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MACHINE PERCEPTION OF THREE-DIMENSIONAL SOLIDS *
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l. Introduction

The problem of machine recognition of pictorial data has long been a
challenging goal, but has seldom been attempted with anything more com-
plex than alphabetic characters. Many people have felt that research on
character recognition would be a first step, leading the way to a more gen-
cral pattern recognition system. However, the multitudinous attempts at
character recognition, including my own, have not led very far. The reason,
I feg:l, is that the study of abstract, two-dimensional forms leads us away
from, not toward, the techniques necessary for the recognition of three-
dimensional objects. The perception of solid objects is a process which can
be based on the properties of three-dimensional transformations and the
laws of nature. By carefully utilizing these properties, a procedure has been
developed which not only identifies objects, but also determines their orien-
tation and position in space.

Three main processes have been developed and programed in this report.
The input process produces a line drawing from a photograph. Then the
three-dimensional construction program produces a three-dimensional ob-
ject list from the line drawing. When this is completed, the three-dimen-
sional display program can produce a two-dimensional projection of the
objects from any point of view. Of these processes, the input program is the
most restrictive, whereas the two-dimensional to three-dimensional and
three-dimensional to two-dimensional programs are capable of handling
almost any array of planar-surfaced objects.

* This report is based on a thesis of the same title submitted to the Department of
Electrical Engineering at the Massachusetts Institute of Technology on 10 May 1963,
in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Reprinted with permission from Optical and Electro-Optical Information Processing, J. T. Tippett et al., Eds., 1965, pp. 159-197. Copyright
© 1965 by M.I.T. Press, Cambridge, MA.
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In order to implement the three-dimensional processing of pictures, per-
spective cffects must be considered. For this reason, a four-dimensional,
homogeneous system of coordinates will be used. In this system a single
4 X 4 matrix can modify a position vector by a linear transform, a transla-
tion, and a perspective transformation. Although many books discuss this
homogeneous system of coordinates, their presentations are either incom-
plete or too involved for our purposes.! Therefore, the system is explained
in Appendix A. Without the notational simplicity provided by using homo-
geneous transformations, most of the following analysis would not have
been accomplished.

Il. Background

A. DPattern Recognition by Computer

There have been numerous attempts to recognize simple patterns by
machine. There is the work with neuronlike nets of threshold elements
which divide the set of all input patterns into a number of classes by corre-
lating a set of adaptive weights with some functions of multiple input cells.
For this type of system there may not be many output classes and the
transformations of the patterns must be minimal or nonexistent. Because
of these restrictions, the patterns worked on so far have been those which,

" although complex, are not subject to much transformation such as charac-
ters and spoken digits. My paper on character recognition is typical and
gives the other references.? This type of system would be of no value for
multiple object recognition, except perhaps for finding the lines originally.

In the work by Selfridge and Neisser et al.,* a more useful set of tests is
made on the input, whereas the output processing is similar to that of the
system described earlier. That is, computation routines are developed to
extract the useful information from the input, and their outputs are
weighted to determine the most likely output class. Here again a small set
of outputs is expected and characters were the patterns tested. One prob-
lem with both these methods is that they were intended for specific groups
of abstract patterns, such as characters, and not for the well-defined geom-
etry of photographs. They are better suited for looking at my resultant
list structure of objects and deciding whether a group of objects is a chair
or a table.

The closest that any researcher has come to the problem I propose is
Leo Hodes in his work on processing line drawings.* His main result was
to produce a list of lines and vertices by. following out lines. Then he sug-
gested a few simple tests which might be made on this list to find triangles,
etc. Although his main purpose was to study abstract line patterns, he did
describe a working line follower which was of value to me in this part of my
effort.
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The only work I know of on machine depth perception is that on binocu-
lar images. Julesz has reported a procedure which shifts the binocular
pictures to find the areas at different depths.® This procedure uses only
texture, not edges, to develop the depth information and shows that the
binocular information alone is sufficient for depth perception. This work
is similar in goal but completely different in procedure from mine. Other
work in machine photograph processing has mainly been in the field of
information reduction for bandwidth compression and my paper in this
area summarizes this work.®

B. Psychophysical Theory

There has been a large volume of psychophysical research on human
depth perception and shape recognition. From all this I have tried to isolate
the ideas and theories which are used to explain our monocular perception
of a three-dimensional world. It will be apparent, however, that the work
of Gibson is dominant in my mind, since his book is both clear and com-
plete.”

Of all the monocular depth cues perhaps the most written about is that
of known object size. Ittelson reports experiments in which only one object
could be seen, thus eliminating other depth cues.® Although the assumed
size of objects such as playing cards tended to vary, the subjects would
judge the depth reasonably well for normal-sized cards and proportionately
shorter for jumbo cards. Thus he, for one, showed that the size of familiar
objects is a good relative depth cue and fair for absolute depth. Gibson
points out, however, that this type of distance perception is rarely used in
the everyday world, since we look at arrays of objects rather than at single
objects and can use more general depth cues.

Gibson’s favorite cue is that of texture gradient. This is the effect of
perspective on the grain or fine structure of large surfaces. As these sur-
faces recede, the apparent grain becomes finer. Another gradient cue is the
illumination variation which puts curved surfaces in relief. This shows us
the surface depth variations. The final depth cues are those of aerial per-
spective or blur with depth, and the angular upward position of objects
toward the horizon which is a depth measure in most outdoor scenes.

