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2
Processing
.......

Motion Blurring

Model motion in x- and y-directions over a period T for an integrating
| detector such as a camera.
x y J.f[x xo y Yo ):Idt

| Fourier transform g(x,y) and reverse order of integration

X, y)e—jZﬂ(ux+vy)dxdy

|:Jf[x xo y Yo )]dt:|£j2”(”x+vy)dxdy
60)= | ] [rTen 0y 0y
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" EECS490: Digital Image Processing

o ool Motion Blurring

1 Replace innter term by F(u,v), the Fourier transform of f(x,y)

T T
G(u,v)=J.[F(u,v)e_j2”(“x° vy (1 )dxdy}dt F(u, )Je—jZn(uxo(t)+vyo(t))dt

0 0

| Identify the motion blurring transfer function as

H (M,V) — je—jZn(uxO (t)+vy0 (t))dlL

N

| We can then model motion degradation as
G(u,v)=H (u,v)F(u,v)

| Where, for x,(1)=at/T, y,(t)=0

L _ing L —]277:ua—t T . .
H(u,v)= j F2me 1) gy — J. T dt = ——sin(mua)e ™
! g Tua

© 2002 R. C. Gonzalez & R. E. Woods



J EECS490: Digital Image Processing

47 Modeling Image Degradation

Original image
(1st edition
cover)

FIGURE 5.26

(a) Original image.

(b) Result of

blurring using the

function in Eq.

(5 6-11) with
=b = 0.1and

T =1

Motion blurring T : —jn(ua+v
‘ transfer function H (u,v)= 7(ua + vb) sm[ﬂ:(ua T vb)]e rant)

Motion blurring
with a=b=0.1
and T=1
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¢ eks Inverse Filtering

If degraded image is given by degradation + noise
G(u,v) = H(u,v)F(u,v) + N(u,v)
 Estimate the image by dividing by the degradation
function H(u,v)
~ G(u,v) H(u,v)F(u,v)+N(u,v)

F(M’V)ZH(u,v): H (1) :F(M’V)-l_H(u,v)

We can never recover F(u,v) exactly:
1. N(u,v) is not known since n(x,y) is a r.v. — estimated

2. If H(u,v) ->0 then noise term will dominate. Helped by
restricting analysis to (u,v) near origin.
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Modeling of Degradation

480x480

No radial limiting
of H(u,v)

using the full
filter. (b) Result
with H cut off
outside a radius of
40; (c) outside a
radius of 70; and
(d) outside a
radius of 85.

H(u,v) cut off at
R=70
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T b g Wiener Filter

2
o s e 2 -
e =F ( — ) Assuming: 1. f and n are uncorrelated
Minimize { f f } 2. f and/or n is zero mean
3. gray levels in f are a linear function of
the gray levels in f

| The best estimate ﬁ(u,v) is then given by

A H*(u,v)S, (u, *
F(M,V) — [ (l/l V) fz(u V) ]G(M,V) _ H (I/t’;) G(M,V)
S; (u,v)‘H(u,v)‘ +S, (u,v) ‘H(u,v)‘z N néu,v;
i FAY)
H 2 H(u,v) = degradation function
I:“(u y)= 1 ‘ (uv)‘ G (u,v) H*(u,v) = complex conjugate of H
’ H(u,v) > S, (uv) |7 IH(uV)|= H*(uv) H(u.v)
‘H(”"V)‘ T S (u,v) S, (u.v)=IN(u,v)[2=power spectrum of noise
L A (estimated)

S¢(u,v)=|F(u,v)|?=power spectrum of original

image (not known)
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EECS490: Digital Image Processing

of Degradation

o = e e

abec

FIGURE 5.28 Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (¢) Wiener filter result.

| Inverse filtering Radially limit l Wiener filtering

at D,=75
N(u,v) 2

H (u,v) ﬁ(u,v)=[ ! [H (u.v) ]G(u,v)

