
EECS490: Digital Image Processing

Lecture #16

• Wiener Filters

• Constrained Least Squares Filter

• Computed Tomography Basics

• Reconstruction and the Radon Transform

• Fourier Slice Theorem

• Filtered Backprojections

• Fan Beams
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Motion Blurring
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g x, y( ) = f x x0 t( ), y y0 t( ) dt
0

T

G u,v( ) = g x, y( )e j2 ux+vy( )dxdy

= f x x0 t( ), y y0 t( ) dt
0

T

e j2 ux+vy( )dxdy

G u,v( ) = f x x0 t( ), y y0 t( ) e j2 ux+vy( )dxdy dt
0

T

Model motion in x- and y-directions over a period T for an integrating
detector such as a camera.

Fourier transform g(x,y) and reverse order of integration
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Motion Blurring
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G u,v( ) = F u,v( )e j2 ux0 t( )+vy0 t( )( )dxdy dt
0

T

= F u,v( ) e j2 ux0 t( )+vy0 t( )( )dt
0

T

H u,v( ) = e j2 ux0 t( )+vy0 t( )( )dt
0

T

G u,v( ) = H u,v( )F u,v( )

H u,v( ) = e j2 ux0 t( )dt
0

T

= e
j2 u

at

T dt
0

T

=
T

ua
sin ua( )e j ua

Replace innter term by F(u,v), the Fourier transform of f(x,y)

Identify the motion blurring transfer function as

We can then model motion degradation as

Where, for x0(t)=at/T, y0(t)=0
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Modeling Image Degradation
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H u,v( ) =
T

ua + vb( )
sin ua + vb( ) e j ua+vb( )

Original image
(1st edition
cover)

Motion blurring
with a=b=0.1
and T=1

Motion blurring
transfer function
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Inverse Filtering
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• If degraded image is given by degradation + noise

• Estimate the image by dividing by the degradation

function H(u,v)

We can never recover F(u,v) exactly:

1. N(u,v) is not known since (x,y) is a r.v. — estimated

2. If H(u,v) ->0 then noise term will dominate. Helped by

restricting analysis to (u,v) near origin.

G u,v( ) = H u,v( )F u,v( ) + N u,v( )

 

F u,v( ) =
G u,v( )

H u,v( )
=
H u,v( )F u,v( ) + N u,v( )

H u,v( )
= F u,v( ) +

N u,v( )

H u,v( )
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Modeling of Degradation
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No radial limiting
of H(u,v)

 

F u,v( ) = F u,v( ) +
N u,v( )

H u,v( )
where H u,v( ) = e

k u
M

2

2

+ v
N

2

2
5

6

H(u,v) cut off at
R=40

H(u,v) cut off at
R=70

H(u,v) cut off at
R=85

480x480
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Wiener Filter
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e2 = E f f̂( )
2

{ }

F̂ u,v( ) =
H * u,v( )Sf u,v( )

Sf u,v( ) H u,v( )
2
+ S u,v( )

G u,v( ) =
H * u,v( )

H u,v( )
2
+
S u,v( )

Sf u,v( )

G u,v( )

F̂ u,v( ) =
1

H u,v( )

H u,v( )
2

H u,v( )
2
+
S u,v( )

Sf u,v( )

G u,v( )

Minimize Assuming: 1. f and n are uncorrelated
2. f and/or n is zero mean
3. gray levels in f are a linear function of
the gray levels in f

H(u,v) = degradation function
H*(u,v) = complex conjugate of H
|H(u,v)|= H*(u,v) H(u,v)
S (u,v)=|N(u,v)|2=power spectrum of noise

(estimated)
Sf(u,v)=|F(u,v)|2=power spectrum of original

image (not known)

The best estimate              is then given byF̂ u,v( )
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Modeling of Degradation
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Inverse filtering

N u,v( )

H u,v( )

Radially limit
at Do=75

Wiener filtering

F̂ u,v( ) =
1

H u,v( )

H u,v( )
2

H u,v( )
2
+ K

G u,v( )

In practice we don’t know the power
spectrum Sf(u,v)=|F(u,v)|2 of the original
image so we replace the S /Sf term with
a constant K which we vary
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Modeling of Degradation
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Image + motion blur +
Gaussian noise ( 2=650)

Reduce 2 to 65

Reduce 2 to 0.00650

Inverse filtering
w/o noise modeling

Wiener filtering
w/ noise modeling
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Constrained Least Squares Filter
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g = Hf +

F̂ u,v( ) =
H * u,v( )

H u,v( )
2
+ P u,v( )

2 G u,v( )

Mininize
smoothness

g = [grow1(x,y)  grow2(x,y) groww(x,y)  . . .  growN(x,y) ]
f,  have the same form and dimensions as g, i.e., MNx1
H has dimensions MNxMN which is VERY large

C =
2 f x, y( )

y=0

N 1

x=0

M 1 2

g Hf̂ =
2
=

T
constraint

Solution
(Castleman, 1996)

 
P u,v( ) = F p x, y( ) p x, y( ) =

0 1 0

1 4 1

0 1 0
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Constrained Least Square Filter
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Image + motion blur +
Gaussian noise ( 2=650) Reduce 2 to 65 Reduce 2 to 0.00650

Does a nice job of removing motion degradation and noise
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Constrained Least Square Filter
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 can be determined interactively but the optimum value of  can
be determined from the mean and variance of the noise.  Knowing
the correct noise parameters is important to the process.

