EECS490: Digital Image Processing

Schedule for Rest of Semester

Date  Lecture Topic

11/20 24 Texture

11/27 25 Review of Statistics & Linear
Algebra, Eigenvectors

11/29 26 Eigenvector expansions,
Pattern Recognition

12/4 27 Cameras & calibration

12/4 Project due

12/6 28 Kalman filters & tracking
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Project Image

Image is 5.6 MB
compressed (157 MB

uncompressed)
7608x7244 pixels

http://vorlon.case.edu/~flm/eecs490f06/Images/Images.html
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Lecture #24

What Is texture?

Texture issues: analysis,synthesis, segmentation,
shape

Filters and texture, texture recognition, spot and bar
filters, filter banks

Texture measures

Scale: Gaussian and Laplacian pyramids
Gabor filters

Texture gradient

Texture synthesis
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Texture

Goal of computer vision: infer things about the
world by looking at one or more images

Geometry provides clues

Image features provide clues
- Edges

- Corners

- Filter Responses

What next?

- Texture
- What is texture?
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+ Edge detectors find differences in
overall intensity.

+ Average intensity is only the
simplest difference



EECS490: Digital Image Processing

Texture

l These two regions clearly have different textures.
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What 1s Texture?

- Something that repeats with variation

* Must separate what repeats and what
stays the same.

* One model for texture is as repeated
trials of a random process

- The probability distribution stays the same.
- But each trial is different.
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Texture Issues

Discrimination/Analysis
Synthesis

Texture segmentation and
boundary detection

Shape from texture
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Texture Discrimination/Analysis

~

The goal of texture analysis is fo compare textures and
decide if they're made of the same "stuff”

input image

ANALYSIfs) Same or
“different”

True (infinite) texture  generated image
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Texture Synthesis

The goal of texture synthesis is to create textures for
regions

input image

True (infinite) texture — generated image
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‘ Textures are made of sub-elements arranged in patterns.

© Forsyth & Ponce
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FIGURE 11.28
The white squares
mark, from left to
right, smooth,
coarse, and
regular textures.
These are optical
microscope
images of a
superconductor,
human
cholesterol, and a
MiCroprocessor.
(Courtesy of Dr.
Michael W.
Davidson, Florida
State University.)

smooth l coarse ' regular
l These patterns are more readily apparent.

© 2002 R. C. Gonzalez & R. E. Woods
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Texture Description

+ Textons are the patterns of sub-elements
that produce texture

- There is no canonical set of textons for
texture representation and analysis such
as the sinusoids for a Fourier series
representation

+ We can use filters to analyze textures
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Filters for pattern recognition

A filter responds most strongly to pattern elements that look like
the filter. Consider the response of a filter h to image f,

M—-1N-I
fz mn ZZﬂ l] —i,n—j)
i=0 j=0
Now let m and n equal zero
~1N-1

)= 33 £ (i)

i=0 j=0

The response is the dot product of the filter and the image. The
difference between simple convolution (filtering) and correlation
(a dot product) is the sign of the coordinates and the fact that
the correlation is being translated over the image
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Texture Recognition

Statistical
Structural
Histogram

Fourier Transform
Sets of filters
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A Simple Texture Measure

» Compare histograms.
- Divide intensities into discrete ranges.
- Count how many pixels in each range

O O O
0-25 26-50 51-75 76-100 225-250
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Texture Measure

» Chi square distance between texton histograms

1 & [h(m)—h (m)]
_; h,(m)+h (m)

' More complex measures can use scale and orientation
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Standard Third TABLE 11.2

51' .'. .‘. .. . ) ) Texture measures
aTISTICS Texture Mean deviation R (normalized) moment Uniformity Entropy for the subimages

of each Smooth 8264  11.79 0.002 ~0.105 0.026 5434 | ShowninFig 1128

pa-l-ch Coarse  143.56 74.63 0.079 —0.151 0.005 7.783
Regular  99.72 33.73 0.017 0.750 0.013 6.674