Recognition of forms, shapes, and objects is often discussed from the
Gestalt point of view, where shadowy forms and plane geometry figures
are the forms to be recognized. Attneave and Arnoult spend many pages
explaining random shape generation and the useful procedures for analyzing
them.® They discuss contour following, differentiating pictures, and some
of the simple measures of shape complexity. If they were discussing charac-
ter recognition, it might be reasonable to use these tools; however, they
say they are investigating ‘‘natural forms.” This preoccupation with the
abstract projected form is strongly attacked by Gibson. He feels that the
visual world of objects and surfaces should be studied rather than the visual
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field on the retina. A perspective transformation does not reduce a solid
object to a shadowy form. Rather, it defines the set of shapes which go
with a single perception. '

Perspective variations in a cube were tested by Langdon in an experiment
on three-dimensional solids.!® He found that perspective plays only a minor
part in the perception of the size and depth and that the subjects always
saw a cube, even when it was badly distorted by the perspective transform.
The continual perception of a cube, even when transformed, is consistent
with Gibson’s idca that shape perception is and must be invariant under
perspective transformation. My idea of models also follows from this, since
each model represents an invariant percept, and can be identified with any
projection of itself.

lil. Depth Perception

The perception of depth in a monocular picture is based completely upon
the assumptions of the observer. Some of the assumptions are about the
nature of the real world and some are based on the observer’s familiarity
with the objects. Without these assumptions the picture is just another
two-dimensional image, whereas with them the human is rarely confused
about the depth relationships represented in the picture. Since humans
agree so closely on their depth impressions, it is fair to assume that their
major assumptions are the same, and are therefore subject to identification
and analysis. The following is an attempt to set down some of the likely
assumptions and derive what depth information can be obtained if they
were used.

A. Transformation of Real World

The first assumption is that the picture is a view of the real world re-
corded by a camera or comparable device and therefore that the image is a
perspective transformation of a three-dimensional field. This transforma-
tion is a projection of each point in the viewing space, toward a focal point,
onto a plane. The transformation will be represented with a homogeneous,
4 X 4 transformation matrix P such that the points in the real world are
transformed into points on the photograph (see Appendix A for an explana-
tion of homogeneous coordinates). The transformation depends on the
camera used, the enlargement printing process, and, of course, the coordi-
nate system the real world is referred to. Let us fix the real world coor-
dinates by assuming that the focal plane is the z = 0 plane and that the
focal point is at x = f, y = 0, 2 = 0. In order that the picture not be a
reflection, we choose the focal plane in front of the camera. Then the objects
seen will be in the z ha'lf-space. Thus the focal plane is really the plane of
the print, not of the negative. Figure 1 shows this arrangement.

A particular camera will have some focal distance f. We shall consider
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the square on the focal plane which was enlarged to create the print. The
center of this square will be at some coordinates yo, zo; and the size of the
square from the center to an edge will be some distance S. The actual size
to which the square is enlarged is unimportant, since we shall measure the
print with a normalized system which has the origin at the center and the
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edges at y, z = 1. Normally, the whole film area is printed, and in this
case yo = 2o = 0 and 8§ is equal to half the film size. For standard cameras
without special lenses, the ratio of focal distance to film size is usually the
same since this corresponds to a fixed viewing angle. Thus the ratio S/f is
fairly constant at about 1. In my case, the ratio is known if the camera is
known and could be supplied with the photo.

It is not necessary to know the variables yq, 2o, f, and 8 since they can be
computed from the picture, given other assumptions later on. However,
for the sake of simplicity we shall assume that S/f is known and that
Yo = 2 = 0. The numerical values of S and f alone are not necessary, since
this just affects the scale of the real world. Thus we can assume that S = 1
and with r = §/f obtain a simple transformation P,

1 - —r
1

P = 1

1

If 7 is a point in real space, then 7P is a point in a perspective space such
that its ¥ and Z coordinates are the original point’s projection in the picture
plane. The X coordinate of 7P is also obtained and will be useful for hidden
line computation during display of three-dimensional objects.

Thus a transformation from the real world to a picture has been de-
scribed, and to go the other way simply requires the inverse transformation
P-1, Of course, the z component of the real-world points will not be known
in this case.

B. Objects Observed

We shall further assume that the three-dimensional field observed con-
sists of a set of solid objects which occupy a definite region of space. Since
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we realize that it is usually possible to pick out the lines which define the
boundaries of the objects and their surfaces, we shall assume that this has
been accomplished and that the pieture has been reduced to a line drawing.
Because the objects are solid, we do not expect to see the boundaries which
are hidden from the focal point by another solid.

Second, we shall assume that the objects seen could be constructed out
of parts with which we are familiar. That is, either the whole object is a
transformation of a preconceived model, or else it can be broken into parts
that are. The models could be anything from a cube to a human body; the
only requirement is that we have a complete description of the three-dimen-
sional structure of each model.

The transformation from the model to the real world object will be a
suitably restricted homogeneous transformation matrix B. We must allow
an arbitrary rotation and translation of the model in order to position it
properly in space. We should also like to allow three degrees of freedom
for size change of the model so that a cube model can represent any paral-
lelepiped. So far we have allowed nine degrees of freedom. The 4 X 4
matrix R can allow fifteen degrees of freedom since it has 16 elements and
the total scale of the matrix is arbitrary in the homogeneous coordinate
system. The last six degrees of freedom represent skew and perspective
deformations. Skew deformations are size changes in the r, y, and z direc-
tions after the model has been rotated and will change the sides of a cube to
parallelograms. A perspective deformation is most easily visualized as a
compression of one end of the model. Objects that have been deformed in
either way are not usually considered to be simple instances of the model.
Furthermore, objects deformed in these ways could be constructed from
smaller parts, so it is not necessary to allow skew and perspective
deformations.

