
EECS490: Digital Image Processing

Lecture #15

• Adaptive Noise Reduction Filters

• Bandreject and Notch filters

• Optimum Notch Filter

• Modeling Image Degradation

• Inverse filtering

• Wiener Filters
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Mid-Term Project

© 2002 R. C. Gonzalez & R. E. Woods 

Mouse visual cortex neuron
bundle

Example of a segmented
image with errors
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Adaptive Mean Filter
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Noise variance over the

entire image (estimated)

Local mean (calculated)

Local variance (calculated)

f̂ x, y( ) = g x, y( )
2

L
2
g x, y( ) mL

2

2
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•If               the filter returns
the local mean thus averaging
out the noise

2
= L

2

•If                this is probably
the location of an edge and we
should return the edge value,
i.e., g(x,y)

2
<< L

2

•If                there is no noise
and we return g(x,y)

2
= 0

•If                we can get
negative gray scale values
which is a potential problem

2
> L

2

DIFFERENT CASES
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Adaptive Mean Filter
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Image
+zero-mean
Gaussian noise

Visible blurring
with 7x7
arithmetic mean
filter

7x7 geometric
mean filter

7x7 adaptive
noise reduction
filter

Performance can
decrease if the
estimated overall
noise variance      is
incorrect

2
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Adaptive Median Filter
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zmin min. gray value in Sxy

zmax max. gray value in Sxy

zmed median gray value in Sxy

zxy gray level value at (x,y)

Smax max. allowed size of Sxy

StageA: IF zmed>zmin and zmax>zmed

THEN goto StageB
ELSE increase the window size Sxy

IF WindowSize Smax

THEN goto LevelA
ELSE output zmed

StageB: IF zxy>zmin and zmax>zxy

THEN output zxy

ELSE output zmed

varies Sxy to reduce impulsive noise

If zmax>zmed>zmin then zmed is
NOT an impulse and we go to
StageB.  Otherwise StageA
continues to increase the
neighborhood Sxy until zmed is
not an impulse.

The fundamental idea is to
increase the size of the
neighborhood Sxy until we are
sufficiently sure that zxy is
impulsive or not.  If it is
impulsive then output the
median otherwise output zxy

If zmax>zxy>zmin then zxy is NOT
an impulse and we output zxy
otherwise we output the
median zmed.
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Adaptive Median Filter
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Image + “lots”
of salt &
pepper noise

7x7 median
filtering with
loss of detail

Adaptive median
filtering (Smax=7)
with much better
detail



EECS490: Digital Image Processing

Bandreject Filters
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H u,v( ) =

1 D u,v( ) < D0

W
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1 D u,v( ) > D0 +
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H u,v( ) =
1

1+
D u,v( )W

D2 u,v( ) D0
2

2n
H u,v( ) = 1 e

1

2

D2 u ,v( ) D0
2

D u ,v( )W

2

Ideal Butterworth Gaussian

D0 is center of stopband; W is full
width of stopband
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Bandreject Filtering
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Notice strong
frequency
components in a
ring

You cannot get
such impressive
improvement
using a spatial
domain approach
with small filter
masks.

Bandreject filters are not typically used
because they can remove too much image detail.

Butterworth
bandreject filter
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Bandpass Filtering
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Convert Butterworth bandreject filter on previous page to
Butterworth bandpass filter: Hbandpass(u,v)=1-Hbandreject(u,v).
Above image is the result of filtering noisy image with the
Butterworth bandpass filter — it is the periodic noise in
the spatial domain.
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Notch Filters
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Notch Filtering
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Fourier spectra of original image
showing periodic noise on v axis

Notch pass filter to
capture noise

Noise captured by notch
pass filter

Image after
notch reject
filtering
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Optimum Notch Filter
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When several interference components are

present or if the interference has broad

skirts a simply notch filter may remove too

much image information.

One solution is to use an optimum filter which

minimizes local variances of the restored

estimate.
Such “smoothness” constraints are
often found in optimum filter design
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Optimum Notch Filter
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1. Manually place a notch pass filter HNP at each

noise spike in the frequency domain.  The Fourier

transform of the interference noise pattern is

2. Determine the noise pattern in the spatial domain

3. Conventional thinking would be to simply eliminate

noise by subtracting the periodic noise from the

noisy image

N u,v( ) = HNP u,v( )G u,v( )

 
x, y( ) = F 1 HNP u,v( )G u,v( ){ }

f̂ x, y( ) = g x, y( ) x, y( )
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Optimum Notch Filter
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4. To construct an optimal filter consider

where w(x,y) is a weighting function.