Mean - gives an idea of the average gray level and not texture
Standard deviation - some measure of smoothness

R (normalized) essentially the same as standard deviation
Third moment - are gray levels biased towards dark or light?
Uniformity -

Entropy - measure of variability

© 2002 R. C. Gonzalez & R. E. Woods



Mean

Variance

R (normalized)
Third moment
Uniformity
Avg. Entropy

© 2002 R. C. Gonzalez & R. E. Woods
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Gray-level Co-Occurrence
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© 2002 R. C. Gonzalez & R. E. Woods

Q is a position operator which defines the relationship between two
pixels. In this case, one pixel immediately to the right. This is a gray
level co-occurrence matrix.

The co-occurrence matrix G tabulates the number of times that pixel
pairs with intensities z; and z; occur in f in the position specified by Q.
For example g;; which is 1 to the right of 1 only occurs once in f. We can
normalize the elements of G by the total number of pixel pairs, i.e., the
sum of the elements in 6.




@ hoital j
Image
* Processing

> o
N ]
& . ‘:A“.

-t
S Mafael C. Gonzales .
&Il‘hnd E Woods

m., 6. and m,,
o, are
statistics for
that row and
column of G

© 2002 R. C. Gonzalez & R. E. Woods
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Descriptor Explanation Formula

Maximum Measures the strongest response of max(p;;)
probability  G.The range of values is [0, 1]. "f

Correlation A measure of how correlated a

pixel is to its neighbor over the
entire image. Range of values is
1to —1, corresponding to perfect
positive and perfect negative
correlations. This measure is not
defined if either standard deviation

is zero.

Contrast A measure of intensity contrast
between a pixel and its neighbor over
the entire image. The range of values
is 0 (when G is constant) to (K — 1)%.

Uniformity A measure of uniformity in the range

(also called [0, 1]. Uniformity is 1 for a constant
Energy) image.

Homogeneity Measures the spatial closeness of the
distribution of elements in G to the
diagonal. The range of values is [0, 1],
with the maximum being achieved
when G is a diagonal matrix.

Measures the randomness of the
elements of G.The entropy is 0 when
all p;;’s are 0 and is maximum when
all p;;'s are equal. The maximum
value is 2 log; K. (See Eq. (11.3-9)
regarding entropy).

Entropy

a1+ il

K K
- 2 Zpij logy Dij

i=li=1

..~ Representation and Description

TABLE 11.3
Descriptors used
for characterizing
co-occurrence
matrices of size
K X K.The term
pij 1s the ijth term
of G divided by
the sum of the
elements of G.

These are
some of the
measures
used to

the
normalized
matrix G.

characterize
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FIGURE 11.30
Images whose
pixels have

(a) random,

(b) periodic, and
(c) mixed texture
patterns. Each

image is of size
263 x 800 pixels.
Periodic texture

Mixed texture & _

Random texture

.
s
b3

S ot s Pty e

© 2002 R. C. Gonzalez & R. E. Woods
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FIGURE 11.31
256 X 256 co-
occurrence
matrices, G, Ga,
and Gg,

corresponding
from left to right
to the images in
Fig. 11.30.
I Co-occurrence matrices G of the three pictures.
Normalized Descriptor TDABI'E. 1.4
escriptors
Co-occurrence Max .
Matri Probabilitv C lation C Uniformity H itv E evaluated using
atrix robability Correlation Contrast Uniformity Homogeneity Entropy the co-occurrence
Gy/ny 0.00006  —0.0005 10838  0.00002 0.0366 1575 matrices displayed
G,/n, 0.01500 0.9650 570 0.01230 0.0824  6.43 in Fig. 11.31.
Ga/ny 0.06860 0.8798 1356  0.00480 0.2048  13.58

© 2002 R. C. Gonzalez & R. E. Woods
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Change the position
operator in
constructing the G
matrix from 1 pixel
to the right to 2, 3,
.. to the right.
Compute the
correlation of G for
each offset and plot
these.