We cannot allow perspective deformation and still obtain a unique trans-
form R from the picture; therefore, we require the top three elements in the
last column of R to be zero. Skew variations can be allowed if we maintain
very high accuracy in our computations, so our derivation will allow them,
but later on they will be eliminated.

Now R transforms a model into an object and P transforms the object
onto the picture so that if-

H = RP

H transforms the model points into picture points. Therefore, in order to
identify a group of points and lines in the picture with a particular model,
we must find out if there is any transformation H which will take the
model’s points and lines into those of the picture. If such a model and
transform are found, it c&n be said that the object represented in the picture
could be that model under the transformation R = HP-.
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C. Model Identification

Let us say that we are given a picture of a parallelepiped, and it has been
reduced to a line drawing. We can then find the interior polygons which
correspond to the surfaces of the object. There will normally be three
quadrilaterals visible. These polygons all come together at one point which
can be used for a reference point. If we look threugh our list of models, we
find that a cube and perhaps other models have three quadrilaterals about
one point. Therefore, we can pick a point in the cube model which has the
proper polygons around it, pick a polygon from both the cube and the
picture as starting points, and proceed to list topologically equivalent
point pairs. When we have finished, we have a list of seven three-dimen-
sional points from the model and a corresponding list of seven two-dimen-
sional points from the picture. By adding a homogeneous coordinate w = 1
to each point vector, we obtain a 4 X 7 matrix of model points A and a
3 X 7 matrix of picture points B.

Now by means of the similarity test derived in Appendix B, we obtain
the best transform H which will take A into B. We also obtain a mean-
square error which indicates whether or not the model chosen really can
fit the picture. We can then choose the model that causes the least error.
For the parallelepiped, the cube model should fit with very little error. The
transform obtained is a 3 X 4, since no depth data accompanied the pic-
ture points. Since we know P and thus P!, we can start to obtain R, the
real space transform of the model. Since we have required that the three
perspective components of R should be zero, we can specify the top three
components of R in the first column as (—1/r) times the corresponding
elements of the last column of H.

R = HP!
oz w 1 r
H = Y2 22 we Pl = 1
Ys 23 ws 1
Ys 22 Wyl 1
—w/r y1 a 0
Ro = —we/r Yy, 22 O
0 “'W3/ r Ys 23 0
. 0 Yi 24 W

The lower left element of R still is not known since it is the z position
of the whole object, and if an object grows in size as it moves away from us,
it can maintain the same projection on the focal plane. Thus this depth
value must be found some other way. For the present, we can call it zero
and label the matrix R,.

At this point, by assuming that an object in a picture is a transformation

291



L. G. Roberts

of a known model and by utilizing our knowledge of perspective geometry,
we have been able to find the model and transformation which best repre-
sent the object. We know the precise orientation and position of the object
except for one depth variable. We also know all the dimensions of the object
_relative to its total size. We also should know the skew deformation of the
object, since we have obtained eleven variables. However, compression or
expansion in the z direction produces only a slight change in the picture
due to the perspective, since we are looking along the z axis. Thus the deter-
mination of the z skew can easily be in error. This problem of skew error
in derived transformations was not realized until the computer program
implementing these ideas began to produce distorted transformations of
models. Even though the program could match every point in the picture
with model points within one part in 4000, the z skew of the transformation
might be off by a factor of 2. Thus it is clear that the x skew is not really
obtainable from a picture, even though it can be derived mathematically.

If z skew deformations of the model must be restricted, it is logical to
eliminate all skew variations for consistency. To restrict skew it is necessary
to ask that the top three rows of R be orthogonal. Since the introduction
of this requirement into the similarity test requires solving second-order
equations, it is simplest to modify R after it has been computed. Thus the
top three rows of R are forced to be orthogonal by modifying the first
column, which is the one with the worst error. This means that the focal
ratio r and i, ws, and w; are not needed for the computation of the model
transformation. Now in fact, r may be computed from the ratio of the new
first column to the w;-

Thus, by assuming that the objects seen in a picture are nondeformed
transformations of known models, we can find the model and transforma-
tion without knowing the camera characteristics. Even if the picture is an
orthogonal projection, as is almost the case with long telephoto lenses, we
can compute the proper transformation. This would be impossible if we did
not eliminate skew since r, wi, w2, and w; would all be zero. Thus the process
accounts for, but does not depend on, perspective information.

The information required to obtain a transformation is obtained from the
points in the line drawing. These points have two dimensions each and we
need to determine eight degrees of freedom in the transformation. There-
fore, at least four points from the picture must be used. These points cannot
all lie in the same plane of the object or the equations will be degenerate.
If more than four points are available, the mean-square error will indicate
whether they are consistent with the model, and therefore help in the selec-
tion of the proper model.

D. Depth Information

After the matrix R, is obtained for an object or object part, it is still
necessary to obtain the z translation or depth. Here we must resort to an-
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other assumption. There are several possibilities which I have chosen to
ignore. If we were to assume that we know the models so well that we knew
their size, this would fix their depth also; or, if we wished to interpret
shadows, this might determine the depth if shadows existed. The fact that
one object is partly in front of another supplies depth information, but
only in the form of inequalities. Lastly, the various gradients—intensity,
blur, and texture—might be useful for determining the depth gradients
of each surface, but this information has already been found through the
use of models. All these eues may be useful to humans, but each one is re-
stricted in its generality and only useful in special cases.

