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Matching in 20D

This chapter explores how to make and use correspondences between images and maps,
images and models, and images and other images. All work is done in two dimensions;
methods are extended in Chapter 14 to 3D-2D and 3D-3D matching. There are many
immediate applications of 2D matching which do not require the more general 3D analysis.

Consider the problem of taking inventory of land use in a township for the purpose
of planning development or collecting taxes. A plane is dispatched on a clear day to take
aerial images of all the land in the township. These pictures are then compared to the most
recent map of the area to create an updated map. Moreover, other databases are updated to
record the presence of buildings, roads, oil wells, etc., or perhaps the kind of crops growing
in the various fields. This work can all be done by hand, but is now commonly done using
a computer. A second example is from the medical area. The bloodflow in a patient’s heart
and lungs is to be examined. An X-ray image is taken under normal conditions, followed
by one taken after the injection into the bloodstream of a special dye. The second image
should reveal the bloodflow, except that there is a lot of noise due to other body structures
such as bone. Subtracting the first image from the second will reduce noise and artifact
and emphasize only the changes due to the dye. Before this can be done, however, the first
image must be geometrically transformed or warped to compensate for small motions of
the body due to body positioning, heart motion, or breathing, etc.

11.1 REGISTRATION OF 2D DATA

A simple general mathematical model applies to all the cases in this chapter and many others
not covered. Equation 11.1 and Figure 11.1 show an invertible mapping between points of a
model M and points of an image I. Actually, M and I can each be any 2D coordinate space
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(r,c)

Ao L Figure 11.1 A mapping between 2D
(x,5) spaces M and I. M may be a model and I an

M image, but in general any 2D spaces are

1 possible.

and can each represent a map, model, or image.

Mx, y] = I[g(x, y), h(x, y)]

- 1 . (11.1)
Ir,c] = Mg~ (r,c), k™ (r, 0)]

78 Definition. The mapping from one 2D coordinate space to another is called

a 2D transformation. -

The type of transformation defined in Equation 11.1 is sometimes called a spatial
transformation, geometric transformation, or warp (although to some the term warp is
reserved for only nonlinear transformations). The functions g and 4 create a correspondence
between model points [x, y] and image points [r, c] so that a point feature in the model
can be located in the image: We assume that the mapping is invertible so that we can go in
the other direction using their inverses. Having such mapping functions in the tax record
problem allows one to transform property boundaries from a map into an aerial image.
The region of the image representing a particular property can then be analyzed for new
buildings or crop type, etc. (Currently, the analysis is likely to be done by a human using
an interactive graphics workstation.) Having such functions in the medical problem allows
the radiologist to analyze the difference image I [r», c2] — I[g(r2, ¢2), h(r2, c2)]: Here the
mapping functions register like points in the two images.

79 Definition. Image registration is the process by which points of two images
from similar viewpoints of essentially the same scene are geometrically transformed
so that corresponding feature points of the two images have the same coordinates
after transformation.

Another common and important application, although not actually a matching op-
eration, is creation of a new image by collecting sample pixels from another image. For
example we might want to cut out a subimage I, from an image I; as shown in Figure 11.2.
Although the content of the new image I, is a subset of the original image I, it is possible
that I, can have the same number of pixels as I; or even more.

There are several issues of this theory which have practical importance. What is
the form of the functions g and 4, are they linear, continuous, etc? Are straight lines
in one space mapped into straight or curved lines in the other space? Are the distances
between point pairs the same in both spaces? More important, how do we use the proper-
ties of different functions to achieve the mappings needed? Is the 2D space of the model
or image continuous or discrete? If at least one of the spaces is a digital image then
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Figure 11.2  (left) Image of a scene containing signage used in Chapter 8 and (right) a
new image cut out of the original using a sampling transformation.

quantization effects will impact both accuracy and visual quality. (The quantization ef-
fects have deliberately been kept in the right image of Figure 11.2 to demonstrate this
point.)

Exercise 11.1

Describe how to enhance the right image of Figure 11.2 to lessen the quantization or aliasing
effect.

11.2 REPRESENTATION OF POINTS

In this chapter, we work specifically with points from 2D spaces. Extension of the definitions
and results to 3D is done later in Chapter 13; most, but not all, extensions are straightforward.
It is good for the student to master the basic concepts and notation before handling the
increased complexity sometimes present in 3D. A 2D point has two coordinates and is
conveniently represented as either a row vector P = [x, y] or column vector P = [x, y]’.
The column vector notation will be used in our equations here to be consistent with most
engineering books which apply transformations T on the left to points P on the right. For
convenience, in our text we will often use the row vector form and omit the formal transpose
notation ¢. Also, we will separate coordinates by commas, something that is not needed
when a column vector is displayed vertically.

_ r_ | ¥
=[x, y] —[y]

Sometimes we will have need to label a point according to the type of feature from which it
was determined. For example, a point could be the center of a hole, a vertex of a polygon,
or the computed location where two extended line segments intersect. Point type will be
used to advantage in the automatic matching algorithms discussed later in the chapter.

Reference Frames The coordinates of a point are always relative to some coor-
dinate frame. Often, there are several coordinate frames needed to analyze an environment,
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as discussed at the end of Chapter 2. When multiple coordinate frames are in use, we may
use a special superscript to denote which frame is in use for the coordinates being given for
the point. :

80 Definition. If P; is some feature point and C is some reference frame, then we

denote the coordinates of the point relative to the coordinate system as °P;. 7

Homogeneous Coordinates As will soon become clear, it is often conve-
nient notationally and for computer processing to use homogeneous coordinates for points,
especially when affine transformations are used.

81 Definition. The homogeneous coordinates of a 2D point P = [x, y]' are
[sx, sy, s], where s is a scale factor, commonly 1.0.

Finally, we need to note the conventions of coordinate systems and programs that
display pictures. The coordinate systems in the drawn figures of this chapter are typically
plotted as they are in mathematics books with the first coordinate (x or # or evenr) increasing
to the right from the origin and the second coordinate (y or v or even c) increasing upward
from the origin. However, our image display programs display an image of n rows and
m columns with the first row (row r = 0) at the top and the last row (row r = n — 1) at the
bottom. Thus r increases from the top downward and ¢ increases from left to right. This
presents no problem to our algebra, but may give our intuition trouble at times since the
displayed image needs to be mentally rotated counterclockwise 90 degrees to agree with
the conventional orientation in a math book.

11.3 AFFINE MAPPING FUNCTIONS

A large class of useful spatial transformations can be represented by multiplication of a
matrix and a homogeneous point. Our treatment here is brief but fairly complete: for more
details, consult one of the computer graphics texts or robotics texts listed in the references.
Properties of vector spaces can be reviewed in Chapter 5.

Scaling A common operation is scaling. Uniform scaling changes all coordinates
in the same way, or equivalently changes the size of all objects in the same way. Figure 11.3
shows a 2D point P = [1, 2] scaled by a factor of 2 to obtain the new point P/ = [2, 4].
The same scale factor is applied to the three vertices of the triangle yielding a triangle
twice as large. Scaling is a linear transformation, meaning that it can be easily represented
in terms of the scale factor applied to the two basis vectors for 2D Euclidean space. For
example, [1, 2] = 1[1, 0]+ 2[0, 1] and 2[1, 2] = 2(1[1, 0]+ 2[0, 1]) = 2[1, 0] +4[0, 1] =
[2, 4]. Equation 11.2 shows how scaling of a 2D point is conveniently represented using
multiplication by a simple matrix containing the scale factors on the diagonal. The second
case is the general case where the x and y unit vectors are scaled differently and is given
in Equation 11.3. Recall the five coordinate frames introduced in Chapter 2: The change of
coordinates of real image points expressed in mm units to pixel image points expressed in
row and column units is one such scaling. In the case of a square pixel camera, ¢, =c¢, = ¢,



330 Matching in 2D Chap. 11

Y
A
P’ =[2,4]
/> Scaling by a
! “~._ factor of 2
(P =[1,2]
> X Figure1l.3 Scaling both coordinates of a
[0,0] [4.0] 8, 0] 2D vector by scale factor 2.

but these constants will be in the ratio of 4/3 for cameras built using TV standards.

MEHEEHEH
V=0 alb]= 1) a13)

Exercise 11.2: Scaling for a non-square pixel camera.

Suppose a square CCD chip has side 0.5 inches and contains 480 rows of 640 pixels each
on this active area. Give the scaling matrix needed to convert pixel coordinates [r, c] to
coordinates [x, y] in inches. The center of pixel [0, 0] corresponds to [0, 0] in inches. Using
your conversion matrix, what are the integer coordinates of the center of the pixel in row
100, column 200?

Rotation A second common operation is rotation about a point in 2D space.
Figure 11.4 (left) shows a 2D point P = [x, y] rotated by angle 8 counterclockwise about
the origin to obtain the new point P/ = [x’, y’]. Equation 11.4 shows how rotation of a 2D
point about the origin is conveniently represented using multiplication by a simple matrix.
As for any linear transformation, we take the columns of the matrix to be the result of the
transformation applied to the basis vectors (Figure 11.4 (right)); transformation of any other
vector can be expressed as a linear combination of the basis vectors.

Ro([x, y]) = Re(x[1, 0] + ¥[0, 1]) ,
= xRy([1, 0]) + yRe([0, 11) = x[cos0, sinb] + y[—sind, cosb]
= [xcos0 — ysinf, xsind + ycos6] :

x| _ [cos® —sin|[x] _ [xcos® — ysind 11.4)
Y| |sinf cos® ||y|  |xsin® + ycosd at.
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v '
1
[—sin 6, cos 6]
9 [0,1]
Q
DP/ = [xl’ yr] “‘k-‘
s , 0 [cos 8, sin 6]
P ‘\ .0
o\ 6 P=[x,y]
5 > X l--" 6 —‘ 3‘ > X
[0,0] [1,0]
Rotation of point P by angle 6 Rotation of basis vectors by @

Figure 11.4 Rotation of any 2D point in terms of rotation of the basis vectors.