© 2002 R. C. Gonzalez & R. E. Woods
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Correlation

Peaks primarily due
to basic 16 pixel
spacing of circuit
board connections.

Correlation
=}

-1 | | | |

1 10 20 30 40
Horizontal Offset

abec

501 10 20 30 40 501 10 20 30 40 50

Horizontal Offset Horizontal Offset

FIGURE 11.32 Values of the correlation descriptor as a function of offset (distance between “adjacent”
pixels) corresponding to the (a) noisy, (b) sinusoidal, and (c) circuit board images in Fig. 11.30.

16 pixels

FIGURE 11.33

A zoomed section
of the circuit
board image
showing
periodicity of
components.
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Shape Grammars

C

FIGURE 11.34

(a) Texture
primitive.

(b) Pattern
generated by the
rule § —as.

(c) 2-D texture
pattern generated
by this and other

Grammars are rules for constructing textures. In this case, this is a regular
l texture.

S->aS

S->bA (circle down)
A->CcA (circle left)
A->C

A->bS

A->b

S->a
© 2002 R. C. Gunzaiezcarss=avvoousmmmmmmmms

Starting with S=a “‘
can give aaabccbaa —» “‘

using the rules to “‘
the left.

e ————— Ter'minC(Ted WITh
| the S->a rule
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FIGURE 11.35

(a) and (b) Images
of random and
ordered objects.
(c) and (d) Corres-
ponding Fourier
spectra. All images
are of size

600 < 600 pixels.

o
?"

Grid is from coarse

background material
From random
orientation of matches

From strong,
ordered vertical
edges of matches

© 2002 R. C. Gonzalez & R. E. Woods
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Fig. 11.35(a).

3.0 2.1

Sy(r) is the Fourier 20 20

(c) and (d) are [——
plots of S(r) an ‘
transform along a o AT S(6) for Fig. %’g‘}“
pqpﬁcular direction 6 0 50 100 150 200 250 300 0 20 40 60 80 100 120 140 160 180 LLo>(D)-All ‘{@ 7\
wd

vertical axes are -
60— 171 T o1 T T T T 1 %107, r

8.0 — k
: @@
S( , S o iy FIGURE 11.36
r ) = 2 (I’ ) 6. — 24 .
6 58 1 53 Plots of (a) S(r)
6=0 0 e and (b) S(6) for

34

R() 5.0 -1 32
s(@)=25.(6) 1
r=1 3.0 — 26

24

2.0 =1 29

S.(0) is the Fourier 22
transform around a L 18
Cir‘cle of rladius r‘ 0 50 100 150 200 250 300 "0 20 40 60 80 100 120 140 160 180

Write the Fourier spectrum in polar form to analyze the
principal direction of the texture patterns. Figure (d)
clearly shows the strong orientations near 0°, 90°, and 180°

© 2002 R. C. Gonzalez & R. E. Woods
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Low frequency High
content in all frequency at
directions 45° direction

Fourier Measures

Fourier transform gives
information about entire
image for all frequencies
(scales) and orientations.
This may not be useful for
local textures.
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ek Fourier Measures

- Solution is to use Short Term Fourier transforms

] .
Frequency content
| in local neighborhood
at every point in image

= I* STET
Fourier Basis

LT

Box filter r I

Short Time Fourier Transform
(STET)
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Collections of Filters

Use a collection of filters to collect texture info

The collection should be based upon scale (size)
and direction

A basic texture detection filter collection is

spots and bars

- Spoft filters are non-directional and can recognize
differences from the surrounding pixels

- Bar filters respond to oriented structure
- Spot and bar filters can be constructed as weighted
sums of Gaussians

Gabor filters describe frequency and orientation
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Spot filters

- Two concenftric,
symmetric Gaussians,
with weights 1 and -1,
and corresponding
sigmas 0.71 and 1.14

» Three concentric,
symmetric Gaussians,
with weights 1, -2 and
1, and corresponding
sigmas 0.62,1and 1.6

Adapted from Forsyth & Ponce.
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Oriented Bar Filters

Oriented bar filters: basic
horizontal bar filter with
different orientation and, more
generally, scale and phase

Horizontal bar is three
Gaussians with weights -1, 2 and
-1; 0,72, 6,=1; corresponding
centers are offset to (0,1), (0,0)
and (0,-1)

- Rotated by 45°

Adapted from Forsyth & Ponce.
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Spot and Bar Filters

Collection of Spot and Oriented Bar Filters
(from Malik and Perona)

Adapted from Forsyth & Ponce.
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How many filters?