H(u,v) |H(u,v)|2 + K

In practice we don't know the power

spectrum S¢(u,v)=|F(u,v)|? of the original
image so we replace the S /S, term with
a constant K which we vary

© 2002 R. C. Gonzalez & R. E. Woods
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e b Modeling of Degradation
Wcﬂ e Inverse filtering Wiener filtering
w/0 noise modeling = w/ noise modeling

Image + motion blur +
Gaussian noise (62=650)

l Reduce 62 to 65

l Reduce ¢2 to 0.00650

AR
o g
—- 0

S - RS N e I—;
FIGURE 5.29 (a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering.
(c) Result of Wiener filtering. (d)—(f) Same sequence, but with noise variance one order of magnitude less.
(g)-(i) Same sequence, but noise variance reduced by five orders of magnitude from (a). Note in (h) how
the deblurred image is quite visible through a “curtain” of noise.

© 2002 R. C. Gonzalez & R. E. Woods
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3
" Processing
..........

Constrained Least Squares Filter

g§=Hf +1

g= [growl(x'y) growz(x'y) gr'oww(x'y) s growN(xly) ]
f,n have the same form and dimensions as g, i.e., MNx1

H has dimensions MNxMN which is VERY large

A H *(u,v)

‘ Solution F(u,v)= . G (u,v)
(Castleman, 1996) _|H (M,V)| 4 }/|P(u,v)|

© 2002 R. C. Gonzalez & R. E. Woods
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ma e
rocess ing

;f.uf’f" Constrained Least Square Filter
r';;:';,m = [

Image + motion blur +

Gaussian noise (6%=650) l Reduce 62 to 65 | Reduce 62 to 0.00650

A E

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (c¢) with the Wiener filtering
results in Figs. 5.29(c), (f), and (i), respectively.

l Does a nice job of removing motion degradation and noise

© 2002 R. C. Gonzalez & R. E. Woods
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Constrained Least Square Filter

ab

FIGURE 5.31

(a) Tteratively
determined
constrained least
squares
restoration of
Fig. 5.16(b), using
correct noise
parameters.

(b) Result
obtained with
wrong noise
parameters.

Correct noise Wrong noise
parameters parameters

ycan be determined interactively but the optimum value of y can
be determined from the mean and variance of the noise. Knowing
the correct noise parameters is important to the process.

© 2002 R. C. Gonzalez & R. E. Woods
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1. Forward projection
from a source through
an absorber to a
linear detector array

3. Rotate the source
and detector array
90° and measure a
new forward
projection through
the same absorber

© 2002 R. C. Gonzalez & R. E. Woods
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Beam

Absorption profile

-

4. Sum the
two back
projections
to
reconstruct
a better
image of the

absorber
e —

i Computed Tomography

2. Backproject the
signal back to the
source to reconstruct
the absorber

ab
cde

FIGURE 5.32

(a) Flat region
showing a simple
object, an input
parallel beam, and

a detector strip.

(b) Result of back-
projecting the
sensed strip data
(ie. the 1-D absorp-
tion profile). (c) The
beam and detectors
rotated by 90°.

(d) Back-projection.
(e) The sum of (b)
and (d).The inten-
sity where the back-
projections intersect
is twice the intensity
of the individual
back-projections.
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12‘*?*,;;'5“._’“f' Reconstruction of a Single Object

Reconstruction
using 1
backprojection

| Absorber

al|Blie . .
de f Reconstruction using
FIGURE 5.33 2 backprojections
gg)zﬁéilfe as Fig. 450 apal”‘l'

(b))

Reconstruction
using 1,2,3,and 4
backprojections 45°
apart.

(f) Reconstruction
with 32 backprojec-
tions 5.625° apart
(note the blurring).