2D rotations can be made about some arbitrary point in the 2D plane, which need
not be the origin of the reference frame. Details are left for a guided exercise later in this
section.

Exercise 11.3

(a) Sketch the three points [0, 0], [2, 2], and [0, 2] using an XY coordinate system. (b) Scale
these points by 0.5 using Equation 11.2 and plot the results. (c) Using a new plot, plot
the result of rotating the three points by 90 degrees about the origin using Equation 11.4.
(d) Let the scaling matrix be S and the rotation matrix be R. Let SR be the matrix resulting
from multiplying matrix S on the left of matrix R. Is there any difference if we transform
the set of three points using SR and RS?

Orthogonal and Orthonormal Transforms*

82 Definition. A set of vectors is said to be orthogonal if all pairs of vectors in
the set are perpendicular; or equivalently, have scalar product of zero.

83 Definition. A set of vectors is said to be orthonormal if it is an orthogonal set
and if all the vectors have unit length.

A rotation preserves both the length of the basis vectors and their orthogonality. This
can be seen both intuitively and algebraically. As a direct result, the distance between any
two transformed points is the same as the distance between the points before transformation.
A rigid transformation has this same property: A rigid transformation is a composition of
rotation and translation. Rigid transformations are commonly used for rigid objects or for
change of coordinate system. A uniform scaling that is not 1.0 does not preserve length;
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however, it does preserve the angle between vectors. These issues are important when we
seek properties of objects that are invariant to how they are placed in the scene or how a
camera views them.

Translation Often, point coordinates need to be shifted by some constant amount,
which is equivalent to changing the origin of the coordinate system. For example, row-
column coordinates of a pixel image might need to be shifted to transform to latitude-
longitude coordinates of a map. Since translation does not map the origin [0, 0] to itself, we
cannot model it using a simple 2 x 2 matrix as has been done for scaling and rotation: In
other words, it is not a linear operation. We can extend the dimension of our matrix to 3 x 3
to handle translation as well as some other operations: Accordingly, another coordinate
is added to our point vector to obtain homogeneous coordinates. Typically, the appended'
coordinate is 1.0, but other values may sometimes be convenient.

P=[x,y]l~[wx,wy,w]=[x,y,1] forw=1

The matrix multiplication shown in Equation 11.5 can now be used to model the translation
D of point [x, y] so that [x’, y'] = D([x, y]) = [x + x0, y + yol-

x’' 1 0 x||=x x + xp
Y1=101 y||ly]=|y+x (11.5)
1 0 0 1 1 1

Exercise 11.4: Rotation about a point.

Give the 3 x 3 matrix that represents a /2 rotation of the plane about the point [5, 8].
Hint: First derive the matrix D_s _g that translates the point [5, 8] to the origin of a new
coordinate frame. The matrix which we want will be the combination Ds s R/, D_s _g.
Check that your matrix correctly transforms points [5, 8], [6, 8], and [5, 9].

Exercise 11.5: Reflection about a coordinate axis.

A reflection about the y-axis maps the basis vector [1, 0] onto [—1, 0] and the basis vector
[0, 1] onto [0, 1]. (a) Construct the matrix representing this reflection. (b) Verify that the
matrix is correct by transforming the three points [1, 1], [1, 0], and [2, 1].

Rotation, Scaling and Translation Figure 11.5 shows a common situation: An
image I[r, c] is taken by a square-pixel camera looking perpendicularly down on a planar
workspace W[x, y]. We need a formula that converts any pixel coordinates [r, ] in units of
rows and columns to, say, mm units [X, y]. This can be done by composing a rotation R, a
scaling S, and a translation D as given in Equation 11.6 and denoted “P; = Dy, ,, S; Ry ip Iz
There are four parameters that determine the mapping between row-column coordinates and
x-y coordinates on the workbench; angle of rotation 6, scale factor s that converts pixels
to mm, and the two displacements X, yo. These four parameters can be obtained from the
coordinates of two control points P, and P,. These points are determined by clearly marked
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Figure 11.5 Image from a square-pixel camera looking vertically down on a workbench:
Feature points in image coordinates need to be rotated, scaled, and translated to obtain
workbench coordinates.

and easily measured features in the workspace that are also readily observed in the image—
'+ marks, for example. In the land use application, road intersections, building corners,
sharp river bends, etc. are often used as control points. It is important to emphasize that the
same point feature, say P;, can be represented by two (or more) distinct vectors, one with
row-column coordinates relative to I and one with mm x-y coordinates relative to W. We
denote these representations as ‘P; and “P; respectively. For example, in Figure 11.5 we
have 'P; = [100, 60] and “P; = [200, 100].

84 Definition. Control points are clearly distinguishable and easily measured
points used to establish known correspondences between different coordinate spaces.

Given coordinates for point P; in both coordinate systems, matrix Equation 11.6
yields two separate equations in the four unknowns.

Xy 1 0 x||s O O||cos6 —sin® O]|x; ,
Yol =10 1 y||0 s Of|sind cosé¢ Of|y (11.6)
1] 0 0 1]/0 0 1 0 0 1 1
Xy = X; §CosO0 — y; s sin0 + xg a7
Y = X; S8in6 4+ y; s cos 0 + yo (11.8)

Using point P, yields two more equations and we should be able to solve the system to
determine the four parameters of the conversion formula. 6 is easily determined independent
of the other parameters as follows: First, the direction of the vector P;P; in I is determined
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as 6; = arctan(('y; — ‘y1)/(xa — x1)). Then, the direction of the vector in W is determined
as 0, = arctan((My; — “y1) /(Yx2 — “x1)). The rotation angle is just the difference of these
two angles: 8 = 6,, — 6;. Once 6 is determined, all the sin and cos elements are known:
There are 3 equations and 3 unknowns which can easily be solved for s and xg, yo. The
reader should complete this solution via Exercise 11.6.

.
Exercise 11.6: Converting image coordinates to workbench coordinates.

Assume an environment as in Figure 11.5. (Perhaps the vision system must inform a pick-
and-place robot of the locations of objects.) Give, in matrix form, the transformation that
relates image coordinates [x;, y;, 1] to workbench coordinates [x,,, y,, 1]. Compute the’
four parameters using these control points: ‘P; = [100, 60], *P; = [200, 100]; ‘P, =
[380, 1201, *P, = [300, 200].

An Example Affine Warp- 1t is easy to extract a parallelogram of data from a
digital image by selecting three points. The first point determines the origin of the output
image to be created, while the second and third points determine the extreme point of
the parallelogram sides. The output image will be a rectangular pixel array of any size
constructed from samples from the input image. Figure 11.6 shows results of using a program
based on this idea. To create the center image of the figure, the three selected points defined
nonorthogonal axes, thus creating shear in the output; this shear was removed by extracting
a third image from the center image and aligning the new sampling axes with the skewed
axes. Figure 11.3 shows another example: A distorted version of Andrew Jackson’s head has
been extracted from an image of a U.S. $20 bill (see Figure 11.7). In both of these examples,
although only a portion of the input image was extracted, the output image contains the
same number of pixels.

7777777777748

Figure 11.6  (left) 128 x 128 digital image of grid; (center) 128 x 128 image extracted
by an affine warp defined by three points in the left image; and (right) 128 x 128 rectified
version of part of the center image.

The program that created Figure 11.7 used the three user selected points to transform
the input parallelogram defined at the left of the figure. The output image was n x m or
512 x 512 pixels with coordinates [r, c]; for each pixel [r, c] of the output, the input image
value was sampled at pixel [x, y] computed using the transformation in Equation 11.9. The
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[x3, y>1 [x1, y11

Figure 11.7 Distorted face of Andrew Jackson extracted from a U.S. $20 bill by
defining an affine mapping with shear.

first form of the equation is the intuitive construction in terms of basis vectors, while the
second is its equivalent in standard form.

RN (HESIEE (HEN)

x (x1 —x0)/n (x2—x0)/m x0|[r
yl=101—yd/n 2=y)/m yo||c (11.9)
1 0 0 1]]1

Conceptually, the point [x, y] is defined in terms of the new unit vectors along the new
axes defined by the user selected points. The computed coordinates [x, y] must be rounded
to get integer pixel coordinates to access digital image 'I. If either x or y are out of bounds,
then the output point is set to black, in this case 2I[r, c] = 0; otherwise %I[r, c] = I[x, y].
One can see a black triangle at the upper right of Jackson’s head because the sampling
parallelogram protrudes above the input image of the $20 bill image.

Object Recognition and Location Example Consider the example of com-
puting the transformation matching the model of an object shown at the left in Figure 11.8
to the object in the image shown at the right of the figure. Assume that automatic feature
extraction produced only three of the holes in the object. The spatial transformation will map
points [x, y] of the model to points [u, v] of the image. Assume that we have a controlled
imaging environment and the known scale factor has already been applied to the image co-
ordinates to produce the u-v coordinates shown. Only two image points are needed in order
to derive the rotation and translation that will align all model points with corresponding
image points. Point locations in the model and image and interpoint distances are shown in
Tables 11.1 and 11.2. We will use the hypothesized correspondences (A, H;) and (B, H3) to
deduce the transformation. Note that these correspondences are consistent with the known
interpoint distances. We will discuss algorithms for making such hypotheses in Section 11.5.

The direction of the vector from A to B in the model is 8; = arctan(9.0/8.0) =
0.844 and the heading of the corresponding vector from H, to Hj in the image is 6, =
arctan(12.0/0.0) = /2 =1.571. The rotation is thus 6 =0.727 radians. Using Equation
11.6 and substituting the known matching coordinates for points A in the model and H,
in the image, we obtain the following system, where ug, vy are the unknown translation
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Model Object Detected Features

H,

> X > U

Figure 11.8 (left) Model object and (right) three holes detected in an image.