The one depth perception concept which is suitably general, and suffi-
ciently accurate to position all objects properly, is the use of a support
theorem. We assume that each object must be supported somehow, either
by another object or by a ground plane. This assumption allows us to pro-
ject each object back in the z direction until it hits the ground plane or
another object. While it is being projected back, it must be expanded so
as to maintain the same image on the focal plane. The slope of the ground
plane can be determined by examining each object for parallel planes, choos-
ing a plane which goes under the focal point and is as parallel to the z = 0
plane as possible. When such a plane is found, we know only its slope, not
its distance, from the origin. However, this single variable can be set arbi-
trarily, since it affects only the total scale of the picture. Actually it can be
guessed rather accurately for the majority of pictures just by assuming or
knowing the distance the camera was held from the ground and the focal
ratio r. Since r may be computed, we could assume that the camera was
held five feet above the floor, and now we can state the dimensions of each
object in feet. :

For compound objects, we know the pieces should fit together, so their
relative depths are determined and the compound object can then be
treated as one object and projected onto the ground plane. The whole
procedure is relatively simple so long as the ground plane is really planar.
If the ground curves, this could be taken care of by computing the curva-
ture from the slopes of several objects. If there are breaks in the floor’s slope
such as walls, the breaks will be seen as lines and walls treated as objects.
Thus the support assumption enables us to properly place all the objects
in space.

To review the depth perception assumptions and results, we assumed that
the picture was, in fact, a perspective view of the real world, that the objects
shown in the picture could be described by means of one or more trans-
formations of known models, and that all objects were supported by others
or by a ground plane. The transformations allowed were restricted to rota-
tion, translation, and size changes. Then, from a single picture, each object
which has four or more points showing can be described in terms of the
models and positioned in a three-dimensional space. The scale of this space
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in feet can even be determined if the distance of the camera from the floor
can be supplied. The whole representation in three dimensions should be
accurate, except for a simplification of hidden details and occasional prob-
lems due to the breakdown of the assumptions. However, humans have the
same problems.

IV. Picture Input and Reduction to Lines

Pictures are presently being entered into the computer by means of a
facsimile scanner, although many types of optical scanners would be suit-
able. The facsimile scanner, however, was already connected to the com-
puter for some of my previous experiments.® A 4 X 5 photographic print
is placed on the drum of the scanner and the computer made ready. Then,
during each rotation of the drum, a photomultiplier output scans a line
of the picture. An analog-to-digital converter samples the photomultiplier
output at about 600 cps and sends the computer ten-bit digital intensity
values. Thus, in about three minutes, a 256 X 256 raster of intensity sam-
ples can be read into the computer. Each sample is compressed to eight
bits in the computer, so the storage of one picture requires about half a
million bits of memory. Thus four pictures can be stored in the TX-2
memory. Figure 2a and b shows a picture before and after computer
sampling.

When the scanning is completed, the picture is processed with a local
differential operator to produce a new raster which has the appearance of a
line drawing. The choice of a differential operator is very critical and many
variations were tried. Three main criteria can be used to judge such an
operation. The edges produced should be as sharp as possible, the back-
ground should produce as little noise as possible, and the intensity of the
lines produced should correspond closely to a human’s ability to perceive
the edge in the original picture. Edge sharpness depends upon the number of
samples used by the differential operator. Background noise seems to be
reduced by using operators symmetric in z and y. In order to make equally
apparent edges have equal derivatives, the intensity values of the picture
can be subjected to a gamma change so as to make intensity differences
proportional to a human’s ability to perceive them. According to psycho-
physical theory, the square root of the intensities should be used in order
to achieve the desired effect.!

Therefore, after a picture is read in, a differential picture is created ac-
cording to the functions ‘

Yii = Vi
7= V(Wi = Yorrin)? + Qi — Yiin)?
where z; ; is the initial intensity value, z; ;is the computed derivative value,

and 7 and j are the coordinates in the two dimensions. The resulting z values
indicate the probability of a line through that cell. Even though the square-
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() (W]

Fig. 2. Picture to line drawing. (a) Original picture. (b)) Computer display of picture

(reflected by mistake). (c) Differentiated picture. (d) Feature points selected. (¢) Con-

nected feature points. (f) After complexity reduction. (¢) After initial line fitting.
(h) Final line drawing.
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root operation involved takes more time than several simpler operations
which were tried, the extra line sharpness and background noise reduction
obtained are well worth the additional time. Figure 2¢ is an example of the
result of this differentiation.

After obtaining the differential picture, the problem is to determine a set
of lines and end points which correlate well with the raster. It is no simple
chore to obtain a list of lines and their end points from a half-million-bit
array of data. A simple procedure might be to choose a clip level and start
tracing out lines which correspond to a string of adjacent cells in the raster,
all of whose values are above the clip level. The hopelessness of this proce-
dure is easily seen when one looks at typical pictures and considers them
as a three-dimensional surface where the z values are used as the height.
Even a very clean input picture when viewed in this way looks like a
bumpy, hilly landscape, with a broken-down stone wall representing the
lines, and where some hills are higher than the top of other stone walls.
If we imagine the clip level as a flood over this landscape, there is no water
level which covers all the hills and yet does not submerge some stone walls.
In fact, even by adjusting the water level to be optimal for a particular
area, a line will look like stepping stones in a rock-strewn brook rather than
a smooth dam. Thus it can be seen that the problem of mapping the walls
is not a simple one.

