

Lecture #15

- Adaptive Noise Reduction Filters
- Bandreject and Notch filters
- Optimum Notch Filter
- •Modeling Image Degradation
- Inverse filtering
- Wiener Filters

P

EECS490: Digital Image Processing

Mid-Term Project

Mouse visual cortex neuron bundle

Example of a segmented image with errors

Adaptive Mean Filter

$$
\hat{f}(x, y) = g(x, y) - \frac{\sigma_{\eta}^2}{\sigma_L^2} \left[g(x, y) - m_L \right]
$$

- Noise variance over the entire image (estimated) σ_{η}^{-} 2
- $\emph{m}_{\rm{L}}$ $\,$ Local mean (calculated)
- σ_{η}^2 Local variance (calculated) 2

© 2002 R. C. Gonzalez & R. E. Woods

DIFFERENT CASES

 \cdot If $\sigma_{\eta}^{\texttt{c}} = \sigma_{\texttt{L}}^{\texttt{c}}$ the filter returns the local mean thus averaging out the noise $\sigma_L^2 = \sigma_L^2$ 2

 \cdot If $\, \sigma_{\eta}^{2} << \sigma_{\scriptscriptstyle L}^{2} \,$ this is probably the location of an edge and we should return the edge value, i.e., $g(x,y)$ 2

 \cdot If $\quad \sigma_{\eta}^{\ast}=0 \quad$ there is no noise and we return $q(x,y)$ $\frac{2}{n} = 0$

 $\cdot \mathsf{If} \;\;\; \sigma^{\mathtt{c}}_{\eta} > \sigma^{\mathtt{c}}_{\scriptscriptstyle{L}} \;\;$ we can get negative gray scale values which is a potential problem $\sigma_{L}^2 > \sigma_{L}^2$ 2

Adaptive Mean Filter

a b c d

variance 1000 (b) Result of arithmetic mean filtering. (c) Result of geometric mean filtering. (d) Result of adaptive noise reduction filtering. All filters were of size 7×7 .

73

7x7 geometric mean filter

Visible blurring with 7x7 arithmetic mean filter

7x7 adaptive noise reduction filter

> Performance can decrease if the estimated overall noise variance σ^z_{η} is incorrect 2

₩.

EECS490: Digital Image Processing

Adaptive Median Filter

varies S_{xy} to reduce impulsive noise

Adaptive Median Filter

a b c

a
Ser

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities $P_a = P_b = 0.25$. (b) Result of filtering with a 7 \times 7 median filter. (c) Result of adaptive median filtering with $S_{\text{max}} = 7$.

Image + "lots" of salt & pepper noise

7x7 median filtering with loss of detail

Adaptive median filtering $(S_{max}=7)$ with much better detail

Bandreject Filters

a b c

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject filters.

 D_{0} is center of stopband; W is full width of stopband

Bandreject Filtering

c d **FIGURE 5.16** (a) Image corrupted by sinusoidal noise. (b) Spectrum of (a) . (c) Butterworth bandreject filter (white represents) 1). (d) Result of filtering. (Original image) courtesy of NASA.)

Notice strong frequency components in a ring

Butterworth bandreject filter

Bandreject filters are not typically used because they can remove too much image detail.

Bandpass Filtering

FIGURE 5.17

Noise pattern of the image in Fig. $5.16(a)$ obtained by bandpass filtering.

Convert Butterworth bandreject filter on previous page to Butterworth bandpass filter: $H_{bandpass}(u,v)=1-H_{bandreject}(u,v)$.
Above image is the result of filtering noisy image with the Butterworth bandpass filter — it is the periodic noise in the spatial domain.

Notch Filters

ka s

EECS490: Digital Image Processing

Notch Filtering

Fourier spectra of original image showing periodic noise on v axis

Image after notch reject filtering

Optimum Notch Filter

When several interference components are present or if the interference has broad skirts a simply notch filter may remove too much image information.

One solution is to use an optimum filter which minimizes local variances of the restored estimate.