TABLE 11.1 MODEL POINT LOCATIONS AND INTERPOINT DISTANCES
(+ COORDINATES ARE FOR THE CENTER OF HOLES)

Point Coordinates to A toB toC toD toE
A ®8,17) 0 12 15 37 21
B (16,26) 12 0 12 30 26
C (23,16) 15 12 0 22 15
D (45,20) 37 30 22 0 30
E (22,1) 21 26 15 30 0

TABLE 11.2 IMAGE POINT LOCATIONS AND INTERPOINT
DISTANCES (1 COORDINATES ARE FOR THE CENTER

OF HOLES)

Point Coordinates to H; to Hz to Hs
H; (31,9) 0 21 26
H; (10,12) 21 0 12
Hj (10,24) 26 12 0

components in the image plane. Note that the values of sin 8 and cos 6 are actually known
since @ has been computed.

u 10. cosf —sinf ug 8
v| =12 = |sin® cos® vy || 17 (11.10)
1 1 0 0 1 1

The two resulting linear equations readily produce ug = 15.3 and vp = —5.95. As a
check, we can use the matching points B and Hj, obtaining a similar result. Each distinct
pair of points will result in a slightly different transformation. Methods of using many
more points to obtain a transformation that is more accurate across the entire 2D space
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are discussed later in this chapter. Having a complete spatial transformation, we can now
compute the location of any model points in the image space, including the grip points
R =129, 19] and Q = [32, 12]. As shown next, model point R transforms to image point
R = [24.4,27.4]): Using Q = [32, 12] as the input to the transformation outputs the image
location ‘Q = [31.2, 24.2] for the other grip point.

Ug 24.4 cos6 —sind 153|129 .
vg| =274 = | sin@ cos6 =595]||19 (11.11)
1 1 0 0 1 1

Given this knowledge, a robot could grasp the real object being imaged, provided
that it had knowledge of the transformation from image coordinates to coordinates of the
workbench supporting the object. Of course, a robot gripper would be opened a little wider
than the transformed length obtained from ‘R’Q indicates, to allow for small effects such
as distortions in imaging, inaccuracies. of feature detection, and computational errors. The
required gripping action takes place on a real continuous object and real number coordinates
make sense despite the fact that the image holds only discrete spatial samples. The image
data itself is only defined at integer grid points. If our action were to verify the presence of
holes {C and ! D by checking for a bright image pixel, then the transformed model points
should be rounded to access an image pixel. Or, perhaps an entire digital neighborhood
containing the real transformed coordinates should be examined. With this example, we
have seen the potential for recognizing 2D objects by aligning a model of the object with
important feature points in its image.

85 Definition. Recognizing an object by matching transformed model features to
image features via a rotation, scaling, and translation (RST) is called recognition-
by-alignment.

Exercise 11.7: Are transformations commutative?

Suppose we have matrices for three primitive transformations: R, for a rotation about
the origin, Sy, s, for a scaling, and Dy, , for a translation. (a) Do scaling and translation
commute; that is, does Sy, s, Dx,,y = Dy, Ss,,5,? (b) Do rotation and scaling commute;
that is, does Ry Sy, 5, = S;, 5, Rg? (¢) Same question for rotation and translation. (d) Same
question for scaling and translation. Do both the algebra and intuitive thinking to derive
your answers and explanations.

Exercise 11.8

Construct the matrix for a reflection about the line y = 3 by composing a translation with
Yo = —3 followed by a reflection about the x-axis. Verify that the matrix is correct by
transforming the three points [1, 1], [1, 0], and [2, 1] and plotting the input and output
points.
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Exercise 11.9

Verify that the product of the matrices Dy, ,, and D_,, _,, is the 3 x 3 identity matrix.
Explain why this should be the case.

General Affine Transformations* We have already covered affine transfor-
mation components of rotation, scaling, and translation. A fourth component is shear.
Figure 11.9 shows the effect of shear. Using u-v coordinates, point vectors move along
the v-axis in proportion to their distance from the v-axis. The point [u, v] is transformed to
[u, e u + v] with v-axis shear and to [u + e, v, v] with u-axis shear. The matrix equations
are given in Equation 11.12 and Equation 11.13. Recall that the column vectors of the shear.
matrix are just the images of the basis vectors under the transformation.

[ x 1 0 O)|u
yl=|le 1 Offv (11.12)
| 1] [0 0 1][1]
[x] (1 e, 0][u]
yl=1[0 1 0]fv (11.13)
|1 (0 0 1]|1]

Reflections are a fifth type of component. A reflection about the u-axis maps the
basis vectors [1, 0], [0, 1] onto [1, 0], [0, —1] respectively, while a reflection about the
v-axis maps [1, 0], [0, 1] onto [—1, 0], [0, 1]. The 2 x 2 or 3 x 3 matrix representation
is straightforward. Any affine transformation can be constructed as a composition of any
of the component types—rotations, scaling, translation, shearing, or reflection. Inverses
of these components exist and are of the same type. Thus, it is clear that the matrix of a
general affine transformation composed of any components has six parameters as shown in
Equation 11.14. These six parameters can be determined using 3 sets of noncolinear points
known to be in correspondence by solving 3 matrix equations of this type. We have already

v Y
A \

(1, el
[01]F - \ [0,1] —m le,.1]

.
.

. Lo Loy

Figure 11.9  (Left) v-axis shear and (right) u-axis shear.



Sec. 11.4 A Best 2D Affine Transformation 339
seen an example using shear in the case of the slanted grid in Figure 11.6. -
X a ap aiz||u
Y| =|aa ax ax3||vV (11.14)
1 0 0 1 1

11.4 A BEST 2D AFFINE TRANSFORMATION*

A general affine transformation from 2D to 2D as in Equation 11.15 requires six parameters
and can be computed from only 3 matching pairs of points ([x;, y;1, [}, v;1)j=1,3)-

u ail an aiz||x
V| = |AQa dxp axm y (1 115)
1 0 O 1 1

Error in any of the coordinates of any of the points will surely cause error in the
transformation parameters. A much better approach is to use many more pairs of matching
control points to determine a least-squares estimate of the six parameters. We can define an
error criteria function similar to that used for fitting a straight line in Chapter 10.

n

2

e(an, anz, a1, az1, an, a3) = E ((an1x; + anny; +aiz — uj)
j=1

+ (a21x; + anyj + azs — v;)?) (11.16)

Taking the six partial derivatives d¢/a;; of the error function with respect to each of the six
variables a;; and setting this expression to zero gives us the six equations represented in
matrix form in Equation 11.17.

2x12 Zijj Ex]' 0 0 0 ] rau Eujxj-
Exjyj Ey]z Eyj 0 0 0 apn Eujyj
Exj Eyj 21 0 0 0 a3 Euj (11 17)'
0 0 0 =x} Zxjy; Zx;||an Tvjx; '
0 0 0 Zx;y; Iy} IZy;||ex Tvjy;
0 0 0 =x; Iy, X1 ]|axs] Yv; J
Exercise 11.10

Solve Equation 11.17 using the following three pairs of matching control points: ({0, 0],
[0, OD), ([1, 0L[0, 2]), ([0, 11, [—2, 0]). Do your computations give the same answer as
reasoning about the transformation using basis vectors?
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Exercise 11.11

Solve Equation 11.17 using the following three pairs of matching control points: ([0, 0],
[1,2D,([1,01[3,2]), ([0, 11, [1,4]). Do your computations give the same answer as reasoning
about the transformation using basis vectors?

It is common to use many control points to put an image and map or two images into
correspondence. Figure 11.10 shows two images of approximately the same scene. Eleven
pairs of matching control points are given at the bottom of the figure. Control points are

Matching control point pairs are:

288 210 31 160 232 288 95 205 195 372 161 229 269 314 112 159
203 424 199 209 230 336 130 196 284 401 180 124 327 428 198 69
284 299 100 146 337 231 45 101 369 223 38 64

The Transformation Matrix is:

[ -0.0414 , 0.773 , -119
-1.120 , -0.213 , 526 ]

Residuals (in pixels) for 22 equations are as follows:

0.18 -0.68 -1.22 0.47 -0.77 0.06 0.34 -0.51 1.09 0.04 0.96
1.51 -1.04 -0.81 0.05 0.27 0.13 -1.12  0.39 -1.04 -0.12 1.81

======Fitting Program Complete======

Figure 11.10 Images of same scene and best affine mapping from the left image into the
right image using 11 control points. [x, y] coordinates for the left image with x increasing
downward and y increasing to the right; [u, v] coordinates for the right image with u
increasing downward and v toward the right. The 11 clusters of coordinates directly below
the images are the matching control points x, y, u, v. Can you match features across the
two images? (Images courtesy of Oliver Faugeras.)
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corners of objects that are uniquely identifiable in both images (or map). In this case, the
control points were selected using a display program and mouse. The list of residuals shows
that, using the derived transformation matrix, no u or v coordinate in the right image will be
off by two pixels from the transformed value. Most residuals are less than one pixel. Better
results can be obtained by using automatic feature detection which locates feature points
with subpixel accuracy: Control point coordinates are often off by one pixel when chosen
using a computer mouse and the human eye. Using the derived affine transformation, the
right image can be searched for objects known to be in the left image. Thus we have reached
the point of understanding how the tax-collector’s map can be put into correspondence with
an aerial image for the purpose of updating its inventory of objects.

Exercise 11.12

Take three pairs of matching control points from Figure 11.10 (for example, ([288, 210, 1],
[31, 160, 1])) and verify that the affine transformation matrix maps the first into the second.

11.5 2D OBJECT RECOGNITION VIA AFFINE MAPPING

In this section we study a few methods of recognizing 2D objects through mappings of
model points onto image points. We have already introduced one method of recognition-
by-alignment in the section on affine mappings. The general methods work with general
point features; however, each application domain will present distinguishing features which
allow labels to be attached to feature points. Thus we might have corners or centers of holes
in a part sorting application, or intersections and high curvature land and water boundary
points in a land use application.