* Number of scales typically ranges from two to
eighteen

- Number of orientations does not seem to matter

in practice as long as there are about six
orientations

Basic spot filter is made from Gaussians and bar
filters are made by differentiating oriented

Gaussians
N/ s~

NoLs-s
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Response to Spot and Bar Filters

Lower resolution (coarser
scale) butterfly

Absolute value of spot and bar filter collection response
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Texture Measures

A simple texture measure is to compute the sum
of the squared filter outputs over some moving
window. This is equivalent to a smoothed mean.

- If the filters have horizontal and vertical

orientations then the results can be thresholded
and made into a binary texture vector

(H’rex‘rur'e'v’rex‘rure)

Another approach is to compute the mean and
standard deviation of each filter output for a
moving window and put them into a more complex
texture vector.



D
construct spot and rod filters

EECS490: Digital Image Processing

Difference of Gaussian Filters

ifference of Gaussian filters are often used in tfexture analysis to




EECS490: Digital Image Processing

| (using sum of squared filter outputs over a window)

Texture Classification

—————— —————

.O Squared responses  Spatially blurred

vertical filter

imagc

D
>

horizontal filter

——

 Texture classification
 using a two-element
 binary texture vector

| (H'rexfurelvfexture)

Threshold squared,
blurred responses.
then categorize
texture based on
those two hits
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Similar
textures
using
Euclidian
distance
measure
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Texture Classification

| (using mean and standard deviation of each filter output over a window)

= ;’: 1 |

Similar
textures
using
modified
Euclidian
distance
measure
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Similarity
decreases
left->right,
Top->bottom
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Picking Scale

* One can start with a small scale (size of the
window) and increase the scale until there is no
significant change in the texture classification

* Another method of determining scale is polarity

- Compute the average direction (the dominant
orientation) of the gradient for a window. Compute the
dot product between the gradient at each point and the
average gradient orientation.

- Compute the averages for the positive and then the
hegative dot products.

- Start at a small scale and increase the scale until the
polarity does not change.
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Gaussian Pyramid

»+ SY downsamples an image I, i.e., the j k-th
element of S* (I) is the 2j,2k-th element of I.

* The n-th level of a pyramid P(I) is denoted P(I),

Define a Gaussian pyramid as

PGaussian(I)ml:S* (GG*PGaussian(I)n :S¢Gc (PGaussian(I)n)
+ The finest scale is the starting laye -

PGaussian(I)lzI

Smooth each layer with a Gaussian and
downsample to get the next layer.

e ——
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Gaussian Pyramid

Smooth each layer with a Gaussian and
downsample to get the next layer.

=

ach image shown at the same size with pixels of differing sizes
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el Gaussian Pyramid

Gaussian
pyramid

. | | Pixels shown actual size
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Laplacian Pyramid

* A Gaussian pyramid duplicates spatial frequency
information between layers

* Define S*(I) which upsamples an image from level
n+l to level n, i.e., produces elements at (2j-1,2k-
1),(2,2k-1),(2j-1,2k),and (2j,2k) all with the same
value from the (j k) element of I

» A Laplacian pyramid is a difference of Gaussians

PLaplacian(I)k: PGaussian(I)k' St (PGaussian(I)k+1)

Since both are filtered each level of the
Laplacian pyramid represents a range of spatial
frequencies
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e ek g Laplacian Pyramid

l Gaussian pyramid

512 256 128 64 32 16 8
l Laplacian pyramid

Strong responses at particular scales occur because each layer corresponds to a
band-pass filter. When the scale of the image matches the frequency response of
the Laplacian level there is a strong response
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Laplacian Pyramid

Laplacian

Pyramid
(note top 1mage
1s from Gaussian)

l Pixels shown actual size
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3l heb g Another Example
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Gaussian Pyr‘amld Laplacuan Pyramid
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Laplacian Pyramid

An image can be recovered from its Laplacian
pyramid by the following algorithm:

Working layer is the coarsest layer

For each layer going from next coarsest to fine

Upsample the working layer and add the current layer to
the result.

