EECS490: Digital Image Processing
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Modeling Image Degradation
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Wiener Filters
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Mid-Term Project

Mouse visual cortex neuron Example of a segmented
bundle image with errors
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Adaptive Mean Filter
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Noise variance over the
entire image (estimated)

Local mean (calculated)

Local variance (calculated)
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DIFFERENT CASES

-If 0'5 =0, the filter returns
the local mean thus averaging
out the noise

.If O, << O, this is probably
the location of an edge and we
should return the edge value,

i.e., g(xy)

‘If 0,=0 there is no noise
and we return g(x,y)

2 2
-If 0,>0. wecanget
negative gray scale values

which is a potential problem
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Adaptive Mean Filter

ab

cd
Image
+Zero-mean

Gaussian noise

(b) Result of
arithmetic mean

filtering.
(c) Result of

geometric mean

filtering.
(d) Result of

adaptive noise

reduction

filtering. All filters

were of size
7 %7,

7x7 geometric
mean filter
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Visible blurring
with 7x7
arithmetic mean
filter

7x7 adaptive
noise reduction
filter

Performance can
decrease if the
estimated overall
hoise variance Giis
incorrect




EECS490: Digital Image Processing

Adaptive Median Filter
s ' varies S_x}, to reduce impulsive noise
StageA' IF zmed>zmin and Zmax>zmed If zmax med zmm then zmed is
THEN 901-0 51-0963 NOT an impulse and we go to
StageB. Otherwise StageA
ELSE increase the window size S, e
IF WlndOWSIZ€<Smax neirghborhocl)d S,y until z, ., is
THEN goto LevelA et Bl
ELSE output z, 4
StageB: IF z,»z,;, and z,,°z2,, If 2y 2,02y, then 2, is NOT
THEN OUTPUT Z an impulse and we ou‘rpu‘r z,,
otherwise we output the
ELSE OUTPUT zmed median Zmed
Z,in min. gray value in S,
z ax. arav value in S The fundamental idea is to
max m _ gray XY increase the size of the
Z od median gray value in Sxy neighborhood S,, until we are
fficiently sure that z is
Z, gray level value at (x,y) suttict ! Zxy
Y impulsive or not. If itis
Snax  Max. allowed size of S, impulsive then output the
62002 R . Comrales & R Wo median otherwise output z,,
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Adaptive Median Filter

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities P, = P, = 0.25. (b) Result of
filtering with a 7 X 7 median filter. (c) Result of adaptive median filtering with S, = 7.

Image + “lots”
of salt &
pepper noise

7x7 median Adaptive median
filtering with | filtering (S,,,,=7)
loss of deftail

with much better
detail
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Bandreject Filters
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FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.

l Ideal l Butterworth l Gaussian

1 D(u,v) < [DO — %j { T
1| D? (u,v)-D}
1 _ _5 D(u,v)W
M=o (p-W)<nuns(ps L) Hun=— s )1
u,v
| [ ’
D’ (u, —Dz}

1 D(u,v)>(DO+%j (u,v) = D;

D, is center of stopband; W is full
‘ width of stopband
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g Bandreject Filtering

ab

o Notice strong
FIGURE 5.16

(a) Image frequency

corrupted by
sinusoidal noise.

components ina
(b) Spectrum of (a). . p
(c¢) Butterworth ri ng
bandreject filter
(white represents
1). (d) Result of
filtering.
(Original image
courtesy of
NASA.)

You cannot get
such impressive
improvement
using a spatial
domain approach
with small filter
masks.

Butterworth
bandreject filter

Bandreject filters are not typically used
because they can remove too much image detail.
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Bandpass Filtering

.

Wi Ratael €. Gonsales -
Richard E. Woods ——

FIGURE 5.17
Noise pattern of
the image in
Fig.5.16(a)
obtained by
bandpass filtering.

