

when x is continuos and

when x is discrete.  The expected value of x is equal to its

average (or mean) value, hence the use of the equivalent notation

and m.

Expected Value & Moments
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The variance of a random variable, denoted by , is obtained by

letting g(x) = x  which gives

for continuous random variables and

for discrete variables.

Expected Value & Moments
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Of particular importance is the variance of random variables that

have been normalized by subtracting their mean.  In this case,

the variance is

and

for continuous and discrete random variables, respectively. The

square root of the variance is called the standard deviation, and

is denoted by .

Expected Value & Moments
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We can continue along this line of thought and define the nth

central moment of a continuous random variable by letting

and

for discrete variables, where we assume that n  0.  Clearly, 0=1,

1=0, and 2= . The term central when referring to moments

indicates that the mean of the random variables has been subtracted

out.  The moments defined above in which the mean is not

subtracted out sometimes are called moments about the origin.

Expected Value & Moments
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In image processing, moments are used for a variety of purposes,

including histogram processing, segmentation, and description.  In

general, moments are used to characterize the probability density

function of a random variable.  For example, the second, third, and

fourth central moments are intimately related to the shape of the

probability density function of a random variable. The second

central moment (the centralized variance) is a measure of spread

of values of a random variable about its mean value, the third

central moment is a measure of skewness (bias to the left or right)

of the values of x about the mean value, and the fourth moment is

a relative measure of flatness.  In general, knowing all the

moments of a density specifies that density.

Expected Value & Moments
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Example:  Consider an experiment consisting of repeatedly firing

a rifle at a target, and suppose that we wish to characterize the

behavior of bullet impacts on the target in terms of whether we

are shooting high or low..  We divide the target into an upper and

lower region by passing a horizontal line through the bull's-eye.

The events of interest are the vertical distances from the center of

an impact hole to the horizontal line just described.  Distances

above the line are considered positive and distances below the

line are considered negative.  The distance is zero when a bullet

hits the line.

Expected Value & Moments
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In this case, we define a random variable directly as the value of

the distances in our sample set.  Computing the mean of the

random variable indicates whether, on average, we are shooting

high or low.  If the mean is zero, we know that the average of our

shots are on the line.  However, the mean does not tell us how far

our shots deviated from the horizontal. The variance (or standard

deviation) will give us an idea of the spread of the shots.  A small

variance indicates a tight grouping (with respect to the mean, and

in the vertical position); a large variance indicates the opposite.

Finally, a third moment of zero would tell us that the spread of the

shots is symmetric about the mean value, a positive third moment

would indicate a high bias, and a negative third moment would

tell us that we are shooting low more than we are shooting high

with respect to the mean location.

Expected Value & Moments
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Because of its importance, we will focus in this tutorial on the

Gaussian probability density function to illustrate many of the

preceding concepts, and also as the basis for generalization to

more than one random variable.  The reader is referred to Section

5.2.2 of the book for examples of other density functions.

A random variable is called Gaussian if it has a probability

density of the form

where m and  are as defined in the previous section.  The term

normal also is used to refer to the Gaussian density.  A plot and

properties of this density function are given in Section 5.2.2 of

the book.

Gaussian Probability Density Function



EECS490: Digital Image Processing

The cumulative distribution function corresponding to the

Gaussian density is

which, as before, we interpret as the probability that the random

variable lies between minus infinite and an arbitrary value x.

This integral has no known closed-form solution, and it must be

solved by numerical or other approximation methods.  Extensive

tables exist for the Gaussian cdf.

Gaussian Probability Density Function
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In the previous example, we used a single random variable to

describe the behavior of rifle shots with respect to a horizontal

line passing through the bull's-eye in the target.  Although this is

useful information, it certainly leaves a lot to be desired in terms

of telling us how well we are shooting with respect to the center

of the target.  In order to do this we need two random variables

that will map our events onto the xy-plane.  It is not difficult to

see how if we wanted to describe events in 3-D space we would

need three random variables. In general, we consider in this

section the case of n random variables, which we denote by x1,

x2,…, xn (the use of n here is not related to our use of the same

symbol to denote the nth moment of a random variable).