Reconstruction using
32 backprojections

Reconstruction using 3
backprojections 45°

apart 5.625° apart

Reconstruction
using 4

backprojections
45° apart

© 2002 R. C. Gonzalez & R. E. Woods
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“*4#* Reconstruction of Multiple Objects

;‘“’ ol Brightest because most

Darker because forward absorption — projection
projection was only was through both

through smaller less absorbing objects
highly absorbing object

Large highly
| absorbing object
| Smaller less highly
— - - -

Reconstruction using 3
i Y ¢4 Reconstruction using 32 backpro Jec‘nons 5.625° apart

#

Reconstruction using
2 backprojections
90° apart

Reconstruction using
64 backpro jections
2.8125° apart

backprojections 45°

apart
de f
FIGURE -

backplo]ectlons 45° '1p'11t (e) Reconstluctlon with 32 backprojections 5 629 apart.
(f) Reconstruction with 64 backprojections 2.8125° apart.

© 2002 R. C. Gonzalez & R. E. Woods
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e Computed Tomography

G1: Pencil beam, single
source and detector —
move detector source

G2: Narrow fan beam, single source,
small linear detector array — move
detector source pair (not as much
movement required)

ab
cd

FIGURE 5.35 Four
generations of CT Yy N
scanners. The ;L AN
dotted arrow

lines indicate
incremental
linear motion.
The dotted arrow
arcs indicate
incremental
rotation. The
cross-mark on
the subject’s head
indicates linear
motion
perpendicular to
the plane of the
paper. The
double arrows in
(a) and (b)
indicate that the
source/detector
unit is translated
and then brought
back into its
original position.

Subject
0
Detector

NSO

G5: G4 with electromagnetically
aimed sources to eliminate
mechanical movement

G6: patient moves linearly
through rotation scanner
describing a helical scan

G7: multi-slice scanners with
thick fan beams and 2-D
detector arrays

G3: Wide fan beam, single source,
large linear detector array —

move detector source pair (not as
much movement required)

G4: Wide fan beam, rotating
source, circular detector
array — move source around
circle

© 2002 R. C. Gonzalez & R. E. Woods
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"~ ~  Basics of the Radon Transform

xcosf + ysinf = p

FIGURE 5.36 Normal representation of a straight line.

I Describe a line in (x,y) coordinates as:
5(xcosO+ ysinf— p)

© 2002 R. C. Gonzalez & R. E. Woods
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C o Processing
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"w/“  Basics of the Radon Transform
‘gg;:::.;:f:;::- -

FIGURE 5.37
Geometry of a y
parallel-ray beam.

A point g(pj, 6x) in

‘he Drotect.
Complete projection, g(p. 6;). Q the projection

for a fixed angle —

L\\\; L(pj, 0x)

The Radon transform is the line
integral (projection) of f(x,y) along a
line at an angle 6

~+o0 400

R{f(x,y)}zg(p,@): J Jf(x,y)S(xcos(9+ysin@—p)dxdy

—00 —OO

© 2002 R. C. Gonzalez & R. E. Woods
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- “  Basics of the Radon Transform

e

2 2 2 FIGURE 5.38 A disk
( A X + y S r and a plot of its
X ) = Radon transform,
f o y derived analytically.

O Othel’WiSe x Here we were able to

plot the t_lt'm'l;fgi'lms
Since the absorber is circularly K only on one vara
symmetric we only need to do the
projection for 6=0° s
—+oco 400
g(p.0°)= [ | f(x.9)8(x— p)dxdy /

only on one variable.
When g depends on
+o0 +\U"2 —p2 0 r '
= [ flpy)y= | Ady AP o<

Radon transform
becomes an image
whose axes are p and
#, and the intensity
of a pixel is
proportional to the
value of g at the
location of that pixel.

AN

both p and 8, the
P g(p.6)=

f_H

0 otherwise
[ 2 2
— 2A\r" = p |P| sr l This is the Radon transform g(p) for 6=0°

0 otherwise

© 2002 R. C. Gonzalez & R. E. Woods
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The plot of g(p.6) as
an intensity with p on
the horizontal and 6
on the vertical is
called a sinogram.