> Such "smoothness" constraints are often found in optimum filter design

Optimum Notch Filter

- 1. Manually place a notch pass filter H_{NP} at each noise spike in the frequency domain. The Fourier transform of the interference noise pattern is $N(u,v)$ $= H_{\tiny NP}(u,v)G(u,v)$
- 2. Determine the noise pattern in the spatial domain $\eta(x, y)$ $=\mathcal{F}^{-1}\bigl\{H_{\tiny{NP}}\bigl(u,v\bigr)G\bigl(u,v\bigr)\bigr\}$
- 3. Conventional thinking would be to simply eliminate noise by subtracting the periodic noise from the noisy image

$$
\hat{f}(x, y) = g(x, y) - \eta(x, y)
$$

Optimum Notch Filter

4. To construct an optimal filter consider ˆ $\hat{f}(x, y)$ = $g(x, y)$ $-w(x, y) \eta(x, y)$

where $w(x,y)$ is a weighting function.

5. We use the weighting function $w(x,y)$ to minimize the variance σ^2 (x,y) of $\ \widehat{f}(x,y)$ with respect to w(x,y) $\hat{f}(x, y)$

$$
w(x, y) = \frac{\overline{g(x, y)\eta(x, y)} - \overline{g(x, y)}\overline{\eta}(x, y)}{\overline{\eta}^2(x, y) - \overline{\eta}^2(x, y)}
$$

We only need to compute this for one point in each nonoverlapping neighborhood.

Optimum Notch Filter

$$
w(x,y) = \frac{\overline{g(x,y)\eta(x,y)} - \overline{g(x,y)}\overline{\eta}(x,y)}{\overline{\eta}^2(x,y) - \overline{\eta}^2(x,y)}
$$

 $\eta(x, y)$ Mean noise output from the notch filter $\eta^2(x, y)$ Mean squared noise output from the notch filter $\bar{\eta}^2(x,y)$ Squared mean noise output from the notch filter $g(x,y)$ Mean noisy image $g(x,y)\eta(x,y)$ Mean product of noisy image and noise

Image Restoration

FIGURE 5.20

a b

¦e∃
H

(a) Image of the Martian terrain taken by Mariner 6. (b) Fourier spectrum showing periodic interference. (Courtesy of NASA.)

Centered Fourier transform showing many strong periodic interferers.

Image Restoration

FIGURE 5.21 Fourier spectrum (without shifting) of the image shown in Fig. $5.20(a)$. (Courtesy of NASA.)

(noncentered) Fourier transform showing the same strong periodic interferers.

Image Restoration

FIGURE 5.22 (a) Fourier spectrum of $N(u, v)$, and (b) corresponding noise interference pattern $\eta(x, y)$. (Courtesy of NASA.)

a b

Fourier spectrum N(u,v) of the noise and its corresponding noise pattern $\eta(\mathsf{x},\!\mathsf{y})$

Image Restoration

FIGURE 5.23 Processed image. (Courtesy of NASA.)

"Optimum" image constructed by subtracting weighted periodic noise.

Characterization of Degradation

a b **FIGURE 5.24** Degradation estimation by impulse characterization. (a) An impulse of light (shown magnified). (b) Imaged (degraded) impulse.

ana.
Mat

Modeling of Degradation

$$
H(u,v) = e^{-k(u^2+v^2)^{\frac{5}{6}}}
$$

J
Pe

Atmospheric turbulence degradation model

c d **FIGURE 5.25** Illustration of the atmospheric turbulence model. (a) Negligible turbulence. (b) Severe turbulence, $k = 0.0025$. (c) Mild turbulence. $k = 0.001$. (d) Low turbulence, $k = 0.00025$. (Original image courtesy of NASA.)

a b

K=0.001

K=0.0025

9g

Motion Blurring

Model motion in x- and y-directions over a period T for an integrating detector such as a camera.

$$
g(x, y) = \int_{0}^{T} f[x - x_0(t), y - y_0(t)]dt
$$

Fourier transform g(x,y) and reverse order of integration

$$
G(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y)e^{-j2\pi(ux+vy)}dxdy
$$

\n
$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{0}^{T} f[x-x_{0}(t), y-y_{0}(t)]dt \right] e^{-j2\pi(ux+vy)}dxdy
$$