Correct noise
parameters 

Wrong noise
parameters 
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1. Forward projection
from a source through
an absorber to a
linear detector array

Computed Tomography
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2. Backproject the
signal back to the
source to reconstruct
the absorber

3. Rotate the source
and detector array
90˚ and measure a
new forward
projection through
the same absorber 4. Sum the

two back
projections
to
reconstruct
a better
image of the
absorber
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Reconstruction of a Single Object
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Reconstruction using
32 backprojections
5.625˚ apart

Absorber

Reconstruction
using 1
backprojection

Reconstruction using
2 backprojections
45˚ apart

Reconstruction using 3
backprojections 45˚
apart

Reconstruction
using 4
backprojections
45˚ apart
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Reconstruction of Multiple Objects
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Darker because forward
projection was only
through smaller less
highly absorbing object

Smaller less highly
absorbing object

Brightest because most
absorption — projection
was through both
absorbing objects

Reconstruction using 32 backprojections 5.625˚ apart

Reconstruction using
2 backprojections
90˚ apart

Reconstruction using 3
backprojections 45˚
apart

Reconstruction using
64 backprojections
2.8125˚ apart

Large highly
absorbing object
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Computed Tomography
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G2: Narrow fan beam, single source,
small linear detector array — move
detector source pair (not as much
movement required)

G1: Pencil beam, single
source and detector —
move detector source
pair

G3: Wide fan beam, single source,
large linear detector array —
move detector source pair (not as
much movement required)

G4: Wide fan beam, rotating
source, circular detector
array — move source around
circle

G5: G4 with electromagnetically
aimed sources to eliminate
mechanical movement

G6: patient moves linearly
through rotation scanner
describing a helical scan

G7: multi-slice scanners with
thick fan beams and 2-D
detector arrays
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Basics of the Radon Transform
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Describe a line in (x,y) coordinates as:

x cos + ysin( )
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Basics of the Radon Transform
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The Radon transform is the line
integral (projection) of f(x,y) along a
line at an angle 

 

R f x, y( ){ } = g ,( ) = f x, y( ) x cos + ysin( )
++

dxdy
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Basics of the Radon Transform

© 2002 R. C. Gonzalez & R. E. Woods 

f x, y( ) =
A x2 + y2 r2

0 otherwise
Since the absorber is circularly
symmetric we only need to do the
projection for =0˚

g ,0˚( ) = f x, y( ) x( )
++

dxdy

= f , y( )
+

dy = A
r2 2

+ r2 2

dy

=
2A r2 2 r

0 otherwise

g ,( ) =
2A r2 2 r

0 otherwise

This is the Radon transform g( ) for =0˚
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Sinograms
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The plot of g( , ) as
an intensity with  on
the horizontal and 
on the vertical is
called a sinogram.

The sinogram of a
bar.

The sinogram of the
Shepp-Logan
phantom.

The Shepp-Logan
phantom is designed
to simulate the
absorption of a brain
with small tumors
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Backprojection of Sinograms
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f x, y( ) = g x cos + ysin ,( )

f x, y( ) = f x, y( )
0

d

The backprojection for a specific angle  is the line

The complete reconstruction is the integral over all 

There is
significant blurring
using this approach
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Fundamental CT Reconstruction

• Physically measure the projection

• Back project each projection

• Sum all the projections to generate one

image

• Results in blurred images

© 2002 R. C. Gonzalez & R. E. Woods 
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Fourier Slice Theorem

G ,( ) = g ,( )e j2 d
+

G ,( ) = f x, y( ) x cos + ysin( )dxdye j2 d
+++

G ,( ) = f x, y( ) x cos + ysin( )e j2 d
+

dxdy
++

G ,( ) = f x, y( )e j2 x cos + y sin( )dxdy
++

G ,( ) = f x, y( )e j2 ux+vy( )dxdy
++

u= cos ;v= sin

Compute the 1-D Fourier transform of g( , )

Substitute the expression for the projection g( , )

Reverse the order of integration and evaluate

This is the Fourier transform of the absorption f(x,y) evaluated at u= cos ; v= sin
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Fourier Slice Theorem
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G ,( ) = F u,v( )
u= cos ;v= sin

= F cos , sin( )