The procedure I have developed for finding the lines from the differential
picture makes mistakes in complex pictures and is a complex special-pur-
pose program demonstrating very few general concepts. However, it does
manage to produce accurate line drawings from a sufficient group of pictures
so that the transformation techniques can be tested on data from real
photographs. The description of this procedure will be rather general in
nature. ’

The over-all concept was to look at local features first and build up to the
determination of long lines in a series of steps. There are two reasons for
this procedure. First, at each step the complexity of the processing goes
up since more data are being considered, but at the same time the number
of features to process is being reduced at each step. Thus the total time to
process the picture is much less than if a one-step process were used. Such a
one-step process was tried by Leo Hodes in an attempt to find the lines in
black and white line drawings.* For each possible line a correlation with
the raster was made, and then the line position was corrected and recorre-
lated. This type of procedure becomes more and more time consuming as
the raster size, line length, and accuracy required increase, whereas a multi-
step process need not consume additional time.

The second reason for a multistep process is that the initial local feature
extraction can take into consideration the local noise level and thus detect
lines which an over-all clip level would miss. '
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The first step of the process looks for points in the differential picture
_which seem to be on a line. The maximum sample in each 4 X 4 square
of raster points is considered as a possibility if its value exceeds a small
threshold. This threshold is low enough to include all the lines and much
of the noise but it does eliminate further processing of smooth areas of the
picture. Its value has been determined by experiment to be about one-tenth
of the maximum intensity in the original picture. After a point has been
- chosen in this way, four correlations are performed to find the direction
of a line through the point which best fits the data. Four lines, having a
length of five samples with slopes of 0, 1, ©, —1, are correlated with the
data around the point, and the ratio of the best to the worst fit is taken.
If the ratio is greater than a second threshold (about 3), the point and the
best direction are recorded. In this way a set of feature points is obtained,
along with approximate line directions through them. The procedure can
be considered to be a ridge detector which locates points along each ridge
with limits on the height and width of the ridge. The number of feature
points obtained is usually between 100 and 1000. Figure 2d shows a short
line at each feature point, pointing in the recorded direction.

After the feature points are found, the next step is to connect lines be-
tween neighboring points. The line directions of the points are used to limit
cross connections between adjacent lines. Specifically, a pair of points are
connected if they are in touching 4 X 4 squares and if the line’s direction
will be within 4-23° of the direction recorded for either point. Any points
left unconnected are eliminated, thus filtering out most of those created by
noise. The result is a preliminary line drawing composed of many short
lines. There are two major problems with this line structure: sections of a
long line may be missing, and sections may be complicated by multiple
interconnections. The interconnections are most obvious at corners but
also appear along a line as extra width. Figure 2¢ gives a more graphic
illustration. To reduce these small networks of lines to a single line or neat
corner, two reduction techniques are used. Their important property is’
that they do not change the over-all connectivity and topology of the line
structure. First, the longest side of each triangle is deleted. A triangle is
defined here as any three lines in a loop. This cleans out most of the un-
wanted lines; however, there are a few quadrilaterals left. Therefore, each
group of four lines connected in a loop is compressed along its shortest
diagonal; that is, the two closest, nonadjacent points are merged. There
may still be a few pentagons left but most of the networks have been re-
duced. The last step in smoothing out the line structure is to remove all
small tails or spurs which are unconnected at one end and connect to more
than one line at the other end. These smoothing operations are all on short
lines so no major features are changed. They do, however, limit the resolu-
tion of the input system to about four to eight samples out of 256. This
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restriction is on resolving short, close lines, not on the accuracy of longer
lines. The result of smoothing Fig. 2¢ appears in Fig. 2f.

Now that a structural outline of the lines in the picture has been ob-
tained, longer lines can be fitted to sections, missing segments filled in, and
extra segments removed. The segments along the path of a true straight
line may weave in and out but each point was obtained by the ridge detec-
tion technique and is accurate to about one sample width if it was caused
by the edge. A sequence of singly connected points with no intersections
will probably be caused by the same edge or sequence of edges. By a least-
mean-square error-line-fitting routine, a straight line can be put through
the points and result in a very high accuracy line. Curve segments could
also be fitted to the points if this were desired; the main additional problem
would be the choice of the type of curve to try—circle, parabolic, cubie, etc.
It becomes more and more obvious, as one considers fitting curves to the
picture edges, that it is advantageous to have a set of points already deter-
mined, through which to put a curve, instead of having to correlate various
curves with the picture data.

To fit a straight line to a sequence of points, a sequential least-mean-
square error-fitting routine is used. The problem is to find the best coeffi-
cients (a, b, c¢) for the line equation

ax + by =¢

The data are supplied sequentially in the form of points (z, %) and it is
desirable to recompute as little as possible each time a point is added.
However, upon each addition of a point, the coefficients (a, b, ¢) and the
new mean-square error E should be available. It is sufficient to keep a
history of five numbers, the cumulative sums

Xz, Xy Xmy, Xz, Ty

and the number of entries made n. Then, after each addition of a new point
(z, y), the coefficients are computed as

a=YzXy—XyXay
EDIDIE DI DI

c

PIELD DD I TD L
E=c(nc—az:x—b2y)/n(a2fb2)

Since these equations represent the mean-square best reduction of the
unnormalized error E(a? 4 b?), they do not always produce the least-mean-
square distance error as represented by E. However, the solution is much
easier than the complete form and just as good in almost all cases.

The procedure for fitting a line to a series of connected points starts by
choosing any small line segment as a starting place and moving in one
direction until a point is reached with other than two line segments at-
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tached, or until the mean-square error exceeds a threshold. When the error
threshold is reached, a bend in the true lines has probably been passed, so
the procedure is to back up until the angle between the little line segments
and the computed line has decreased by a factor of 2. Usually this condition
will occur at the bend sought for, since on the other side of the bend the
angles must be negative. This procedure works very well and needs no
threshold adjustment because of the backup procedure.