Multiple Random Variables



EECS490: Digital Image Processing

It is convenient to use vector notation when dealing with several

random variables.  Thus, we represent a vector random variable x

as

Then, for example, the cumulative distribution function

introduced earlier becomes

Multiple Random Variables
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when using vectors.  As before, when confusion is not likely, the

cdf of a random variable vector often is written simply as F(x).

This notation will be used in the following discussion when

speaking generally about the cdf of a random variable vector.

As in the single variable case, the probability density function of

a random variable vector is defined in terms of derivatives of the

cdf; that is,

Multiple Random Variables
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The expected value of a function of x is defined basically as

before:

Multiple Random Variables
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Cases dealing with expectation operations involving pairs of

elements of x are particularly important. For example, the

joint moment (about the origin) of order kq between variables

xi and xj

Multiple Random Variables
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When working with any two random variables (any two

elements of x) it is common practice to simplify the notation by

using x and y to denote the random variables.  In this case the

joint moment just defined becomes

It is easy to see that k0 is the kth moment of x and 0q is the

qth moment of y, as defined earlier.

Multiple Random Variables
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The moment 11 = E[xy] is called the correlation of x and y.  As

discussed in Chapters 4 and 12 of the book, correlation is an

important concept in image processing.  In fact, it is important in

most areas of signal processing, where typically it is given a

special symbol, such as Rxy:

Multiple Random Variables
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If the condition

holds, then the two random variables are said to be uncorrelated.

From our earlier discussion, we know that if x and y are

statistically independent, then p(x, y) = p(x)p(y), in which case we

write

Thus, we see that if two random variables are statistically

independent then they are also uncorrelated.  The converse of

this statement is not true in general.

Multiple Random Variables
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The joint central moment of order kq involving random

variables x and y is defined as

where mx = E[x] and my = E[y] are the means of x and y, as

defined earlier. We note that

are the variances of x and y, respectively.

and

Multiple Random Variables
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The moment 11

is called the covariance of x and y.  As in the case of

correlation, the covariance is an important concept, usually

given a special symbol such as Cxy.

Covariance
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By direct expansion of the terms inside the expected value

brackets, and recalling the mx = E[x] and my = E[y], it is

straightforward to show that

From our discussion on correlation, we see that the covariance is

zero if the random variables are either uncorrelated or statistically

independent.  This is an important result worth remembering.

Covariance
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If we divide the covariance by the square root of the product of

the variances we obtain

The quantity  is called the correlation coefficient of random

variables x and y.  It can be shown that  is in the range 1    1

(see Problem 12.5).  As discussed in Section 12.2.1, the

correlation coefficient is used in image processing for matching.

Covariance
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As an illustration of a probability density function of more than

one random variable, we consider the multivariate Gaussian

probability density function, defined as

where n is the dimensionality (number of components) of the

random vector x, C is the covariance matrix (to be defined

below), |C| is the determinant of matrix C, m is the mean

vector (also to be defined below) and T indicates transposition

(see the review of matrices and vectors).

Multivariate Gaussian Distribution
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The mean vector is defined as

and the covariance matrix is defined as

Multivariate Gaussian Distribution
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The element of C are the covariances of the elements of x, such

that

where, for example, xi is the ith component of x and mi is the

ith component of m.

Multivariate Gaussian Distribution
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Covariance matrices are real and symmetric (see the review of

matrices and vectors). The elements along the main diagonal of C

are the variances of the elements x, such that cii= xi
.  When all

the elements of x are uncorrelated or statistically independent, cij =

0, and the covariance matrix becomes a diagonal matrix.  If all the

variances are equal, then the covariance matrix becomes

proportional to the identity matrix, with the constant of

proportionality being the variance of the elements of x.