Figure 11.11 illustrates the overall model-matching paradigm. Figure 11.11(a) is
a boundary model of an airplane part. Feature points that may be used in matching are
indicated with small black circles. Figure 11.11() is an image of the real airplane part
in approximately the same orientation as the model. Figure 11.11(c) is a second image of
the real part rotated about 45 degrees. Figure 11.11(d) is a third image of the real part
in which the camera angle causes a large amount of skewing in the resultant image. The
methods described in this section are meant to determine if a given image, such as those of
Figures 11.11(b), 11.11(c), and 11.11(d) contains an instance of an object model such as
that of Figure 11.11(a) and to determine the pose (position and orientation) of the object
with respect to the camera.

Local-Feature-Focus Method The local-feature-focus method uses local fea-
tures of an object and their 2D spatial relationships to recognize the object. In advance, a
set of object models is constructed, one for each object to be recognized. Each object model
contains a set of focus features, which are major features of the object that should be easily
detected if they are not occluded by some other object. For each focus feature, a set of its
nearby features is included in the model. The nearby features can be used to verify that the
correct focus feature has been found and to help determine the pose of the object.

In the matching phase, feature extraction is performed on an image of one or more
objects. The matching algorithm looks first for focus features. When it finds a focus feature
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elcIck

(a) Part model - (b) Horizontal image

(c) Rotated image (d) Rotated and skewed image

Figure 11.11 A 2D model and 3 matching images of an airplane part.

belonging to a given model, it looks for a cluster of image features near the focus feature
that match as many as possible of the required nearby features for that focus feature in that
model. Once such a cluster has been found and the correspondences between this small set of
image features and object model features have been determined, the algorithm hypothesizes
that this object is in the image and uses a verification technique to decide if the hypothesis
is correct.

The verification procedure must determine whether there is enough evidence in the
image that the hypothesized object is in the scene. For polyhedral objects, the boundary
of the object is often used as suitable evidence. The set of feature correspondences is used
to determine a possible affine transformation from the model points to the image points.
This transformation is then used to transform each line segment of the boundary into the
image space. The transformed line segments should approximately line up with image line
segments wherever the object is unoccluded. Due to noise in the image and errors in feature
extraction and matching, it is unlikely that the transformed line segments will exactly align
with image line segments, but a rectangular area about each transformed line segment can be
searched for evidence of possibly matching image segments. If sufficient evidence is found,
that model segment is marked as verified. If enough model segments are verified, the object
is declared to be in the image at the location specified by the computed transformation.

The local-feature-focus algorithm for matching a given model F to an image is given
next. The model has a set {Fy, F,, ..., Fy} of focus features. For each focus feature F,,,
there is a set S(F,;) of nearby features that can help to verify this focus feature. The image
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Find the transformation from model features to image features
using the local-feature-focus approach.

G;i, i = 1, Lis the set of the detected image features.
Fn, m = 1, M is the set of focus features of the model.
S(f) is the set of nearby features for any feature f.

procedure local_feature_focus(G, F);
{
for each focus feature Fy,
for each image feature G; of the same type as Fiy
{
Find the maximal subgraph Sy, of S(Fy,) that
matches a subgraph S; of S(G;);
Compute the transformation T that maps the points of
each feature of Sy, to the corresponding feature of S;;
Apply T to the boundary segments of the model;
if enough of the transformed boundary segments find
evidence in the image then return(T);

}s

Algorithm 11.1  Local-Feature-Focus Method.

has a set {G1, G, ..., Gy} of detected image features. For each image feature G;, there is
a set of nearby image features S(G;).

Figure 11.12 illustrates the local-feature-focus method with two models, E and F, and
an image. The detected features are circular holes and sharp comers. Local feature F1 of
model F has been hypothesized to correspond to feature G1 in the image. Nearby features

= Model F
F2_F3
G 4@3 Image @ F7 O
G8
@l ©| [g—

Model E

Figure 11.12 The Local-Feature-Focus

Method. The image shows an instance of
___:' Model F on top of another object.

® ®
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F2, F3, and F4 of the model have been found to correspond well to nearby features G2, G3,
and G4, respectively, of the image. The verification step will show that model F is indeed
in the image. Considering the other model E, feature E1 and the set of nearby features E2,
E3, and E4 have been hypothesized to correspond to features G5, G6, G7, and G8 in the
image. However, when verification is performed, the boundary of model E will not line up
well with the image segments, and this hypothesis will be discarded.

Pose Clustering We have seen that an alignment between model and image fea-
tures using an RST transformation can be obtained from two matching control points. The
solution can be obtained using Equation 11.6 once two control points have been matched
between image and model. Obtaining the matching control points automatically may not be"
easy due to ambiguous matching possibilities. The pose-clustering approach computes an
RST alignment for all possible control point pairs and then checks for a cluster of similar
parameter sets. If indeed there are many matching feature points between model and image,
then a cluster should exist in the parameter space. A pose-clustering algorithm is sketched
below.

86 Definition. Let T be a spatjal transformation aligning model M to an object
O in image I. The pose of object O is its location and orientation as defined by the
parameters « of T'.

Find the transformation from model features to image features
using pose clustering.

P;,i =1, D is the set of detected image features.
L;, j = 1, M is the set of stored model features.

procedure pose_clustering(P, L);
{
for each pair of image feature points (P;, P;)
for each pair of model feature points (Ly,, Ly) of same type
{
compute parameters o of RST mapping
pair (L, Ly) onto (P;, P;);
contribute « to the cluster space;
}s
examine space of all candidates « for clusters;
verify every large cluster by mapping all
model feature points and checking the image;
return(verified {oy});

}

Algorithm 11.2  Pose-Clustering Algorithm.
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Figure 11.13 Common line-segment junctions used in matching.

Y c
A \
X
L ’ L
200 X — X 400+ T — »Y L
Y T /
\ Y<~—T
100 + T ‘ L 200 -
X —y L X
Y
1 L > X 1 1 > 7
M 100 200 I 200 400

Figure 11.14 Example pose detection problem with 5 model feature point pairs and
4 image feature point pairs.

Using all possible pairs of feature points would provide too much redundancy. An
application in matching aerial images to maps can use intersection points detected on road
networks or at the corners of regions such as fields. The degree of the intersection gives it
a type to be used in matching; for example, common intersections have type T,Y,'T,
‘Arrow , and 'X' as shown in Figure 11.13. Assume that we use only the pairs of combined
type LX or TY. Figure 11.14 shows an example with 5 model pairs and 4 image pairs.
Although there are 4 x 5 = 20 possible pairings, only 10 of them have matching types for
both points. The transformations computed from each of those are given in Table 11.3. The
10 transformations computed have scattered and inconsistent parameter sets, except for 3
of them indicated by asterisks (*) in the last column of the table. These 3 parameter sets
form a cluster whose average parameters are § = 0.68,s = 2.01, ug = 233, vp = —41.
While one would like less variance than this for correct matches, this variance is typical
due to slight errors in point feature location and small nonlinear distortions in the imaging
process. If the parameters of the RST mapping are inaccurate, they can be used to verify
matching points which can then be used as control points to find a nonlinear mapping or
affine mapping (with more parameters) that is more accurate in matching control points.
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TABLE 11.3 CLUSTER SPACE FORMED FROM 10 POSE COMPUTATIONS FROM FIGURE 11.14

Matching in 2D

Chap. 11

Model Pair Image Pair 6 K ug vo
L(170,220),X(100,200) L(545,400),X(200,120) 0.403 6.10 118 —1240
1(170,220),X(100,200) L(420,370),X(360,500) 5.14 2.05 -97 514
T(100,100),Y( 40,150) T(260,240),Y(100,245) 0.663 2.05 225 —48
T(100,100),Y( 40,150) T(140,380),Y(300,380) 3.87 2.05 166 669
1(200,100),X(220,170) L(545,400),X(200,120) 2.53 6.10 1895 200
L.(200,100),X(220,170) L(420,370),X(360,500) 0.711 1.97 250 -36
L(260, 70),X( 40, 70) L(545,400),X(200,120) 0.682 2.02 226 —41
L(260, 70),X( 40, 70) L(420,370),X(360,500) - 5.14 0.651 308 505
T(150,125),Y(150, 50) T(260,240),Y(100,245) 4.68 2.13 3 568
T(150,125),Y(150, 50) T(140,380),Y(300,380) 1.57 2.13 407 60

Pose-clustering can work using low-level features; however, both accuracy and effi-
ciency are improved when features can be filtered by type. Clustering can be performed by a
simple O (n?) algorithm: For each parameter set o, count the number of other parameter sets
«; that are close to it using some permissible distance. This requires # — 1 distance computa-
tions for each of the n parameter sets in cluster space. A faster, but less flexible, alternative is
to use binning. Binning has been the traditional approach reported in the literature and was
discussed in Chapter 10 with respect to the Hough transform. Each parameter set produced
is contributed to a bin in parameter space, after which all bins are examined for significant
counts. A cluster can be lost when a set of similar o; spreads over neighboring bins.

The clustering approach has been used to detect the presence of a particular model
of airplane from an aerial image, as shown in Figure 11.15. Edge and curvature features
are extracted from the image using the methods of Chapters 5 and 10. Various overlapping
windows of these features are matched against the model shown in part (b) of the figure.
Part (c) of the figure shows the edges detected in one of these windows where many of the
features aligned with the model features using the same transformation parameters.

Geometric Hashing Both the local-feature-focus method and the pose-clustering
algorithm were designed to match a single model to an image. If several different object
models were possible, then these methods would try each model, one at a time. This makes
them less suited for problems in which a large number of different objects can appear.
Geometric hashing was designed to work with a large database of models. It trades a large
amount of offline preprocessing and a large amount of space for a potentially fast online
object recognition and pose determination.

Suppose we are given

1. alarge database of models, and

2. an unknown object whose features are extracted from an image and which is known
to be an affine transformation of one of the models,

and we wish to determine which model it is and what pose transformation was applied.
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(a) Original airfield image
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Figure 11.15 Pose-clustering applied to detection of a particular airplane. (a) Aerial
image of an airfield; (b) object model in terms of real edges and abstract edges subtending
one corner and one curve tip point; and (c) image window containing detections that
match many model parts via the same transformation. Reprinted by permission of IEEE.