When the line has been finished in one direction from the starting point,
the other direction is investigated in the same manner, still modifying the
same computed line. The method of using cumulative sums as the only
history for the line computation allows points to be subtracted out during
backup, eliminating the need for large tables of past history. Also, the
procedure is fairly independent of the starting point since, during the second
direction’s backup, the starting point can be passed, thus creating a line
totally to one side of the starting point. This will occur when a break point
appears just after the starting point, and as the break point is passed in the
forward direction, the error does not build up to threshold.

Thus the line-fitting procedure replaces groups of small line segments
with longer, more accurate lines. The ends of these new lines are at the
intersections of several lines, at break points as detected by the error cri-
teria, or are free and unconnected. Each time a long line is computed, the
points at its ends are moved onto the line since the line is more accurate
than the points. If several long lines meet at a point, the point’s coordinates
are computed to be the intersection point of the two longest nonparallel
lines. Thus the points become as accurate as the lines connected to them.
A special case may come up due to the incomplete removal of a network
of small lines: Two lines may be constructed between the same end points.
These must be merged and the lines connected to the false intersections
reprocessed into one line, if possible.

When all the lines have been fitted to the small segments, the representa-
tion of the picture consists of a set of lines and end points mapping the
edges in the picture. There still may be sections of lines missing and extra
segments near intersections. Figure 1g shows the result at this point. Now
line filling and merging are done to complete the line drawing. Each line is
considered for modification. If the line is of significant length, the nearest
points to both ends of the line, which are within about three raster units
of the extended line, are considered as possibilities for new end points. A
new line is correlated with the differential picture between an end point
and the new point and if the average value along the line is greater than a
threshold, the line is put in. When a line is very short, it is not extended
but is considered for merging or elimination. If the line’s end points both
connect to one other line, then the end points are merged, otherwise the
line is deleted. After extending, merging, or deleting the proper lines, the

299



L. G. Roberts

whole line structure is again processed with the mean-square line-fitting
program in order to eliminate extra joints which may have been created.
The resulting line drawing is the finished version as shown in Fig. 1A.

The entire picture-to-line-drawing process is not optimal but works for
simple pictures. It has several useful parts; the differentiation, the feature
point extraction, and the mean-square line fitting are the best parts. In
the future, I hope to recombine these sections to produce a more general
system.

V. Construction of Three-Dimensional Obijects from Line Drawing

The program described in this section starts with a planar line drawing
and produces a three-dimensional description of the objects shown in the
drawing in terms of models and their transformations. The line drawing
may be one generated by the picture input process or some other computer
program such as the three-dimensional display program (Sec. VI). The
main restriction on the lines is that they should be a perspective projection
of the surface boundaries of a set of three-dimensional objects with planar
surfaces. Any line drawing produced by the three-dimensional display pro-
gram is acceptable as an input to this program, and since this program’s
output is an input to the display program, the two programs can be used
to check each other. The models used for construction can be any set of
three-dimensional building blocks which seem useful so long as all their
surfaces are planar. Since the models can be put together so that their joint
lines disappear, almost any complex object can be constructed with a very
few models. There are only three models presently used in the program:
a cube, a wedge, and a hexagonal prism (Fig. 6, in Sec. VI illustrates these
models). Section III describes the general procedure used for this two-
dimensional to three-dimensional transformation, whereas we now wish
" to develop the specific mathematics and techniques used in the program.

A. Polygon Recognition

The line drawing which is produced by the three-dimensional display
program is just a list of end-point pairs, one pair for each line. This type
of input is specially processed to put it in the form wanted. Each line is
assigned to a line block in a line list and each point to a point block. Each
point indicates which lines are connected to it and each line block points
to its end points. Thus, for each end-point pair in the input list, a line block
is created and the point list searched for point values close to the end points.
If the points already exist, the line is just tied into them; otherwise, a new
point block is created. Upon completion of this phase, each point is checked
against all lines to see if it lies on a line but is not connected to the line.
If this occurs, the line is broken in two and both new ends are tied to the
point. The list format produced is a good form for topology processing and
is the same format as that produced by the picture input program.
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The first problem is to find the polygons described by the lines. In order
to trace the polygons easily, the lines tied to each point are ordered by their
angle of exit. This allows us to start with any line, choose an adjacent line
at one end point and continue around the polygon to the first line, without
ever getting off the polygon. This procedure can be made to go clockwise
or counterclockwise around polygons, and thus record two polygons for
each line. A list of polygon blocks is prepared, each tied to the lines that
compose it. The lines also point to their two polygons. As each polygon is
produced, the exterior angle at each vertex is computed and the sum of
these angles is kept for the polygon. These angles are computed in semi-
circles, so they are between 41 and —1. The sum will therefore be +2, if
the polygon was hollow on its inside, but if the polygon was really an ex-
terior boundary of an object, the “hollow’ part is outside and the sum will
be —2. Figure 3 shows the polygons of a cube projection and their exterior
angles.

/2 M/Z

F1e. 3. Exterior angles. The exterior boundary of an object is separated from the

normal polygons by the sum of the exterior angles, taking the unconnected direc-

tion as the inside. The direction of travel and the sum of the exterior angles appear

in the center of (b) and (c). Angles are in semicircles. (a) Complete cube. (b) Interior
polygon. (c¢) Exterior boundary.

It may not be apparent that exterior boundaries are difficult to separate
from the real polygons, but as the computer traces a polygon, it has no
concept of the inside; it just traces a closed path with all connecting lines
on one side of the boundary. It must expect some negative angles because
the polygon may be concave. Thus the sum of the exterior angles is neces-
sary, if the computer is going to separate exterior boundaries from real
polygons.