Convert Butterworth bandreject filter on previous page to
Butterworth bandpass filter: Hyigass(U.V)=1-Hygngreject(U.V).
Above image is the result of filtering noisy image with the
Butterworth bandpass filter — it is the periodic noise in

the spatial domain.
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Notch Filters
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FIGURE 5.18
Perspective plots
of (a) ideal,

(b) Butterworth
(of order 2), and
(c) Gaussian
notch (reject)
filters.
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e Fourier spectra of original image
showing periodic noise on v axis
+
FIGURE 5.19

(a) Satellite image of
Florida and the Gulf of
Mexico showing
horizontal scan lines.
(b) Spectrum. (¢) Notch
pass filter superimposed
on (b). (d) Spatial noise
pattern. (e) Result of
notch reject filtering.
(Original image courtesy
of NOAA.)

Notch pass filter to
capture noise

Noise captured by notch
pass filter

Image after
notch reject
filtering
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Optimum Notch Filter

When several interference components are
present or if the interference has broad
skirts a simply notch filter may remove too
much image information.

One solution is to use an optimum filter which
minimizes local variances of the restored

estimate.

Such "smoothness” constraints are
often found in optimum filter design

© 2002 R. C. Gonzalez & R. E. Woods
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Optimum Notch Filter

1. Manually place a notch pass filter Hyp at each
noise spike in the frequency domain. The Fourier
transform of the interference noise pattern is

N(u,v) =H,, (u,v)G(u,v)

2. Determine the noise pattern in the spatial domain
n(X,Y) = f_l {HNP (u’V)G(u’v)}
3. Conventional thinking would be to simply eliminate

noise by subtracting the periodic noise from the
noisy image

f(x,y)=g(xy)-n(xy)

© 2002 R. C. Gonzalez & R. E. Woods
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Optimum Notch Filter

4. To construct an optimal filter consider
f(xy)=g(xy)=w(x,y)n(xy)
where w(x,y) is a weighting function.

5. We use the weighting function w(x,y) to minimize
the variance 6?(x,y) of f(x,yWwith respect to w(x,y)

w(y) = SCIN(ey) =g (xy)n(x.)

n (x.y)-1°(x.y)

We only need to compute this for one point in each
nonoverlapping neighborhood.
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? Optimum Notch Filter

w(x,y)= g(x.y)n(x.y) - g(x.y)n(x.y)
x,y) =1 (x.y)

(

Mean noise output from the notch filter

Mean squared noise output from the notch filter

Squared mean noise output from the notch filter
g(x.y) Mean noisy image

g(x,y)n(x,y) Mean product of noisy image and noise

n(x,
7 (
1 (

9

N N—

Y
X,y
XY

N
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ek Image Restoration
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FIGURE 5.20 Centered

Mt oomrain Fourier

by Fomir transform

P odie showing

e ST ST

R periodic
interferers.
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Image Restoration

. FIGURE 5.21
Fourier spectrum (no ncen.l-e r'ed)
(without shifting) .
of the image Four'ler'
shown in Fig.
:(sggfl?'zésy of TI"GnSfO r‘m
NASA) showing the

same strong
periodic
interferers.
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FIGURE 5.22

(a) Fourier
spectrum of
N(u, v), and
(b) corresponding
{ noise interference
r'-; pattern n(x, y).

% (Courtesy of
NASA.)
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Fourier spectrum N(u,v) of the noise and
its corresponding noise pattern n(x,y)
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I se g Image Restoration

FIGURE 5.23
Processed image.
(Courtesy of
NASA.)

"Optimum"” image constructed by
subtracting weighted periodic noise.
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“4/" Characterization of Degradation

ab
FIGURE 5.24

Degradation
estimation by
impulse
characterization.
(a) An impulse of
light (shown
magnified).

(b) Imaged
(degraded)
impulse.

Original beam Blurring due to
of light such as | passing through
from a laser an optical system
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Modeling of Degradation

K=0.0025

ab
cd

5 FIGURE 5.25
— Illustration of the

-k (M2 + V2 )6 atmospheric
H u v ) — e turbulence model.
b (a) Negligible
turbulence.
(b) Severe
turbulence,

Atmospheric turbulence k ~ 00025
degradation model k0001,
t('gl)'bla?;lce,

k = 0.00025.
(Original image
courtesy of

NASA.)