Consider a model M to be an ordered set of feature points. Any subset of three non-
collinear points E = {eg, €o1, €10} of M can be used to form an affine basis set, which
defines a coordinate system on M, as shown in Figure 11.16(a). Once the coordinate system
is chosen, any point x € M can be represented in affine coordinates (£, n) where

x = &(e10 — eoo) + n(eo1 — eoo) + €no
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€10

J Tey
€01

Tem

€00

Tego Figure 11.16 The affine transformation of

(a) Original object (b) Transformed object  a point with respect to an affine basis set.

Furthermore, if we apply an affine transform T to point x, we get
Tx = &(Tei — Teoo) + n(Teor — Tew) + Ten

Thus T'x has the same affine coordinates (£, n) with respect to (Tego, Teo1, T e10) as x has
with respect to (ego, €01, €10). This is illustrated in Figure 11.16(b).

Offline Preprocessing  The offline preprocessing step creates a hash table contain-
ing all of the models in the database. The hash table is set up so that the pair of affine
coordinates (£, ) indexes a bin of the hash table that stores a list of model-basis pairs
(M, E) where some point x of model M has affine coordinates (£, ) with respect to basis
E. The offline preprocessing algorithm is given in Algorithm 11.3.

Online Recognition The hash table created in the preprocessing step is used in the
online recognition step. The recognition step also uses an accumulator arrdy A indexed by
model-basis pairs. The bin for each (M, E) is initialized to zero and used to vote for the
hypothesis that there is a transformation T that places (M, E) in the image. Computation
of the actual transformations is done only for those model-basis pairs that achieve a high
number of votes and is part of the verification step that follows the voting. The online
recognition and pose estimation algorithm is given below.

Suppose that there are s models of approximately » points each. Then the preprocess-
ing step has complexity O(sn*) which comes from processing s models, O (n3) triples per
model, and O (n) other points per model. In the matching, the amount of work done depends
somewhat on how well the feature points can be found in the image, how many of them are
occluded, and how many false or extra feature points are detected. In the best case, the first
triple selected consists of three real feature points all from the same model, this model gets a
large number of votes, the verification procedure succeeds, and the task is done. In this best
case, assuming the average list in the hash table is of a small constant size and that hashing
time is approximately constant, the complexity of the matching step is approximately O (n).
In the worst case, for instance when the model is not in the database at all, every triple is
tried, and the complexity is O (n*). In practice, although it would be rare to try all bases, it
is also rare for only one basis to succeed. A number of different things can go wrong:

1. feature point coordinates have some error,
2. missing and extra feature points,



Sec. 11.5 2D Object Recognition via Affine Mapping 349

Set up the hash table for matching to a database of models
using geometric hashing.

D is the database of models.
H is an initially empty hash table.

procedure GH_Preprocessing(D, H);

{

for each model M

{

Extract the feature point set Fy; of M;
for each noncollinear triple E of points from Fy
for each other point x of Fyy

{ .
Calculate (£, n) for x with respect to E;
Store (M, E) in hash table H at index (£, n);
}s
}s
}

Algorithm 11.3 Geometric Hashing Offline Preprocessing.

3. occlusion, multiple objects,
4. unstable bases, and
5. weird affine transforms on a subset of the points.

In particular, the algorithm can hallucinate a transformation based on a subset of the
points that passes the point verification tests, but gives the wrong answer. Figure 11.17
illustrates this point. Pose-clustering and focus feature methods are also susceptible to this

same phenomenon.

- .
~ .’

/ Figure 11.17 The geometric hashing

.. algorithm can hallucinate that a given model
- is present in an image. In this example,

60 percent of the feature points (left) led to
the verified hypothesis of an object (right)
(b) Hallucinated object  that was not actually present in the image.

O --@------@--u---g
.
-

(a) Image points
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Use the hash table to find the correct model and transformation
that maps image features to model features.

H is the hash table created by the preprocessing step.
A is an accumulator array indexed by (M, E) pairs.
I is the image being analyzed.

procedure GH_Recognition(H, A, I);

{

Initialize accumulator array A to all zeroes;
Extract feature points from image I;

for each basis triple F

{

for each other point v
{
Calculate (£, n) for v with respect to F;
Retrieve the list L of model-basis pairs from the
hash table H at index (&, n);
for each pair (M, E) of L
A[M, E] =AM, E] + 1;
Find the peaks in accumulator array A;
for each peak (M, E)

Calculate T such that F = TE;

if enough of the transformed model points of M find

evidence on the image then return(T);

}s
}s

}

Algorithm 11.4 Geometric Hashing Online Recognition.

11.6 2D OBJECT RECOGNITION VIA RELATIONAL MATCHING

We have previously described three useful methods for matching observed image points
to model points: These were local-feature-focus, pose clustering, and geometric hashing.
In this section, we examine three simple general paradigms for object recognition within
the context given in this chapter. All three paradigms view recognition as a mapping from
model structures to image structures: A consistent labeling of image features is sought in
terms of model features, recognition is equivalent to mapping a sufficient number of features
from a single model to the observed image features. The three paradigms differ in how the
mapping is developed. ‘
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Four concepts important to the matching paradigms are parts, labels, assignments,
and relations.

* A part is an object or structure in the scene such as region segment, edge segment,
hole, corner or blob.

* A label is a symbol assigned to-a part to identify and, or recognize it at some level.

* An assignment is a mapping from parts to labels. If P; is a region segment and L, is
the lake symbol and L, the field symbol, an assignment may include the pair (P;, Lj)
or perhaps (P1, {L1, L3}) to indicate remaining ambiguity. A pairing (P;, NIL) in-
dicates that P; has no interpretation in the current label set. An interpr'etation of the
scene is just the set of all pairs making up an assignment.

* A relation is the formal mathematical notion. Relations will be discovered and
computed among scene objects and will be stored for model objects. For example,
R4(P,, P,) might indicate that region P, is adjacent to region P;,.

Given these four concepts, we can define a consistent labeling.

87 Definition. Given a set of parts P, a set of labels for those parts L, a relation
Rp over P, and a second relation Ry, over L, a consistent labeling f is an assignment
of labels to parts that satisfies:

If (pi, p) € Rp, then (f(p:), f(pi)) € Ry.

For example, suppose we are trying to find a match between two images: For each
image we have a set of extracted line segments and a connection relation that indicates
which pairs of line segments are connected. Let P be the set of line segments and Rp be the
set of pairs of connecting line segments from the first image, Rp € P x P. Similarly, let
L be the set of line segments and R, be the set of pairs of connecting line segments from
the second image, R, € L x L. Figure 11.18 illustrates two sample images and the sets P,
Rp, L, and Ry. Note that both Rp and R; are symmetric relations; if (Si, Sj) belongs to
such a relation, then so does (Sj, Si). In our examples, we list only tuples (Si, Sj) where
i < j, but the mirror image tuple (Sj, Si) is implicitly present.

A consistent labeling for this problem is the mapping f given below:

fED=Sj f(S87)=Sg
£(S2) = Sa f(S8)=SI
£(S3) = Sb £(S9) = Sd
f(S4)=Sn  f(S10)=Sf
fS5)=Si  f(S11)=Sh
£(S6) = Sk

For another example, we return to the recognition of the kleep object shown in
Figure 11.8 and defined in the associated tables. Our matching paradigms will use the
distance relation defined for any two points: Each pair of holes is related by the distance be-
tween them. Distance is invariant to rotations and translations but not scale change. Abusing
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P = {81, 82, §3, 84, S5, S6, §7, S8, S9, S10, S11}.
L = {Sa, Sb, Sc, 8d, Se, Sf, Sg, Sh, Si, Sj, Sk, S, Sm}.

Rp={ (S1,52), (S1,55), (S1, S6), (S2, $3), (S2, $4), (S3, $4), (S3, S9), (S4, S5), (S4, S7),
(S4,S11), (S5, S6), (S5, S7), (S5, S11), (S6, S8), (S6, S11), (S7, $9), (57, S10), (57, S11),
(S8, 510), (S8, S11), (S9, S10) }.

Ry, = { (Sa, Sb), (Sa, Sj), (Sa, Sn), ka, Sc), (Sb, 8d), (Sb, Sn), (Sc, Sd), (Sd, Se), (Sd, Sf),
(Sd, Sg), (Se, Sf), (Se, Sg), (Sf, Sg), (Sf, SI), (S£, Sm), (Sg, Sh), (Sg, Si), (Sg, Sn), (Sh, Si),
(Sh, Sk), (Sh, SI), (Sh, Sn), (Si, Sj), (Si, Sk), (Si, Sn), (Sj, Sk), (Sk, SI), (SI, Sm) }.

Figure 11.18 Example of a Consistent Labeling Problem.

notation, we write 12(A, B) and 12(B, C) to indicate that points A and B are distance 12
apart in the model, similarly for points B and C. 12(C, D) does NOT hold, however, as
we see from the distance tables. To allow for some distortion or detection error, we might
allow that 12(C, D) is true even when the distance between C and D is actually 12 + A for
some small amount A.

Exercise 11.13: Consistent Labeling Problem.

Show that the labeling f given above is a consistent labeling. Because the relations are
symmetric, the following modified constraint must be satisfied:

If (pi, pr) € Rp, then (f(p)), f(pir)) € Ry or (f(pi), f(pi)) € Ry.

The Interpretation Tree

88 Definition. An interpretation tree (IT) is a tree that represents all possible as-
signments of labels to parts. Every path in the tree is terminated either because it
represents a complete consistent assignment, or because the partial assignment it
represents fails some relation.