Some further information is obtained as the polygon is traced out: the
number of sides of the polygon, the number of negative angles encountered,
and the number of near-zero exterior angles. One or more negative angles
indicate that the polygon is concave, whereas the zero angles indicate
collinear joints which most likely were produced by another object partially
hidden behind this one. Thus a first guess at the number of sides the surface
really has is the number of lines minus the number of zero angles. The poly-
gon is then marked as complete and convex if there are no negative angles,
it is not an exterior boundary, and it does not include a point where a zero
angle was observed on another polygon. The last condition eliminates from

301



L. G. Roberts

initial consideration polygons that are most likely partially hidden by an-
other object. Figure 4 shows an example where each complete and convex
polygon is labeled with its first-guess number of sides.

B Figc. 4. Complete convex polygons.
. The polygon selection procedure would
select the numbered polygons as com-
plete and convex. The number indi-
N . cates the probable number of sides. A

polygon isincomplete if one of its points

is a collinear joint of another polygon.

The reason concave polygons are not considered at first is that the models
presently being used in the program are all convex. However, if a model
with concave polygons is included, the appropriate concave polygons
from the line drawing should be considered. In this connection, the rule is
that both the number of positive angles and the number of negative angles
of a polygon are invariant under any perspective transformation. Thus the
only polygons which need be considered at this point are those which have
the same number of plus and minus angles as some model surface. With the
models included in the present program, the acceptable polygons are further
restricted to have 3, 4, or 6 sides.

A comment on incomplete polygons may be useful at this point. A perfect
projection of solid objects with visible width and no two-dimensional mark-
ings is being assumed for the input. Since such projections are completely
composed of surface boundary projections, they will never contain any
points connected to only one line, unless the points are on the boundaries
of the picture. If a special external boundary square is included, there
will be no incomplete polygons as is assumed. The three-dimensional
display program will always generate acceptable input, but the picture
input process could miss lines, generate false lines, or include two-
dimensional markings. These cases could be taken care of by further
checking the picture and other techniques, but at present this task was
ignored. The program eliminates such problems by deleting all lines
not connected in a closed polygon. Also any isolated polygon is considered
to be a two-dimensional marking and is deleted. Thus all letters except B
are deleted as well as most other simple two-dimensional markings. When
the process is completed, these markings could be transferred to the ap-
propriate surface, if desired, but this was not done.

One further computation is performed on each polygon even though it is
used only to order the investigation of the polygons. The area of each poly-
gon is found as the program moves clockwise around the points (z;j, ¥;),

A =33 @iy — TYin)
This procedure, which is really summing the signed areas of the triangles
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formed by each line and the origin, is very simple and works for any shape

.polygon. If the motion is counterclockwise instead of clockwise, as is the
case for external boundaries, the area will come out negative. This formula
for the area of a polygon was derived by the author since no suitable formu-
lation could be found easily.

B. Model Matching

The first tool used to match the polygon structure to the models is topol-
ogy. Basically, we wish to find points in the line drawing which fit a trans-
formation of some model. The polygon structure is used to find a suitable
model with a set of topologically equivalent points. Then the mean-square
error technique is used to find out whether the point positions are related
by a simple transformation or not. Topology matehing proceeds in four
steps. First, each point is examined to see if it is completely surrounded
by approved polygons. When such a point is found, the number of polygons
of each type is counted. At present, since the only approved polygons are
those with 3, 4, or 6 sides, three counts are obtained. A list of triads corre-
sponding to distinet points on the models is maintained so that a quick
search will indicate which model points are surrounded by the same polygon
structure as the picture point. For example, if a point has three quadri-
laterals around it, the list will specify a particular point on the cube model.
The other points on the cube need not be listed because they are all similar
to each other. Once a model point has been chosen, the program cycles
around the picture and model points to line up the order of the polygons.
If the orders cannot be matched, other listed model points are tested ; how-
ever, if they are matched, a list of equivalent point pairs is constructed.

The computation of the optimal transformation matrix from the point
pairs is presented in Appendix B. Besides producing the transformation,
the procedure generates the mean-square error. A threshold is placed on
this error to eliminate models which fit the picture topologically, but do
not fit exactly without being deformed. Models having acceptably small
error can now be transformed to produce the lines and points which were
not part of the fitted area. The points are checked against the picture to
‘make sure they do not fall outside the object’s external boundary. If a
point does exceed this boundary, the model must be discarded since it
would produce new lines not in the picture. Models that pass this test,
however, could represent at least part of the object, and are accepted. If a
transformed model completely accounts for a group of connected lines, the
transform and model are used to represent that object; however, if some
lines are left, the procedure described under object construction must be
used. Figure 5a through d shows the processing of a photograph in which
a single cube model was used to describe the three-dimensional object,
whereas Fig. 6a through d illustrates a situation in which two models were
needed.
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The examination of all points surrounded by polygons is only the first
step of the topology matching. When all the points are tested, lines are
examined for approved polygons on both sides. A second list of model infor-
mation is searched for any models with such a pair of adjoining polygons.
When a line and model are found, the polygons are aligned and a list of
point pairs produced. From here on the transformation procedure is the
same as before.

®)

(© C)]

F1c. 5. Single model: reduction of photograph to line drawing and display of three-
dimensional construction from another viewpoint. (a) Original picture. (b) Differenti-
ated picture. (c) Line drawing. (d) Rotated view.