The Shepp-Logan
phantom is designed
to simulate the
absorption of a brain
with small tumors

© 2002 R. C. Gonzalez & R. E. Woods
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Sinograms

v The sinogram of a
135 | bar.
6 90
45
0 )
180
135
0 90 i
45
0 p

FIGURE 5.39 Two images and their sinograms (Radon transforms). Each row of a sinogram
is a projection along the corresponding angle on the vertical axis. Image (c) is called the
Shepp-Logan phantom. In its original form, the contrast of the phantom is quite low. It is
shown enhanced here to facilitate viewing.

The sinogram of the
Shepp-Logan
phantom.
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ab

FIGURE 5.40
Backprojections
of the sinograms

Backprojection of Sinograms

There is
significant blurring
using this approach

l The backprojection for a specific angle 6 is the line Jo (X, )’) = g(x cos6 + ysin0, 9)

T
l The complete reconstruction is the integral over all 6 f(x, y) = J fo (x, y)d@
0

© 2002 R. C. Gonzalez & R. E. Woods
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. -~

Fundamental CT Reconstruction

* Physically measure the projection
e Back project each projection

e Sum all the projections to generate one
Image
 Results in blurred images

© 2002 R. C. Gonzalez & R. E. Woods
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Fourier Slice Theorem

oo

G(CO,H) — J g(p, 9) e_jz’m’pdp | Compute the 1-D Fourier transform of g(p,0)

—00

400 400 +oo

G(w,0)= J J J f(x,y)8(xcos@+ ysin@ — p)dxdye **™dp
—00 —c0 —00 l Substitute the expression for the projection g(p,0)

~+oo +oo

G(w,0)= f Jf(x,y)[T5(xcosO+ysin@—p)e‘jz”“’pdp-ldxdy

—00 —OO

o oo Reverse the order of integration and evaluate
G(a),e) — J I f(x,y)e—j27rw:xc059+ysin9)dxdy

—00 —OO

l This is the Fourier transform of the absorption f(x,y) evaluated at u=mcos6; v=wsind
oo 400

G(w,0)= { J J Fx,y)e > ) dxdy

o0 T :|ua)cose;vwsin9
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> Image
4 .’{."Procgessing

Syl Fourier Slice Theorem
*g,‘;‘.:::.‘.,::;::::' =

)’/
FIGURE 5.41 A

Illustration of the
Fourier-slice theo-
rem. The 1-D \
Fourier transform YN
of a projection is XN
a slig)e OJf the 2-D fx.y )k\
Fourier transform i

of the region from 5 \
which the projec- BN 1-D Fourier
tion was obtained. NENEY transform
Note the corre-

spondence of the

angle 6.

v

2-D Fourier
transform

Projection ~ F(u,v)

- X

The Fourier transform of a

— projection is a slice of the 2-D
G(G),Q) I:F(u’ v):|u=wcos9;v=wsin9 Fourier transform of the

= F(wcos6,wsin0) density f(xy)

© 2002 R. C. Gonzalez & R. E. Woods
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| Reconstruction Using the
Fourier Slice Theorem

+o0 400
f(x,y) = _[ F(“’V)€j2”(ux+vy)dudv | The inverse 2-D Fourier transform of F(u,v)
T
f(x,y) = F(a) cos 0, w sin 9)eﬂ”“’(“"w*-"sme)a)da)dg | Rewrite in polar coordinates
00
T
f(x,y)=||G(w,0)e j2mo(xcosO+ysinG) o) 14y | Use the Fourier Slice Theorem to recognize G(w,0)
00
T oo 27 oo
f(X,y)Z G(w,e)ej27z’a)(xc059+ysin9)wdwd0_l_ j jG(w,e)ej27ta)(xc059+ysin6)wdwd6 | SCPGI"GTC
00 T 0

JT oo
oo

f(X,y) — G(a),e)ej27ra)(xc059+ysin9)wda)d0_l_ jJG(_w,e)ej27rw(xc059+ysin9)wdwd9 Use symmetry
00

00
f(x,y) _ A .|a)| G(w’e)ejzna)(xcos6+ysin9)dwd9 Recombine

T o

f(x,y)= J. J|w|G(w,9)ej2”wpdw do I Rearrange

0LO p=xcosB+ysinO
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4 Reconstruction Using the
Fourier Slice Theorem

f(xy)= | [|o|G(w.0)e”> do d6
OoLO

dp=xcosO+ysinO

The inner term is a 1-D inverse Fourier transform.