A partial interpretation tree for the image data of Figure 11.8 is shown in Figure 11.19.
The tree has three levels, each to assign a label to one of the three holes H,, H,, H; observed
in the image. No inconsistencies occur at the first level since there are no distance constraints
to check. However, most label possibilities at level 2 can be immediately terminated using
one distance check. For example, the partial assignment {(Hj, A), (H,, A)} is inconsistent
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21(Hy, Hy) ~ 21(A, E)

0(A, A) 12(A, B) 15(A, C) 37(A, D) 21(A, E) 21(H,, H,)

26(H3, H) 12(H,, Ha)

H; A Hy,B H;C H;D H;E Hs, B
26(H;, H) ~ 26(E, B)
0(A, A) 37(A, D) 12(H,, H;) ~ 12(A, B)

21(A, E) 30(D, E)

Figure 11.19 Partial interpretation tree search for a consistent labeling of the kleep parts in
Figure 11.8 (right).

because the relation 21(H;, H>) is violated by 0(A, A). Many paths are not shown due to
lack of space. The path of labels denoted by the boxes yields a complete and consistent
assignment. The path of labels denoted by ellipses is also consistent; however, it contains
one NIL label and thus has fewer constraints to check. This assignment has the first two
pairs of the complete (boxed) assignment reversed in labels and the single distance check is
consistent. Multiple paths of an IT can succeed due to symmetry. Although the IT potentially
contains an exponential number of paths, it has been shown that most paths will terminate
by level 3 due to the relational constraints. Use of the label NIL allows for detection of
artifacts or the presence of features from another object in the scene.

The IT can easily be developed using a recursive backtracking process that develops
paths in a depth-first fashion. At any instantiation of the procedure, the parameter f, which
is initially NIL, contains the consistent partial assignment. Whenever a new labeling of
a part is consistent with the partial assignment, the algorithm goes deeper in the tree by
hypothesizing another label for an unlabeled part; if an inconsistency is detected, then the
algorithm backs up to make an alternate choice. As coded, the algorithm returns the first
completed path, which may include NIL labels if that label is explicitly included in L. An
improvement would be to return the completed path with the most nonNIL pairs, or perhaps
all completed paths.
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Find the mapping from model features to image features that
satisfies the model relationships by a tree search.

P is the set of detected image features.

L is the set of stored model features.

Rp is the relationship over the image features.

Ry, is the relationship over the model features.

f is the consistent labeling to be returned, initially NIL.

procedure Interpretation_Tree_Search(P, L, Rp, Ry, f);
{

p := first(P);

for eachlin L

£’ =fU{(p,D}; /* add part-label to interpretation */
OK = true;
for each N-tuple (py, ... ,pn) in Rp containing component p
and whose other components are all in domain(f)
/* check on relations */
if £'(py), ... ,f'(pN)) is not in Ry, then
{
OK: = false;
break;

}
if OK then

P’ = rest(P);
if isempty(P’) then output(f’);
else Interpretation_Tree_Search(P’, L, Rp, Ry, f');
}
}
}

Algorithm 11.5 Interpretation Tree Search.

The recursive interpretation tree search algorithm is defined to be general and to
handle arbitrary N-ary relations, Rp and Ry, rather than just binary relations. Rp and R
can be single relations, such as the connection relation in our first example, or they can be
unions of a number of different relations, such as connection, parallel, and distance.

Discrete Relaxation Relaxation uses only local constraints rather than all the
constraints available; for example, all constraints from matches on a single path of the
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IT. After N iterations, local constraints from one part neighborhood can propagate across
the object to another part on a path N edges distant. Although the constraints used in one
iteration are weaker than those available using the IT search, they can be applied in parallel,
thus making faster and simpler processing possible. ‘

Initially, a part can be labeled by any label permitted by its type; suppose we assign
it a set of all these possible labels. Discrete relaxation examines the relations between a
particular part and all others, and by doing so, reduces the possible labels for that particular
part. In the related problem of character recognition, if it is known that the following letter
cannot be 'U’, then we can conclude that the current letter cannot be 'Q'. In yet a different
domain, if it is known that an image region is not water, then an object in it is not a ship.
Discrete relaxation was popularized by David Waltz, who used it to constrain the labels
assigned to edges of line drawings. (Waltz filtering is discussed in the text by Winston
(1977).) Waltz used an algorithm with some sequential character; here we present a parallel
approach.

Each part P; is initially assigned the entire set of possible labels L; according to its
type. Then, all relations are checked to see if some labels are impossible: Inconsistent labels
are removed from the set. The label séts for each part can be processed in parallel through
passes. If, after any pass some labels have been filtered out of some sets, then another
pass is executed; if no labels have changed, then the filtering is completed. There may be
no interpretations left possible, or there may be several. The following example should
be instructive. To keep it simple, we assume that there are no extra features detected that
are not actual parts of the model; as before, we assume that some features may have been
missed.

We now match the data in Tables 11.1 and 11.2. The filtering process begins with
all 5 labels possible for each of the 3 holes H;, H,, H3. To add interest and to be more
practical, we will allow a tolerance of £1 on distance matches. Table 11.4 shows the 3 label
sets at some point midway through the first pass. Each cell of the table gives the reason
why a label must be deleted or why it survives. A is deleted from the label set for Hy
because the relation 26(H;, H3) cannot be explained by any label for H;. The label A

TABLE 11.4 MIDWAY THROUGH FIRST PASS OF RELAXATION LABELING

A B C D E
H; noN > noN > noN > noN > 21(Hy, Hy)
d(A,N)=26 d(B,N)=21 d(C,N)=26 d(D,N)=26 AelL(H)
26(Hi, H3)
B € L(H3)
H 21(Ha, Hy) noN > 21(H, H1)
E e L(Hy) d(B,N) =21 D e L(H;)
12(H>, H3) 12(H>, H3)
B € L(H3) B € L(H3)
Hj noN > 12(H3, Hy)
d(A,N)=26 A e L(Hy)
26(H3, H1)

E e L(H)
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survives for H, because there is label E € L(H)) to explain the relation 21(H,, H;) and
label B € L(H3) to explain relation 12(H,, H3). The label C survives for H,, because
d(Hp, H)) =21 =22 =d(C, D).

At the end of the first pass, as Table 11.5 shows, there are only two labels possible
for H,, only label E remains for Hj, and only label B remains for H3. At the end of pass 1
the reduced label sets are made available for the parallel processing of pass 2, where each
label set is further filtered in asynchronous parallel order.

TABLE 11.5 AFTER COMPLETION OF THE FIRST
PASS OF RELAXATION LABELING

A B C D E
H; no no no no possible
H, possible no possible no no
H; no possible  no no no

Exercise 11.14

Give detailed justification for each of the labels being in or out of each of the label sets after
pass 1 as shown in Table 11.5.

Pass 2 deletes label C from L(H,) because the relation 21(H;, H,) can no longer
be explained by using D as a label for H;. After pass 3, additional passes cannot change
any label set so the process has converged. In this case, the label sets are all singletons
representing a single assignment and interpretation. A high-level sketch of the algorithm
is given in Algorithm 11.6. Although a simple and potentially fast procedure, relaxation
labeling sometimes leaves more ambiguity in the interpretation than does IT search because
constraints are only applied pairwise. Relaxation labeling can be applied as preprocessing
for IT search: It can substantially reduce the branching factor of the tree search.

Continuous Relaxation* In exact consistent labeling procedures, such as tree
search and discrete relaxation, a label  for a part p is either possible or impossible at any
stage of the process. As soon as a part-label pair (p, [) is found to be incompatible with
some already instantiated pair, the label / is marked as illegal for part p. This property
of calling a label either possible or impossible in the preceding algorithms makes them
discrete algorithms. In contrast, we can associate with each part-label pair (p, [) a real

TABLE 11.6 AFTER COMPLETION OF THE SECOND
PASS OF RELAXATION LABELING

A B C D E
H no no no no possible
Hy possible no no no no

Hj no possible no no no
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TABLE 11.7 AFTER COMPLETION OF THE
THIRD PASS OF RELAXATION LABELING

A B C D E
H; po no no ' no possible
H, possible . no no no no
H; no possible no no no

Remove incompatible labels from the possible labels for a set
of detected image features.

P;, i = 1, D is the set of detected image features.
S(P;),i =1, D is the set of initially compatible labels.
R is a relationship over which compatibility is determined.

procedure Relaxation _Labeling(P, S, R);
{
repeat
for each (P, S(Py))
{
for each label Ly € S(P;)
for each relation R(P;, P;) over the image parts
if 3 L, € S(P;) with R(Ly, Ly,) in model
then keep Ly in S(Py)
else delete Ly from S(P;)
}
until no change in any set S(P;)
return(S);

}

Algorithm 11.6 Discrete Relaxation Labeling.

number representing the probability or certainty that part p can be assigned label /. In this
case the corresponding algorithms are called continuous. In this section we will look at a
labeling algorithm called continuous relaxation for symmetric binary relations.

A continuous relaxation labeling problem is a 6-tuple CLRP = (P,L, Rp, Ry,
PR, C). As before, P is a set of parts, L is a set of labels for those parts, Rp is a relationship
over the parts, and R, is arelationship over the labels. L is usually given as the union over all
parts i of L;, the set of allowable labels for part i. Suppose that | P| = n. Then PRis asetofn
functions PR = {pry, ..., prp,} where pr;(l) is the a priori probability that label ! is valid for
part i. C is a set of n? compatibility coefficients C = {cijli=1,...,nj=1,...,n. ¢
can be thought of as the influence that part j has on the labels of part i. Thus, if we view .
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the constraint relation Rp as a graph, we can view c;; as a weight on the edge between part
i and part j.

Instead of using Rp and R, directly, we combine them to form a set R of n? functions
R={rj}i=1,...,n;j=1,...,n, wherer;;(l, 1) is the compatibility of label I for part
i with label I’ for part j. In the discrete case, r;; (!, ') would be 1, meaning ((i, 1), (j, "))
is allowed or 0, meaning that combination is incompatible. In the continuous case, r;; (, I')
can be any value between 0 and 1, indicating how compatible the relationship between
parts i and j is with the relationship between labels / and /. This information can come
from Rp and R;—which may be themselves simple, binary relations or may be attributed
binary relations—where the attribute associated with a pair of parts (or pair of labels)
represents the likelihood that the required relationship holds between them. The solution’
of a continuous relaxation labeling problem, like that of a consistent labeling problem, is
a mapping f : P — L that assigns a label to each unit. Unlike the discrete case, there is
no external definition stating what conditions such a mapping f must satisfy. Instead, the
definition of f is implicit in the procedure that produces it. This procedure is known as
continuous relaxation.