\n
$$
G(u,v) = \int_{0}^{T} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f[x-x_{0}(t), y-y_{0}(t)]e^{-j2\pi(ux+vy)}dxdy \right]dt
$$

9eg
Ma

Motion Blurring

Replace innter term by $F(u,v)$, the Fourier transform of $f(x,y)$

$$
G(u,v) = \int_{0}^{T} \Big[F(u,v) e^{-j2\pi(ux_0(t)+vy_0(t))} dx dy \Big] dt = F(u,v) \int_{0}^{T} e^{-j2\pi(ux_0(t)+vy_0(t))} dt
$$

Identify the motion blurring transfer function as

$$
H(u,v) = \int_{0}^{T} e^{-j2\pi(ux_0(t)+vy_0(t))} dt
$$

We can then model motion degradation as

$$
G(u,v) = H(u,v)F(u,v)
$$

Where, for x₀(t)=at/T, y₀(t)=0

$$
H(u,v) = \int_{0}^{T} e^{-j2\pi ux_0(t)} dt = \int_{0}^{T} e^{-j2\pi u \frac{at}{T}} dt = \frac{T}{\pi u a} \sin(\pi u a) e^{-j\pi u a}
$$

Modeling Image Degradation

Original image (1st edition cover)

> **FIGURE 5.26** (a) Original image. (b) Result of blurring using the function in Eq. $(5.6-11)$ with $a = b = 0.1$ and $T=1$.

9g

Motion blurring with a=b=0.1 and T=1

Motion blurring transfer function

$$
H(u,v) = \frac{T}{\pi(ua + vb)} \sin[\pi(ua + vb)]e^{-j\pi(ua + vb)}
$$

Inverse Filtering

- • If degraded image is given by degradation + noise $G(u,v)$ = $H(u,v)F(u,v) + N(u,v)$
- • Estimate the image by dividing by the degradation function H(u,v)

$$
\tilde{F}(u, v) = \frac{G(u, v)}{H(u, v)} = \frac{H(u, v)F(u, v) + N(u, v)}{H(u, v)} = F(u, v) + \frac{N(u, v)}{H(u, v)}
$$

We can never recover $F(u,v)$ exactly:

- 1. N(u,v) is not known since (x,y) is a r.v. estimated
- 2. If $H(u,v)$ ->0 then noise term will dominate. Helped by restricting analysis to (u,v) near origin.

Modeling of Degradation

480x480

No radial limiting of H(u,v)

22

 0^h

(a) Result of using the full filter. (b) Result with H cut off outside a radius of 40 ; (c) outside a radius of 70: and (d) outside a radius of 85.

H(u,v) cut off at R=70

EECS490: Digital Image Processing		
Wiencissing		
Wiencissing		
Minimize	$e^2 = E\left\{ (f - \hat{f})^2 \right\}$	Assuming: 1. f and <u>not</u> unis zero head
3. gray levels in the given by the group levels in a factor in a factor, and the group levels in a factor of the group levels in a factor.		
The best estimate $\hat{F}(u,v)$ is then given by		
$\hat{F}(u,v) = \left[\frac{H^*(u,v)S_f(u,v)}{S_f(u,v) H(u,v) ^2 + S_n(u,v)} \right] G(u,v) = \left[\frac{H^*(u,v)}{ H(u,v) ^2 + \frac{S_n(u,v)}{S_f(u,v)} } G(u,v) \right]$		
$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{ H(u,v) ^2}{ H(u,v) ^2 + \frac{S_n(u,v)}{S_n(u,v)} } \right] G(u,v) = \left[\frac{H(u,v) = \text{degradation function}}{H^*(u,v) = \text{complete of } H} \right]$		
$\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{ H(u,v) ^2}{ H(u,v) ^2 + \frac{S_n(u,v)}{S_n(u,v)} } \right]$		
$\hat{S}_f(u,v) = \text{informed}$		
independent		

Modeling of Degradation

a b c

FIGURE 5.28 Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b). (b) Radially limited inverse filter result. (c) Wiener filter result.