l K=0.001

w54

| I' :0.0005

© 2002 R. C. Gonzalez & R. E. Woods




EECS490: Digital Image Processing

2
Processing
.......

Motion Blurring

Model motion in x- and y-directions over a period T for an integrating
‘ detector such as a camera.
x y jfl:x xo y Yo ):Idt

| Fourier tfransform g(x,y) and reverse order of integration

X, y)e—jZn'(ux+vy)dxdy

5';‘—.8 8"—08

{Jf[x x, (1),y = ¥, )]dt}ﬂ”(”x”y)dxa’y

(e o]

=[]
f[

G(u,v)zj j jf[x x, (1),y—, (2 )]e_ﬂ”(””w)dxdy}dt
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3ol Motion Blurring

1 Replace innter term by F(u,v), the Fourier transform of f(x,y)

T T
G(u,v)= J[F(u,v)e_jz”(”x() )+ (1 )dxdy]dt = F(u, )J'e—jZE(uxo(t)+vyo(t))dt

0 0

| Identify the motion blurring transfer function as

H(M,V) — J'e—jZn(uxO (t)+vy0 (t))dlL

N

| We can then model motion degradation as
G(u,v)=H (u,v)F(u,v)

| Where, for x,(1)=at/T, y,(1)=0

g 0 T g —]27rua—t T . .
H(u,v):J mjamu (i dt—J Tdt = ——sin(mua)e ™
’ ’ nua
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47 Modeling Image Degradation

Original image
(1st edition
cover)

FIGURE 5.26
(a) Original image.
(b) Result of
blurring using the
function in Eq.
(5 6-11) with

= b = 0.1 and
T =1

Motion blurring T : —jm(ua+v
‘ transfer function H (u,v)= 7(ua + vb) sm[ﬂ:(ua T vb)]e rant)

Motion blurring
with a=b=0.1
and T=1
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¢ Leks Inverse Filtering

 |f degraded image is given by degradation + noise
G(u,v) = H(u,v)F(u,v) + N(u,v)
 Estimate the image by dividing by the degradation
function H(u,v)

F(uv) = G(u,v) _ H (u,v)F(u,v)+ N(u,v) = F(uv)+
H(u,v) H(u,v) H(u,v)
We can never recover F(u,v) exactly:

1. N(u,v) is not known since n(x,y) is a r.v. — estimated

2. If H(u,v) ->0 then noise term will dominate. Helped by
restricting analysis to (u,v) near origin.

© 2002 R. C. Gonzalez & R. E. Woods
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Modeling of Degradation

480x480

No radial limiting
of H(u,v)

using the full
filter. (b) Result
with H cut off
outside a radius of
40; (c) outside a
radius of 70; and
(d) outside a
radius of 85.

H(u,v) cut of f at
R=70
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e o Wiener Filter

A\ 2
o e e 2 -
e =F ( — ) Assuming: 1. f and n are uncorrelated
Minimize { f f } 2. f and/or n is zero mean
3. gray levels in f are a linear function of
the gray levels in f

l The best estimate ﬁ(u,v) is then given by

A H *(u,v)S, (u, *
F(u,v) =|: (bl V) fz(u V) ]G(u,v) _ H (I/t,;) G(u,v)
S; (u,v)‘H(u,v)‘ +3S, (u,v) ‘H(u,v)‘z N Sn Eu,v;
i V)
H 2 H(u,v) = degradation function
ﬁ(u y)= 1 ‘ (“V)‘ G (u,v) H*(u,v) = complex conjugate of H
© | H(u,v) > S, () |7 IH(uV)|= H*(uv) H(u.v)
‘H(“’V)‘ + S (u,v) S, (u,v)=IN(u,v)|2=power spectrum of noise
. FAT (estimated)

S¢(u,v)=|F(u,v)|?=power spectrum of original
image (hot known)

© 2002 R. C. Gonzalez & R. E. Woods
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Modeling of Degradation
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FIGURE 5.28 Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (c) Wiener filter result.

l Inverse filtering Radially limit l Wiener filtering
at D,=75
N (u,v)

. S| ] |H (u,v)|
H () £l )_[H(”’V)|H(u,v)|2+l<

2

}G(u,v)

In practice we don't know the power

spectrum S¢(u,v)=|F(u,v)|? of the original
image so we replace the S /S, term with
a constant K which we vary

© 2002 R. C. Gonzalez & R. E. Woods