Multivariate Gaussian Distribution
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Example:  Consider the following bivariate (n = 2) Gaussian

probability density function

with

and

Multivariate Gaussian Distribution
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where, because C is known to be symmetric, c12 = c21. A

schematic diagram of this density is shown in Part (a) of the

following figure. Part (b) is a horizontal slice of Part (a).  From the

review of vectors and matrices, we know that the main directions

of data spread are in the directions of the eigenvectors of C.

Furthermore, if the variables are uncorrelated or statistically

independent, the covariance matrix will be diagonal and the

eigenvectors will be in the same direction as the coordinate axes x1

and x2 (and the ellipse shown would be oriented along the x1 - and

x2-axis).  If, the variances along the main diagonal are equal, the

density would be symmetrical in all directions (in the form of a

bell) and Part (b) would be a circle.  Note in Parts (a) and (b) that

the density is centered at the mean values (m1,m2).

Multivariate Gaussian Distribution
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Multivariate Gaussian Distribution
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As discussed in the Review of Matrices and Vectors, a linear

transformation of a vector x to produce a vector y is of the form

y = Ax.   Of particular importance in our work is the case when

the rows of A are the eigenvectors of the covariance matrix.

Because C is real and symmetric, we know from the discussion

in the Review of Matrices and Vectors that it is always possible

to find n orthonormal eigenvectors from which to form A.  The

implications of this are discussed in considerable detail at the

end of the Review of Matrices and Vectors, which we

recommend should be read again as a conclusion to the present

discussion.

Linear Transformations of RV’s
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An m n (read "m by n") matrix, denoted by A, is a rectangular

array of entries or elements (numbers, or symbols representing

numbers) enclosed typically by square brackets, where m is the

number of rows and n the number of columns.

Basic Matrices
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• A is square if m= n.

• A is diagonal if all off-diagonal elements are 0, and not all

diagonal elements are 0.

• A is the identity matrix ( I ) if it is diagonal and all diagonal

elements are 1.

• A is the zero or null matrix ( 0 ) if all its elements are 0.

• The trace of A equals the sum of the elements along its main

diagonal.

• Two matrices A and B are equal iff the have the same

number of rows and columns, and aij = bij .

Basic Matrices
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• The transpose AT of an m n matrix A is an n m matrix

obtained by interchanging the rows and columns of A.

• A square matrix for which AT=A is said to be symmetric.

• Any matrix X for which XA=I and AX=I is called the

inverse of A.

• Let c be a real or complex number (called a scalar).  The

scalar multiple of c and matrix A, denoted cA, is obtained

by multiplying every elements of A by c. If c = 1, the

scalar multiple is called the negative of A.

Basic Matrices
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A column vector is an m  1 matrix:

A row vector is a 1  n matrix:

A column vector can be expressed as a row vector by using

the transpose:

Basic Matrices
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• The sum of two matrices A and B (of equal dimension),

denoted A + B, is the matrix with elements aij + bij.

• The difference of two matrices, A  B, has elements aij  bij.

• The product, AB, of m n matrix A and p q matrix B, is an

m q matrix C whose (i,j)-th element is formed by multiplying

the entries across the ith row of A times the entries down the

jth column of B;  that is,

Basic Matrices
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The inner product (also called dot product) of two vectors

Note that the inner product is a scalar.

is defined as

Basic Matrices
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A vector space is defined as a nonempty set V of entities called vectors

and associated scalars that satisfy the conditions outlined in A through

C below.  A vector space is real if the scalars are real numbers; it is

complex if the scalars are complex numbers.

• Condition A:  There is in V an operation called vector addition,

denoted x + y, that satisfies:

1. x + y = y + x for all vectors x and y in the space.

2. x + (y + z) = (x + y) + z for all x, y, and z.

3. There exists in V a unique vector, called the zero vector, and

denoted 0, such that x + 0 = x and 0 + x = x  for all vectors x.