5. We  use the weighting function w(x,y) to minimize
the variance 2(x,y) of           with respect to w(x,y)

We only need to compute this for one point in each

nonoverlapping neighborhood.

f̂ x, y( ) = g x, y( ) w x, y( ) x, y( )

w x, y( ) =
g x, y( ) x, y( ) g x, y( ) x, y( )

2 x, y( ) 2 x, y( )

f̂ x, y( )
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Optimum Notch Filter
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Mean noise output from the notch filter

Mean squared noise output from the notch filter

Squared mean noise output from the notch filter

Mean noisy image

Mean product of noisy image and noise

w x, y( ) =
g x, y( ) x, y( ) g x, y( ) x, y( )

2 x, y( ) 2 x, y( )

g x, y( ) x, y( )

x, y( )

g x, y( )

2 x, y( )

2 x, y( )
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Image Restoration
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Centered
Fourier
transform
showing
many strong
periodic
interferers.
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Image Restoration
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(noncentered)
Fourier
transform
showing the
same strong
periodic
interferers.
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Image Restoration
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Fourier spectrum N(u,v) of the noise and
its corresponding noise pattern (x,y)
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Image Restoration
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“Optimum” image constructed by
subtracting weighted periodic noise.
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Characterization of Degradation
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Original beam
of light such as
from a laser

Blurring due to
passing through
an optical system



EECS490: Digital Image Processing

Modeling of Degradation
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H u,v( ) = e
k u2 +v2( )

5

6

Atmospheric turbulence
degradation model

K=0.0025

K=0.001

K=0.00025
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Motion Blurring
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g x, y( ) = f x x0 t( ), y y0 t( ) dt
0

T

G u,v( ) = g x, y( )e j2 ux+vy( )dxdy

= f x x0 t( ), y y0 t( ) dt
0

T

e j2 ux+vy( )dxdy

G u,v( ) = f x x0 t( ), y y0 t( ) e j2 ux+vy( )dxdy dt
0

T

Model motion in x- and y-directions over a period T for an integrating
detector such as a camera.

Fourier transform g(x,y) and reverse order of integration
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Motion Blurring
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G u,v( ) = F u,v( )e j2 ux0 t( )+vy0 t( )( )dxdy dt
0

T

= F u,v( ) e j2 ux0 t( )+vy0 t( )( )dt
0

T

H u,v( ) = e j2 ux0 t( )+vy0 t( )( )dt
0

T

G u,v( ) = H u,v( )F u,v( )

H u,v( ) = e j2 ux0 t( )dt
0

T

= e
j2 u

at

T dt
0

T

=
T

ua
sin ua( )e j ua

Replace innter term by F(u,v), the Fourier transform of f(x,y)

Identify the motion blurring transfer function as

We can then model motion degradation as

Where, for x0(t)=at/T, y0(t)=0
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Modeling Image Degradation
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H u,v( ) =
T

ua + vb( )
sin ua + vb( ) e j ua+vb( )

Original image
(1st edition
cover)

Motion blurring
with a=b=0.1
and T=1

Motion blurring
transfer function
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Inverse Filtering
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• If degraded image is given by degradation + noise

• Estimate the image by dividing by the degradation

function H(u,v)

We can never recover F(u,v) exactly:

1. N(u,v) is not known since (x,y) is a r.v. — estimated

2. If H(u,v) ->0 then noise term will dominate. Helped by

restricting analysis to (u,v) near origin.

G u,v( ) = H u,v( )F u,v( ) + N u,v( )

 

F u,v( ) =
G u,v( )

H u,v( )
=
H u,v( )F u,v( ) + N u,v( )

H u,v( )
= F u,v( ) +

N u,v( )

H u,v( )
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Modeling of Degradation
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No radial limiting
of H(u,v)

 

F u,v( ) = F u,v( ) +
N u,v( )

H u,v( )
where H u,v( ) = e

k u
M

2

2

+ v
N

2

2
5

6

H(u,v) cut off at
R=40

H(u,v) cut off at
R=70

H(u,v) cut off at
R=85

480x480
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Wiener Filter
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e2 = E f f̂( )
2

{ }

F̂ u,v( ) =
H * u,v( )Sf u,v( )

Sf u,v( ) H u,v( )
2
+ S u,v( )

G u,v( ) =
H * u,v( )

H u,v( )
2
+
S u,v( )

Sf u,v( )

G u,v( )

F̂ u,v( ) =
1

H u,v( )

H u,v( )
2

H u,v( )
2
+
S u,v( )

Sf u,v( )

G u,v( )

Minimize Assuming: 1. f and n are uncorrelated
2. f and/or n is zero mean
3. gray levels in f are a linear function of
the gray levels in f

H(u,v) = degradation function
H*(u,v) = complex conjugate of H
|H(u,v)|= H*(u,v) H(u,v)
S (u,v)=|N(u,v)|2=power spectrum of noise

(estimated)
Sf(u,v)=|F(u,v)|2=power spectrum of original

image (not known)

The best estimate              is then given byF̂ u,v( )
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Modeling of Degradation
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Inverse filtering

N u,v( )

H u,v( )

Radially limit
at Do=75

Wiener filtering

F̂ u,v( ) =
1

H u,v( )

H u,v( )
2

H u,v( )
2
+ K

G u,v( )

In practice we don’t know the power
spectrum Sf(u,v)=|F(u,v)|2 of the original
image so we replace the S /Sf term with
a constant K which we vary