The || is a ramp filter (whose inverse Fourier transform does not exist since it is not
bounded) modifying the transform.

In practice we multiply |o| by another filter, a windowing function, which limits its high

frequency response.
T ———————e—ee . . ... e Vg g |
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af@ia:::;..‘g
e Filtered Backprojections

_ "
By

S Ratael C. Gonsales -
Richard E. Woods ~

ab
el e

|o| multiplied by a box
. 2 FIGURE 5.42
! domain plot of the
domaln' filter |w| after band-
limiting it with a
Frequency Spatial box filter. (b) Spatial
domain domain domain
representation.
(c) Hamming
windowing function.
(d) Windowed ramp
filter, formed as the
product of (a) and
(c). (e) Spatial
representation of the
AT product (note the
Spatial decrease in ringing).
domain

Frequency Frequency
domain domain

Hgmming Hamming filtered || and its
W'"dO}N | inverse Fourier transform
function

© 2002 R. C. Gonzalez & R. E. Woods



EECS490: Digital Image Processing

Reconstruction Using Filtered
Backprojections

* Physically measure the projection for angle 6,

o Compute the 1-D Fourier Transform of each
projection

o Multiply each Fourier Transform by the filter

function || and an appropriate window, e.g.,
Hamming

e Obtain the inverse 1-D Fourier Transform of
the windowed, filtered transform

* Integrate (sum) all the 1-D transforms to
generate one image

© 2002 R. C. Gonzalez & R. E. Woods
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b g Filtered Backprojection

o o
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cd

FIGURE 5.43

Filtered back-
projections of the
rectangle using (a) a
ramp filter, and (b) a
Hamming-windowed
ramp filter. The
second row shows
zoomed details of the
images in the first
row. Compare with
Fig.5.40(a).

Backprojection Backprojection filtered by
filtered by aramp | a Hamming-windowed ramp
filter. filter.

© 2002 R. C. Gonzalez & R. E. Woods
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FIGURE 5.44

Filtered
backprojections of
the head phantom
using (a) a ramp
filter, and (b) a
Hamming-windowed
ramp filter. Compare
with Fig. 5.40(b).

Backprojection Backprojection filtered by
filtered by a ramp a Hamming-windowed ramp
filter. filter.

© 2002 R. C. Gonzalez & R. E. Woods
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ot Computed Tomography

y FIGURE 5.45
To analyze the fan-beam Basic fan-beam
geometry for G4 and later gzg;?;g“t{]g:; fine
mGChines we SWH’Ch fr'om Sourc / the center of the
. . DOuree, source and the
frequency domain analysis to ovigin (assumed
COﬂVO'U"'lon. here to be the
center of rotation
D of the source) is
called the center
ray.
— X
T oo
. '2
F(xy) = [10|G(w.0)e’ ”“’”da)} do
0L e p=xcos+ysin@ L(p.6)
ﬂ; _ Center ray
f(x’y) B —S(p)*g(p,e):lp=xcose+ysin0

flxy)=

Jg(p,O)s(xcos(9+ysin9—p)dp} do

p=xcosB+ysin0

Sty O

l This is a convolution of the ramp filter and the corresponding projection

© 2002 R. C. Gonzalez & R. E. Woods
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Tk ,' Computed Tomography