4. For each vector x in V, there is a unique vector in V, called

the negation of x, and denoted x, such that x + (  x) = 0 and

(  x) + x = 0.

Vectors & Vector Spaces
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• Condition B:  There is in V an operation called multiplication by a

scalar that associates with each scalar c and each vector x in V a

unique vector called the product of c and x, denoted by cx and xc,

and which satisfies:

1. c(dx) = (cd)x for all scalars c and d, and all vectors x.

2. (c + d)x = cx + dx for all scalars c and d, and all vectors x.

3. c(x + y) = cx + cy for all scalars c and all vectors x and y.

• Condition C:  1x = x for all vectors x.

Vectors & Vector Spaces
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We are interested particularly in real vector spaces of real m 1

column matrices. We denote such spaces by m , with vector

addition and multiplication by scalars being as defined earlier

for matrices. Vectors (column matrices) in m are written as

Vectors & Vector Spaces
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Example

The vector space with which we are most familiar is the two-

dimensional real vector space 2 , in which we make frequent

use of graphical representations for operations such as vector

addition, subtraction, and multiplication by a scalar.  For

instance, consider the two vectors

Using the rules of matrix addition and subtraction we have

Vectors & Vector Spaces
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Example (Con’t)

The following figure shows the familiar graphical representation

of the preceding vector operations, as well as multiplication of

vector a by scalar c = 0.5.

Vectors & Vector Spaces
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Consider two real vector spaces V0 and V such that:

• Each element of V0 is also an element of V (i.e., V0 is a subset

of V).

• Operations on elements of V0 are the same as on elements of

V.  Under these conditions, V0 is said to be a subspace of V.

where the ’s are scalars.

A linear combination of v1,v2,…,vn is an expression of the form

Vectors & Vector Spaces



EECS490: Digital Image Processing

A vector v is said to be linearly dependent on a set, S, of vectors

v1,v2,…,vn if and only if v can be written as a linear combination

of these vectors.  Otherwise, v is linearly independent of the set

of vectors v1,v2,…,vn .

Vectors & Vector Spaces
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A set S of vectors v1,v2,…,vn in V is said to span some subspace V0

of V if and only if S is a subset of V0 and every vector v0 in V0 is

linearly dependent on the vectors in S.  The set S is said to be a

spanning set for V0.  A basis for a vector space V is a linearly

independent spanning set for V.  The number of vectors in the

basis for a vector space is called the dimension of the vector

space.  If, for example, the number of vectors in the basis is n, we

say that the vector space is n-dimensional.

Vectors & Vector Spaces
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An important aspect of the concepts just discussed lies in the

representation of any vector in m as a linear combination of

the basis vectors.  For example, any vector

in 3 can be represented as a linear combination of the basis

vectors

Vectors & Vector Spaces
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A vector norm on a vector space V is a function that assigns to

each vector v in V a nonnegative real number, called the norm

of v, denoted by ||v||.  By definition, the norm satisfies the

following conditions:

Vector Norms
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There are numerous norms that are used in practice.  In our

work, the norm most often used is the so-called 2-norm, which,

for a vector x in real m, space is defined as

which is recognized as the Euclidean distance from the origin to

point x; this gives the expression the familiar name Euclidean

norm. The expression also is recognized as the length of a vector

x, with origin at point 0.  From earlier discussions, the norm also

can be written as

Vector Norms
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The Cauchy-Schwartz inequality states that

Another well-known result used in the book is the expression

where  is the angle between vectors x and y.  From these

expressions it follows that the inner product of two vectors can

be written as

Thus, the inner product can be expressed as a function of the

norms of the vectors and the angle between the vectors.

Cauchy-Schwartz Inequality
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From the preceding results, two vectors in m are orthogonal if

and only if their inner product is zero. Two vectors are

orthonormal if, in addition to being orthogonal, the length of

each vector is 1.

From the concepts just discussed, we see that an arbitrary vector

a is turned into a vector an of unit length by performing the

operation an = a/||a||. Clearly, then, ||an|| = 1.