Set the working level to be the result of this operation
end
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Gabor filters are logical extensions
of the short term Fourier
transform
H n | il oo

at every point in image

I’ =1%* Gabor

Fourier Basis

Gaussian
filter

Gabor Filter
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Ve Gabor Filters
v Layern
Each layer of the Laplacian pyramid can frequencies
be thought of as a range of spatial ﬁ\
frequencies, i.e., an annulus in the U > U
Fourier u-v space k %Layer' n-1
frequencies

A Fourier tfransform is a transform of
the entire image. A Gabor filter isa
product of a Gaussian and a Fourier
basis function which can perform
oriented, local frequency analysis

A Gabor filter is also very similar to
the response of receptive fields in the
visual cortex.

Journal of Neurophysiology, Vol 58, Issue 6 1233-1258
An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex
J. P. Jones and L. A. Palmer

Department of Anatomy, University of Pennsylvania School of Medicine, Philadelphia 19104-6058.
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Gabor Filters

frequency

Gabor filters at two different
scales and three spatial
frequencies

Top row shows anti-symmetric (or
odd) filters,

X% +y?

Gantisymmetric ('xa )7) — Sin(kox + kly) e_ 207

Bottom row shows symmetric (or
even) filters.

x2+y?

>

Gsymmetric (X,y) — Cos(kxx + kyy)e 20°
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A Gabor filter gives what is known
as an oriented pyramid where each
filter corresponds to a angular
segment of an annulus in frequency
space

X +y?
Gantisymmetric ('X’ y) — Sin(kOx + kly)e 207

X +y?

(x,y)= cos(kxx + kyy)e 20°

G

symmetric

Gabor filters are anti-symmetric
since in the limit as 6->0 the
Gabor functions become the
Fourier basis functions

F Gabor Filters

\'
A

7z

Z

> u
Layer n
frequencies

0

A Gabor filter might pass
frequencies in layer n and
between 6, and 6,

Gabor filters are examples
of wavelets
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Pyramids

// \ Pl‘()gl'CSSiVCl)" blurred and
subsampled versions of the

image. Adds scale invariance

» Gaussian to fixed-size algorithms.
Shows the information added in
Gaussian pyramid at each
» Laplacian spatial scale. Useful for noise
reduction & coding.
Bandpassed representation, complete. but with
» Wavelet/QMF aliasing and some non-oriented subbands.
Shows components at each
i .
»

scale and orientation

Steerable pyramﬁ separately. _-.\lon-aliascd
subbands. Good for tgxture
and leature analysis.
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Viewing
direction

Plane
normal

Projected

normal
—_

D

Textured
plane

~N

Texture is subject to
perspective transformations
giving rise to a perspective

gradient
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e Texture

Texture gradient associated with converging lines (Gibson 1957)
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Texture Synthesis
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> i Texture Analysis
F‘;‘.’.‘;‘.‘ % woots gl
Laplacian
Pyramid " | B, S’
Layer S
<
e R | — B
2
=
3
.
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| = B‘1 — =

Take the layers of Laplacian Pyramid and apply oriented filters
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o lokg Texture Synthesis
y‘;.z::.; T
Laplacian
8 | B1 "Pyramid
= Laver
2
R
:
= B,
3
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Re-filter the layers and add them
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Texture Synthesis

From “Image quilting for texture synthesis and transfer”, Efros
and Freeman, SIGGRAPH 2001