"
y FIGURE 5.45
Basic fan-beam
geometry. The line
passing through
Soure B the center of the
ouree source and the
3 origin (assumed
here to be the
center of rotation
D a@ of the source) is
called the center
7 o ray.
r" x
L(p,6)
Center ray
T oo
xy :I Ig xcos@+ysm9 p)dp do
0 L—eo p=xcosf+ysin0
—J J j xcos9+ys1n9 p)dpd@
2 0 —T —

We recognize that the projections are mirror images and then convert to polar coordinates

© 2002 R. C. Gonzalez & R. E. Woods
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“*  Computed Tomography

Y FIGURE 5.45
Basic fan-beam
geometry. The line

passing through

. / the center of the
Source )

source and the
3 origin (assumed
here to be the
center of rotation
of the source) is
called the center
ray.

We recognize that the projections are
mirror images and then convert to polar
coordinates D

Let x=rcos@ and y=rsin@

Then xcos0 + ysin0 =

rcos@cos + rsin@sin@ = rcos(6 — @) . ‘_L!(p‘ml For this beam geometry
1 2w T ’ b
f(x,y)=EJ Ig(P’G)s[rcos(G—oc)—p]dde 0=p+a
0 -T p=sino

I Using this information we then transform the variables of integration to o and

2r-a sin’” (%)
f(x,y)= 1 j g(Dsina,a+ B)s| reos(f+a—¢@)—Ssina |Dcosadadf

- ._1( T)
sSin -

© 2002 R. C. Gonzalez & R. E. Woods
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’ Computed Tomography

y FIGURE 5.46

Maximum value

of & needed to
/ encompass a
Source region of interest.

Since -o, <o<+0, and we can rotate o
with no loss of generality

2r o

flx,y)= %J. JT p(a,B)s[ rcos(B+a—¢)— Dsina |Dcosadod

l This is the fundamental fan beam reconstruction formula where

p(o,B)=g(Dsino, 0+ B)

© 2002 R. C. Gonzalez & R. E. Woods
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s ; Computed Tomography

| From problem 5.33 e )<
~x

rcos(f+a—¢)— Dsino = Rsin(o'- @)

2r &,

FIGURE 5.47
Polar
representation of
an arbitrary point
on a ray of a fan
beam.

F(r0)= % J [ ploBy{Rsin(ar+ o) |Deos oudoudp

m

| From problem 5.34
2
s(Rsin(x):( 0‘ ) s(a)

Rsino

1(r.9)= Tlﬁ" q<a,ﬁ>h[a'—a]da}dﬁ

_am

sin o

Iwhere h(a)=%( o )Zs(a) |Ld q(o, )= p(a,B)Dcoso

© 2002 R. C. Gonzalez & R. E. Woods
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" Computed Tomography

FIGURE 5.47
Polar
B representation of
)< an arbitrary point
Source g on a ray of a fan
TR beam.

l This is computationally hard to evaluate /,
D

2r 1 a, ; -

f(r.e)= j?|: j q(a, Bhlo'- a]da}dﬁ LB - x

0 -a,

| A common simplification is

p(a,B)=g(p,0)=g(Dcosa,a+ P)

l For a discrete system let AB=Aai=y

p(n}/,m}/) = g(D sinn)/,(m + n)y)

© 2002 R. C. Gonzalez & R. E. Woods
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", Computed Tomography

Reconstruction of
the rectangle
image from
filtered fan
backprojections.
(a) 1° increments
of & and (.

(b) 0.5°
increments.

(c) 0.25°

1=0.125°

re (d) with
Fig. 5.43(b).

© 2002 R. C. Gonzalez & R. E. Woods
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Computed Tomography

a h
o )

l =il l v=0.5
Reconstruction of
the head phantom
image from
filtered fan
backprojections.
(a) 1° increments
of @ and 3.

(b) 0.5°
increments.

(c) 0.25°

increments.
Y:O.25° D @ Y:0125°
1g. 5. ’

© 2002 R. C. Gonzalez & R. E. Woods