A set of vectors is said to be an orthogonal set if every two

vectors in the set are orthogonal. A set of vectors is

orthonormal if every two vectors in the set are orthonormal.

Orthogonality
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Let B = {v1,v2,…,vn } be an orthogonal or orthonormal basis in

the sense defined in the previous section.  Then, an important

result in vector analysis is that any vector v can be represented

with respect to the orthogonal basis B as

where the coefficients are given by

Orthogonality
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The key importance of this result is that, if we represent a

vector as a linear combination of orthogonal or orthonormal

basis vectors, we can determine the coefficients directly from

simple inner product computations.  It is possible to convert a

linearly dependent spanning set of vectors into an orthogonal

spanning set by using the well-known Gram-Schmidt

process.  There are numerous programs available that

implement the Gram-Schmidt and similar processes, so we

will not dwell on the details here.

Orthogonality
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Definition:  The linear transform of a real matrix x is given

by

y =  Tx.

where

If T is unitary then T-1 =  T*T

If T is unitary and real then T-1 =  TT

Many important transforms are unitary or unitary and real.

Discrete Image Transforms*

yi = tij x j
j=0

N 1

*See for example, Castleman, Digital Image Processing, 2/e, Ch. 13
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Many transforms used in image processing have only real

elements in their kernel matrix

where

and       represents the kernel function of the transform.

For example, this can be used to represent a Fourier or many

other image transforms.

Orthogonal Transforms

Gmn = Fik i,k,m,n( )
k=0

N 1

i=0

N 1

G = F
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Many such image transforms are separable and can be carried

out as a rowwise operation following by a column wise

operation, or vice versa, i.e.

or

This can be written as

whcih can be simply inverted (inverse transformed) as

Orthogonal Transforms

i,k,m,n( ) = Tr i,m( )Tc k,n( )

Gmn = T i,m( ) FikT k,n( )
k=0

N 1

i=0

N 1

G = TFT

F = T 1FT 1
= T *TGT *T
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The rows of the kernel matrix for a set of basis vectors in a N-

dimensional vector space and are orthonormal

or

Orthogonal Transforms

TjiTki
*

i=0

N 1

= ik

TT *T
= I
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Definition:  The eigenvalues of a real matrix M are the real

numbers  for which there is a nonzero vector e such that

Me =   e.

The eigenvectors of M are the nonzero vectors e for which

there is a real number  such that Me =   e.

If Me =   e for e  0, then e is an eigenvector of M

associated with eigenvalue , and vice versa. The

eigenvectors and corresponding eigenvalues of M constitute

the eigensystem of M.

Numerous theoretical and truly practical results in the

application of matrices and vectors stem from this beautifully

simple definition.

Eigenvalues & Eigenvectors
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Example: Consider the matrix

and

In other words, e1 is an eigenvector of M with

associated eigenvalue 1, and similarly for e2 and 2.

Eigenvalues & Eigenvectors
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The following properties, which we give without proof, are

essential background in the use of vectors and matrices in

digital image processing.  In each case, we assume a real

matrix of order m m although, as stated earlier, these results

are equally applicable to complex numbers.

1. If { 1, 2,…, q, q  m, is set of distinct eigenvalues of M, and

ei is an  eigenvector of  M with corresponding  eigenvalue  i, i

= 1,2,…,q, then {e1,e2,…,eq} is a linearly independent set of

vectors.  An important implication of this property: If an m m

matrix M has m distinct eigenvalues, its eigenvectors will

constitute an orthogonal (orthonormal) set, which means that

any m-dimensional vector can be expressed as a linear

combination of the eigenvectors of M.

Eigenvalues & Eigenvectors
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2. The numbers along the main diagonal of a diagonal matrix

are equal to its eigenvalues.  It is not difficult to show

using the definition Me =   e that the eigenvectors can be

written by inspection when M is diagonal.