As discrete relaxation algorithms iterate to remove possible labels from the label set
L; of a part i, continuous relaxation iterates to update the probabilities associated with
each part-label pair. The initial probabilities are defined by the set PR of functions defining
a priori probabilities. The algorithm starts with these initial probabilities at step 0. Thus we
define the probabilities at step 0 by

prl() = pri() (11.18)

for each part i and label I. At each iteration k of the relaxation, a new set of probabilities
{pr¥()} is computed from the previous set and the compatibility information. In order to
define prk(l) we first introduce a piece of it, gk (1) defined by

gFh= > g [Zri,-(l,l')pr;‘(z')] (11.19)

{j1G.j)eRp} Vel

The function g¥(!) represents the influence that the current probabilities associated with
labels of other parts constrained by part i have on the label of part i. With this formulation,
the formula for updating the pr¥’s can be written as

prE@)(1+qf D)
> prf)(1+qk@)

I'GL,‘

pritt () =

(11.20)

The numerator of the expression allows us to add to the current probability prk(l) aterm that
is the product prk(l )g¥ () of the current probability and the opinions of other related parts,
based on the current probabilities of their own possible labels. The denominator normalizes
the expression by summing over all possible labels for part i.



Sec. 11.6 2D Object Recognition via Relational Matching 359

Exercise 11.15: Continous Relaxation.

Figure 11.20 shows a model and an image, each composed of line segments. Two line
segments are said to be in the relationship closadj if their endpoints either coincide or
are close to each other. (a) Construct the attributed relation Rp over the parts of the model
definedby Rp = {(pi, pj, d) | pi closadj p;} and the attributed relation R; over the labels of
the image defined by Ry, = {(l;, [;) | I; closadj l;}. (b) Define the compatibility coefficients
by ¢ij = 1if (pi, pj) € Rp else 0. Use Rp and R; together to define R in a manner of
your choosing. Let pr;(l;) be given as 1 if p; has the same orientation as /;, 0 if they are
perpendicular, and 0.5 if one is diagonal and the other is horizontal or vertical. Define pr
for the parts of the model and labels of the image. (c) Apply several iterations of continuous -
relaxation to find a probable labeling from the model parts to the image labels.

pl 11 15
p2 14 R 16
p3 13 17
~ Figure 11.20 A model and image for
Model parts Image labels continuous relaxation.

Relational Distance Matching A fully consistent labeling is unrealistic in many
real applications. Due to feature extraction errors, noise, and occlusion of one object by an-
other, an image may have missing and extra parts, and required relationships may not hold.
Continous relaxation may be used in these cases, but it is not guaranteed to find the best so-
lution. In problems where finding an optimal solution is important, we can perform a search
to find the best mapping f from P to L, in the sense that it preserves the most relationships
and, or minimizes the number of NIL labels. The concept of relational distance as originally
defined by Haralick and Shapiro (1981) allows us to define the best mapping in the general
case where there may be any number of relations with possibly different dimensions. To do
this we first need the concept of a relational description of an image or object.

89 Definition. A relational description Dp is a sequence of relations Dy =
{Ry,..., Ry} where for eachi = 1,..., I, there exists a positive integer n; with
R; C P" for some set P. P is a set of the parts of the entity being described and the
relations R; indicate various relationships among the parts.

A relational description is a data structure that may be used to describe two-dimensional
shape models, three-dimensional object models, regions on an image, and so on.

Let Dy, = {Ry,..., Ry} be a relational description with part set A and Dy =
{S1, ..., S} be a relational description with part set B. We will assume that |A| = |B|; if
this is not the case, we will add enough dummy parts to the smaller set to make it the case.
The assumption is made in order to guarantee that the relational distance is a metric.



360 Matching in 2D Chap. 11

Let f be any one-one, onto mapping from A to B. For any R € AN, N a positive
integer, the composition R o f of relation R with function f is given by

Ro f={(by,...,by) € BN |there exists(ay, ...,ay) € R
with f(a,) =bs,n=1,...,N} (11.21)

This composition operator takes N-tuples of R and maps them, component by com-
ponent, into N-tuples of BV,

The function f maps parts from set A to parts from set B. The structural error of f
for the ith pair of corresponding relations (R; and S;) in D4 and Dyp is given by

EX(f)=|Riof = Sil+ IS0 f' =Rl 11.22)°

The structural error indicates how many tuples in R; are not mapped by f to tuples in S;
and how many tuples in S; are not mapped by f~! to tuples in R;. The structural error is
expressed with respect to only one pair of corresponding relations.

The total error of f with respect to D4 and Dp is the sum of the structural errors for
each pair of corresponding relations. That is,

1
E(f) =) E5(f). (11.23)
i=1

The total error gives a quantitative idea of the difference between the two relational descrip-
tions D4 and Dp with respect to the mapping f.
The relational distance GD (D4, Dg) between D4 and Dy is then given by

GD(D4, Dp) = lIll_lln E(f). (11.24)

f:A—>B
onto

That is, the relational distance is the minimal total error obtained for any one-one, onto
mapping f from A to B. We call a mapping f that minimizes total error a best mapping
from Dy to Dp. If there is more than one best mapping, additional information that is
outside the pure relational paradigm can be used to select the preferred mapping. More
than one best mapping will occur when the relational descriptions involve certain kinds of

symmetries.
We illustrate the relational distance with several examples. Figure 11.21 shows two

digraphs, each having four nodes. A best mapping from A = {1, 2, 3,4} to B = {a, b, ¢, d}

° 0 ‘ ° Figure 11.21 Two digraphs whose

R S relational distance is 3.
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is{f(1) =a, f2) =b, f(3) =c, f(4) = d}. For this mapping we have

[Ro f—8|={1,2)2,3)3,44,2)}o f —{(a,b)b,c)(c,b)d, b}
= |{(a, b)(b, ©)(c, )(d, b)} — {(a, b) (b, ¢)(c, b)(d, b)}|
= {(c, DN
=1
ISo 7' — Rl = {(a, b)(b, c)(c, b)(d, b)} o " — {(1,2)(2,3)(3, 9)(4,2)}]
= [{(1,2)(2,3)(3,2)4,2)} - {(1,2)(2,3)3, 94, D}
=[G, D}
=1
E(f)=IRo f~S|+1So f™ ~ R
=1+1
=2

Since f is a best mapping, the relational distance is also 2.

Figure 11.22 gives a set of object models M;, M,, M3, and M4 whose primitives are
image regions. Two relations are shown in the figure: The connection relation and the parallel
relation. Both are binary relations over the set of primitives. Consider the first two models,

Connection 4"
Connection 8 :, g::g
(1’ 2) ", 173 n
(1,3) 1",4") 1
2” 3!/
Parallel Parallel
(2, 3) (211, 3/1)
M; M,
Connection
(4%, 5%) 4%
Connection (4:’ 6:) 5% 6*
(1[ 2/) (1 I 5 )
’ (1*’ 6*)

1',3") (1*,2%) .
NERNR 2 A

Parallel Parallel |5« 3
0 : (2%,3%)
(5%, 6%

M, M,

Figure 11.22 Four object models. The relational distance of model M; to M3 and M to
M3 is 1. The relational distance of model M3 to My is 6.
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M, and M,. The best mapping f maps primitive 1 to 1/, 2 to 2/, and 3 to 3. Under this
mapping the connection relations are isomorphic. The parallel relationship (2, 3) in model
M; does not hold between 2’ and 3’ in model M,. Thus the relational distance between M;
and M, is exactly 1. Now consider models M; and M. The best mapping maps 1 to 1”,
2t02”, 3t0 3", and a dummy primitive to 4”. Under this mapping, the parallel relations are
now isomorphic but there is one more connection in M3 than in M. Again the relational
distance is exactly 1.

Finally consider models M3 and M,. The best mapping maps 1” to 1*, 2" to 2%, 3”
to 3*, 4” to 4*, 5, to 5*, and 6, to 6*. (5,4 and 6, are dummy primitives.) For this mapping
we have

[Ryo f— 8| = {A1",2")(1",3")(1",4")}o f

—{(@*, 5% @, 6117, 511, 6)(1%, 27) (1, 39}

= [{(1*,2%)(1*, 3% (1%, 49}
—{(4*,5%)(4*, 6" (1%, 5%)(1*, 6M) (1%, 2% (1%, 39}

= {(1* 491

=1

1S10 f71 = Ryl = {4, 5%)(@*, 6")(1*, 5)(1*, 6%)(1*,2")(1*,3%)} o f !

—{(1",2"(",3") (1", 4"}

= |{(4", 54)(4", 64)(1", 52)(1", 64)(1", 2")(1", 3")}
—{1",2")(1",3")(1", 4")}|

= [{(4", 54)(4", 64)(1", 54)(1", 6a)}|

=4

Ryo f = SI = {2, 3"} o f = {2',3(5", 69}

= [{(2%, 39} = {@2", 3) (5", 6D}

= 9]

=0

1S20 f71 = Ryl = [{(2*,3*)(5%,6")} o f 1 — {(2",3")}]

= [{2",3")(54, 64)} — {(2", 3")}|

= {54, 62)}

=1

ENf)=1+4=5
EXf)=04+1=1
E(f)=6
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Exercise 11.16: Relational Distance Tree Search.

Modify the algorithm for Interpretation Tree Search to find the relational distance between
two structural descriptions and to determine the best mapping in the process of doing so.

Exercise 11.17: One-Way Relational Distance.

The definition of relational distance in Equation 11.24 uses a two-way mapping error, which
is useful when comparing two objects that stand alone. When matching a model to an image,
we often want to use only a one-way mapping error, checking how many relationships of the
model are in the image, but not vice versa. Define a modified one-way relational distance
that can be used for model-image matching.

Exercise 11.18: NIL Mappings in Relational Distance.