The Fourier transform of a
projection is a slice of the 2-D
Fourier transform of the
density f(x,y)
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Reconstruction Using the
Fourier Slice Theorem

f x, y( ) = F u,v( )e j2 ux+vy( )dudv
++

f x, y( ) = F cos , sin( )e j2 x cos + y sin( ) d d
00

2

f x, y( ) = G ,( )e j2 x cos + y sin( ) d d
00

2

f x, y( ) = G ,( )e j2 x cos + y sin( ) d d
00

+ G ,( )e j2 x cos + y sin( ) d d
0

2

f x, y( ) = G ,( )e j2 x cos + y sin( ) d d
00

+ G ,( )e j2 x cos + y sin( ) d d
00

f x, y( ) = G ,( )e j2 x cos + y sin( )d d
00

f x, y( ) = G ,( )e j2 d
0 = x cos + y sin0

d

The inverse 2-D Fourier transform of F(u,v)

Rewrite in polar coordinates

Use the Fourier Slice Theorem to recognize G( , )

Separate

Use symmetry

Recombine

Rearrange
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Reconstruction Using the
Fourier Slice Theorem

f x, y( ) = G ,( )e j2 d
0 = x cos + y sin0

d

The inner term is a 1-D inverse Fourier transform.

The | | is a ramp filter (whose inverse Fourier transform does not exist since it is not
bounded) modifying the transform.

In practice we multiply | | by another filter, a windowing function, which limits its high
frequency response.
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Filtered Backprojections
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| | multiplied by a box
function in the frequency
domain.

Hamming
window
function

Hamming filtered | | and its
inverse Fourier transform
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Reconstruction Using Filtered
Backprojections

• Physically measure the projection for angle k

• Compute the 1-D Fourier Transform of each
projection

• Multiply each Fourier Transform by the filter
function | | and an appropriate window, e.g.,
Hamming

• Obtain the inverse 1-D Fourier Transform of
the windowed, filtered transform

• Integrate (sum) all the 1-D transforms to
generate one image

© 2002 R. C. Gonzalez & R. E. Woods 
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Filtered Backprojection
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Backprojection
filtered by a ramp
filter.

Backprojection filtered by
a Hamming-windowed ramp
filter.
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Filtered Backprojection
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Backprojection
filtered by a ramp
filter.

Backprojection filtered by
a Hamming-windowed ramp
filter.
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Computed Tomography
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To analyze the fan-beam
geometry for G4 and later
machines we switch from
frequency domain analysis to
convolution.

 

f x, y( ) = G ,( )e j2 d
= x cos + y sin

d
0

f x, y( ) = s( ) g ,( )
= x cos + y sin

d
0

f x, y( ) = g ,( )s x cos + ysin( )d
= x cos + y sin

d
0

This is a convolution of the ramp filter and the corresponding projection
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Computed Tomography
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f x, y( ) = g ,( )s x cos + ysin( )d
= x cos + y sin

d
0

f x, y( ) =
1

2
g ,( )s x cos + ysin( )d

T

T

d
0

2

We recognize that the projections are mirror images and then convert to polar coordinates
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Computed Tomography
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f x, y( ) =
1

2
g ,( )

T

T

s r cos( ) d d
0

2

For this beam geometry

We recognize that the projections are
mirror images and then convert to polar
coordinates

Let x = r cos and y = r sin

Then x cos + ysin =

r cos cos + r sin sin = r cos( )

= +

= sin

Using this information we then transform the variables of integration to  and 

f x, y( ) =
1

2
g Dsin , +( )

sin 1 T

D

sin 1 T

D

s r cos +( ) S sin Dcos d d
2
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Computed Tomography
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Since - m< <+ m and we can rotate 
with no loss of generality

f x, y( ) =
1

2
p ,( )

m

m

s r cos +( ) Dsin Dcos d d
0

2

This is the fundamental fan beam reconstruction formula where

p ,( ) = g Dsin , +( )
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Computed Tomography
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From problem 5.33

r cos +( ) Dsin = Rsin '( )

where

f r,( ) =
1

2
p ,( )

m

m

s Rsin '+( ) Dcos d d
0

2

From problem 5.34

s Rsin( ) =
Rsin

2

s( )

f r,( ) =
1

R2
q ,( )

m

m

h '[ ]d d
0

2

h( ) =
1

2 sin

2

s( ) q ,( ) = p ,( )Dcosand
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Computed Tomography
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This is computationally hard to evaluate

f r,( ) =
1

R2
q ,( )

m

m

h '[ ]d d
0

2

p ,( ) = g ,( ) = g Dcos , +( )

A common simplification is

For a discrete system let = =

p n ,m( ) = g Dsinn , m + n( )( )
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Computed Tomography
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=1˚ =0.5˚

=0.25˚ =0.125˚
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Computed Tomography

© 2002 R. C. Gonzalez & R. E. Woods 

=1˚ =0.5˚

=0.25˚ =0.125˚