3. A real, symmetric m m matrix M has a set of m linearly

independent eigenvectors that may be chosen to form an

orthonormal set.  This property is of particular importance

when dealing with covariance matrices (e.g., see Section

11.4 and our review of probability) which are real and

symmetric.

Eigenvalues & Eigenvectors
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4. A corollary of Property 3 is that the eigenvalues of an m m real

symmetric matrix are real, and the associated eigenvectors may

be chosen to form an orthonormal set of m vectors.

5. Suppose that M is a real, symmetric m m matrix, and that we

form a matrix A whose rows are the m orthonormal eigenvectors

of M.  Then, the product AAT=I because the rows of A are

orthonormal vectors. Thus, we see that A 1= AT when matrix A

is formed in the manner just described.

6. Consider matrices M and A in 5. The  product D = AMA 1 =

AMAT is a diagonal matrix whose elements along the main

diagonal are the eigenvalues of M.  The eigenvectors of D are

the same as the eigenvectors of M.

Eigenvalues & Eigenvectors
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Suppose that we have a random population of vectors, denoted

by {x}, with covariance matrix (see the review of probability):

Example

Suppose that we perform a transformation of the form y = Ax on

each vector x, where the rows of A are the orthonormal

eigenvectors of Cx.  The covariance matrix of the population {y}

is

Eigenvalues & Eigenvectors
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Perform a transformation of the form y = Ax on each vector x,

where the rows of A are the orthonormal eigenvectors of Cx.  The

covariance matrix of the population {y} is

Eigenvalues & Eigenvectors

Cx = E x mx( ) x mx( )
T{ }

Cy = E y my( ) y my( )
T

{ }
Cy = E Ax Amx( ) Ax Amx( )

T{ }
Cy = E A x mx( ) x mx( )

T
AT{ }

Cy = AE x mx( ) x mx( )
T{ }AT

Cy = ACxA
T

Cy is non-zero
only along the
diagonals so we
have decoupled
the data.

 

A =

e1
e2

em
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From Property 6, we know that Cy=ACxA
T is a diagonal matrix

with the eigenvalues of Cx along its main diagonal. The elements

along the main diagonal of a covariance matrix are the variances of

the components of the vectors in the population.  The off diagonal

elements are the covariances of the components of these vectors.

The fact that Cy is diagonal means that the elements of the vectors

in the population {y} are uncorrelated (their covariances are 0).

Thus, we see that application of the linear transformation y = Ax

involving the eigenvectors of Cx decorrelates the data, and the

elements of Cy along its main diagonal give the variances of the

components of the y's along the eigenvectors. Basically, what has

Eigenvalues & Eigenvectors
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been accomplished here is a coordinate transformation that

aligns the data along the eigenvectors of the covariance matrix

of the population.

The preceding concepts are illustrated in the following figure.

Part (a) shows a data population {x} in two dimensions, along

with the eigenvectors of Cx (the black dot is the mean).  The

result of performing the transformation y=A(x  mx) on the x's

is shown in Part (b) of the figure.

The fact that we subtracted the mean from the x's caused the

y's to have zero mean, so the population is centered on the

coordinate system of the transformed data.  It is important to

note that all we have done here is make the eigenvectors the

Eigenvalues & Eigenvectors
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new coordinate system (y1,y2). Because the covariance matrix

of the y's is diagonal, this in fact also decorrelated the data.

The fact that the main data spread is along e1 is due to the fact

that the rows of the transformation matrix A were chosen

according the order of the eigenvalues, with the first row

being the eigenvector corresponding to the largest eigenvalue.

Eigenvalues & Eigenvectors
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where the rows of A are the orthonormal eigenvectors of Cx.  Drop

the upper M-N rows of A to give B

Then

Inverting

Karhunen-Loeve Expansion

y = Ax

This approximates x
using only M
components with a
squared error given
by

 

B =

e1
e2

eM

ŷ = Bx

x̂ = BT ŷ MSE = k
k=M +1

N