The definition of relational distance in Equation 11.24 does not handle NIL labels explicitly.
Instead, if part j has a NIL label, then any relationship (i, j) will cause an error, since ( f (i),
NIL) will not be present. Define a modified relational distance that counts NIL labels as
errors only once and does not penalize again for missing relationships caused by NIL labels.

Exercise 11.19: Attributed Relational Distance.

The definition in Equation 11.24 also does not handle attributed relations in which each
tuple, in addition to a sequence of parts, contains one or more attributes of the relation.
For example, a connection relation for line segments might have as an attribute the angle
between the connecting segments. Formally, an attributed n-relation R over part set P
and attribute set A is a set R C P, X A, for some nonnegative integer m that specifies
the number of attributes in the relation. Define a modified relational distance in terms of
attributed relations.

Relational Indexing Sometimes a tree search even with relaxation filtering is too
slow, especially when an image is to be compared to a large database of models. For structural
descriptions in terms of labeled relations, it is possible to approximate the relational distance
with a simpler voting scheme. Intuitively, suppose we observe two concentric circles and
two 90 degree corners connected by an edge. We would like to quickly find all models that
have these structures and match them in more detail. To achieve this, we can build an index
that allows us to look up the models given the partial graph structure. Given two concentric
circles, we look up all models containing these related features and give each of those
models one vote. Then, we look up all models having connected 90 degree corners: Any
models repeating from the first test will now have two votes. These lookups can be done
rapidly provided that an index is built offline before recognition by extracting significant
binary relations from each model and recording each in a lookup table.

Let DB = {M;, M,, ..., M7} be a database of T object models. Each object model
M, consists of a set of attributed parts P; plus a labeled relation R,. For simplicity of
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explanation, we will assume that each part has a single label, rather than a vector of attributes
and that the relation is a binary relation, also with a single label attached to each tuple. In this
case, amodel is represented by a set of 2-graphs each of which is a graph with two nodes and
two directed edges. Each node represents a part, and each edge represents a directed binary
relationship. The value in the node is the label of the part, rather than a unique identifier.
Similarly, the value in an edge is the label of the relationship. For example, one node could
represent an ellipse and another could represent a pair of parallel lines. The edge from the
parallel lines node to the ellipse node could represent the relationship encloses, while the
edge in the opposite direction represents the relationship is enclosed by.

Relational indexing requires a preprocessing step in which a large hash table is set up.
The hash table is indexed by a string representation of a 2-graph. When it is completed, one
can look up any 2-graph in the table and quickly retrieve a list of all models containing that
particular 2-graph. In our example, all models containing an ellipse between two parallel line
segments can be retrieved. During recognition of an object from an image, the features are
extracted and all the 2-graphs representing the image are computed. A set of accumulators,
one for each model in the database are all set to zero. Then each 2-graph in the image is
used to index the hash table, retrieve the list of associated models, and vote for each one.
The discrete version of the algorithm adds one to the vote; a probabilistic algorithm would
add a probability value instead. After all 2-graphs have voted, the models with the largest
numbers of votes are candidates for verification.

11.7 NONLINEAR WARPING

Nonlinear warping functions are also important. We may need to rectify nonlinear distortion
in an image; for example, radial distortion from a fisheye lens. Or, we may want to distort
an image in creative ways. Figure 11.23 shows a nonlinear warp which maps a regular grid
onto a cylinder. The effect is the same as if we wrapped a flat image around a cylinder
and then viewed the cylinder from afar. This same warp applied to a twenty-dollar-bill is
shown in Figure 11.24. Intuitively, we need to choose some image axis corresponding to the
center of a cylinder and then use a formula which models how the pixels of the input image
will compress off the cylinder axis in the output image. Figure 11.24 shows two warps; the
rightmost one uses a cylinder of smaller radius than the center one.

Figure 11.25 shows how to derive the cylindrical warp. We choose an axis for the
warp (determined by xo) and a width W. W corresponds to one quarter of the circumference

Figure 11.23  (left) Regular grid of lines;
and (right) grid warped by wrapping it
around a cylinder.
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Figure 11.24  (left) Image of center of U.S.$20 bill; (center) image of Andrew Jackson
wrapped around a cylinder of circumference 640 pixels; and (right) same as center except
circumference is 400 pixels.

X U
ke \
£ I
w ] S [u, v]
| d d,
-------------------- b--|-Xg------------ R Epupuppuy pup )
Y I v L
Input image Output image

Figure 11.25 The output image at the right is created by wrapping the input image at the left
around a cylinder (center): distance d in the input image becomes distance d’ on output.

of the cylinder. Any length d in the input image is wrapped around the cylinder and then
projected to the output image. Actually, d corresponds to the length x — x¢ where xg is
the x-coordinate of the axis of the cylinder. The y coordinate of the input image point is
preserved by the warp, so we have v = y. From the figure, the following equations are
seen to hold. First, W = (7r/2)r since W accounts for one quarter of the circumference. d
accounts for a fraction of that: d/W = ¢/(7/2) and sin¢ = d’/r. Combining these yields
d = x — x9 = QW/m)arcsin((w/2W)(u — up)). Of course, d’ = u — ug = u — xo.

‘We now have a formula for computing input image coordinates [x, y] from output
coordinates [u, v] and the warp parameters xo and W. This seems to be backwards; why
not take each pixel from the input image and transform it to the output image? Were we to
do this, there would be no guarantee that the output image would have each pixel set. For
a digital image, we would like to generate each and every pixel of output exactly once and
obtain the pixel value from the input image as Algorithm 11.7 shows. Moreover, using this
approach it is easily possible for the output image to have more or fewer pixels than the



366 Matching in 2D Chap. 11

Perform a cylindrical warp operation.

!1[x, y] is the input image.
Xy is the axis specification.
W is the width.

I[u, v] is the output image.

procedure Cylindrical Warp(*I[x, y])
{
r=2W/m;
for u:=0, Nrows-1
for v:=0, Ncols-1

2I[u, v] = 0; // set as background
if .({Iu — | =1)

© X = Xg + rarcsin((u — Xg)/r);
y=Vv;
2I[u, vl = "U[round(x), round(y)];
}

return(*I[u, v]);

}

Algorithm 11.7 Cylindrical Warp of Image Region.

input image. The concept is that in generating the output image, we map back into the input
image and sample it.

Exercise 11.20

(a) Determine the transformation that maps a circular region of an image onto a hemisphere
and then projects the hemisphere onto an image. The circular region of the original image
is defined by a center (x., y.) and radius ry. (b) Develop a computer program to carry out
the mapping.

Rectifying Radial Distortion Radial distortion is presentin most lenses: It might
go unnoticed by human interpreters, but sometimes can produce large errors in photometric
measurements if not corrected. Physical arguments deduce that radial distortion in the
location of an imaged point is proportional to the distance from that point to the optical
axis. Figure 11.26 shows two common cases of radial distortion along with the desirable
rectified image. If we assume that the optical axis passes near the image center, then the
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Figure 11.26 Two types of radial distortion, (left) barrel and (center) pincushion which
can be removed by warping to produce a (right) rectified image.

distortion can be corrected by displacing all image points either toward or away from the
center by a displacement proportional to the square of the distance from the center. This
is not a linear transformation since the displacement varies across the image. Sometimes,
more even powers of the radial distance are used in the correction, as the mathematical
model in Equation 11.25 shows. Let [x,, y.] be the image center which we are assuming is .
also where the optical axis passes through the image. The corrections for the image points
are as follows, assuming we need the first two even powers of the radial distance to compute
the radial distortion. The best values for the constants ¢, and ¢4 can be found by empirical
study of the radial displacements of known control points or by formally using least-squares
fitting in a calibration process.

R=1((x=x)2+ =)
D, = (c2R? + c4RY)
x =xc+ (x —x;)D,

(11.25)

y=Yc+ @ —y)D,

Polynomial Mappings Many small global distortion factors can be rectified
using polynomial mappings of maximum degree two in two variables as defined in Equa-
tion 11.26. Twelve different coefficients must be estimated in order to adapt to the different
geometric factors. To estimate these coefficients, we need the coordinates of at least six
control points before and after mapping; however, many more points are used in practice.
(Each such control point yields two equations.) Note that if only the first three terms are
used in Equation 11.26 the mapping is an affine mapping.

u = ag + aiox + ag1y + anxy + axox? + apy?

(11.26)
v = bgy + brox + bo1y + b1ixy + b20x2 + b02y2

Exercise 11.21

Show that radial distortion in Equation 11.25 with ¢4 = 0 can be modeled exactly by a
polynomial mapping of the form shown in Equation 11.26.
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11.8 SUMMARY

Multiple concepts have been discussed in this chapter under the theme of 2D matching. One
major theme was 2D mapping using transformations. These could be used as simple image
processing operations which could extract or sample a region from an image, register two
images together in the same coordinate system, or remove or creatively add distortion to 2D
images. Algebraic machinery was developed for these transformations and various methods
and applications were discussed. This development is continued in Chapter 13 as it relates to
mapping points in 3D scenes and 3D models. The second major theme of this chapter was the
interpretation of 2D images through correspondences with 2D models. A general paradigm
is recognition-by-alignment: The image is interpreted by discovering a model and an RST :
transformation such that the transformation maps known model structures onto image struc-
tures. Several different algorithmic approaches were presented, including pose-clustering,
interpretation tree search, and the local-feature-focus method. Discrete relaxation and re-
lational matching were also presented: These two methods can be applied in very general
contexts even though they were introduced here within the context of constrained geomet-
ric relationships. Relational matching is potentially more robust than rigid alignment when
the relations themselves are more robust than those depending on metric properties. Image
distortions caused by lens distortions, slanted viewing axes, quantification effects, etc., can
cause metric relations to fail; however, topological relationships such as cotermination, con-
nectivity, adjacency, and insideness are usually invariant to such distortions. A successful
match using topological relationships on image and, or model parts might then be used to find
a large number of matching points, which can then be used to find a mapping function with
many parameters that can adapt to the metric distortions. The methods of this chapter are
directly applicable to many real world applications. Chapter 14 extends the methods to 3D.
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