The third step, after all lines have been examined, is to test each remain-
ing approved polygon. The polygon must have a line attached to one ver-
tex. The model information lists each distinct model, polygon, and vertex
for each type of polygon, and the point pair list is easily prepared. The
fourth step, if necessary, is to take each point with three lines out of it and
test these four points against each distinet vertex and line orientation in
each model. This test is a last resort.because there are so many model possi-
bilities and in every case a transformation can be found which makes the
mean-square error zero. Only finding a point outside the boundary can
eliminate these cases.

The four steps are ideal for the cube model since the number of points
found decrease by one with each step. Almost any visible piece of a cube
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will be processed with the maximum number of points possible. Even
though this is not true for all models, the four steps are a good appr:xima-
tion to a comprehensive topology search. Topology tests and matching are
very difficult to implement on a computer, even with the aid of a gcod list
structure. Computer languages seem to be far superior at numeric+] and
symbolic manipulation than the decision-loaded searching associat.d with
topology. The inherent limitations of the serial processing of a lin struc-

© @

F1e. 6. Multiple objects: reduction of photograph to line drawing and three-dimensional
construction, involving ground plane determination of depth. (a) Original picture.
(b) Differentiated picture. (¢) Line drawing. (d) Rotated view.

ture, without some global picture of what one is looking at, make specific
tests such as the four steps far easier to achieve than any general procedurc.
Even to accomplish these steps without continual searching and backtrack-
ing, the list structure must be organized in a very special manner. At each
vertex the connecting lines are ordered by angle of exit in a counterclock-
wise ring. Thus any time the program arrives on one line, it can easily exit
on an adjacent line. Further, the lines in each polygon are ordered in a
clockwise ring, with the end points of each line and the two polygons of the
line specifically related. This is important because, upon arrival at an end
point of a line, the program can immediately identify the right and left
polygons and proceed around eithér one. Both the model structure and the
line drawing are organized in this way. The definition of clockwise and
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counterclockwise in a three-dimensional model structure is not obvious
but, for compatibility with the projections of a solid model, all such order-
ings are made while looking in from the outside.

C. Compound Object Construction

A compound object is a single solid object which is not a transformation
of a single model, but must be formed by piecing together several models.
Whenever two models are fitted together such that they have a frontal
plane in common, the three-dimensional display program will eliminate any

" piece of line which touches both models and is in that plane. Since these
joint lines do not reflect any surface discontinuity, it is expected that they
will also be missing in the line drawing input. If joint lines happen to appear
in the input, the resultant structure will probably be the same as if they
were missing; therefore, the display will not include them. As models are
found which fit a part of an object, their lines are projected back onto the
drawing and the joint lines found. Thus the complex unapproved polygons
are cut up by these joint lines into smaller polygons until each piece is
approved. The following rules are for deleting an accepted model from an
object and reforming the picture to make ready for the next model identifi-
cation. The expression “T joint” refers to a vertex at which two collinear
lines and one other line, the ‘“‘stem,” meet. During the process, parts of the
drawing are deleted, but these changes are never allowed to modify the
external boundary polygon since it must be used to test new models. The
concept.of a “visible’” model line or point refers to the points and lines
on the frontal surfaces of the model.

1. Each visible point of the transformed model is projected on the
drawing.

a. Any new point pairs disclosed by the proximity of model and pic-
ture points are used to recompute the transformation for better
accuracy. :

b. If a model point falls on a picture line, the line is cut in two and
the point inserted.

2. All the model lines and points are added to the picture if they are not
already there. Any picture point which lies on a model line, but not on
either end, is separated from the model line structure. Thus a picture line
that ends in a T-joint stem may be extended to its proper end point, and
the collinear T-joint lines unified into one line. Joint lines are those visible
model lines which were not in the picture and which divide a picture
polygon. ’

3. Each visible model point in the picture which does not connect to any
nonmodel lines is now marked ‘“used.” Also, all points on polygons with
more than two “used” points are marked “used.” The joining polygon be-
tween parts is the polygon which includes the joint line but is not divided
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by it, and all the points on such a polygon must be unmarked. Now all
“used” points are deleted along with their attached lines and polygons.
Also, any line in a joining polygon which is the stem of a T joint at both
ends should be deleted.

4. All remaining model lines should be marked as unnecessary. If all
lines left connected to them are unnecessary or if no lines are left connected,
the object has been finished.

Each time a model is stripped from an object in this way, its transform
and model name are saved as part of an object block. For each model, a
point which was connected to the remainder of the object is remembered,
so that the depth relations between the parts may be computed. When an
object is finished, there will be a string of points connecting its parts. An
object transformation is set up to position the depth of the whole object;
hence, the first model can be assumed to have the correct depth. Then each
model whose point connects to the first has its transformation modified
so that the points have the same depth. Then the models connected to those
are updated and so on.

To correct a transformation R, when a known point 7 should be equal to a
point 7 = gR,, the new lower-left element z of R, is computed as

- QW — Divy
qa(va — T01)

Here w is the present lower-right element of B, and the new w' = w 4+ rz.
Note that the focal ratio r for the picture must be known at this point.
However, the accuracy of r will not affect the accuracy of positioning the
parts with respect to each other.

Eclipsed objects, or objects partially hidden from view by other objects,
are automatically taken care of by the construction rules. One case, how-
ever, needs further attention. When an object is so well hidden that a
dimension cannot be determined, this dimension must be estimated. An
~ example of this case would be when only the top of a building is visible
over another. The first assumption we make is that the object is supported
by the ground plane. But a second assumption is needed to place the object,
and the program assumes that the hidden object just touches the object
in front. This is not a very good assumption, but there are no good as-
sumptions.

Figure 7 illustrates the construction of a compound object. The original
line drawing appears in Al and includes a compound object and a partially
hidden object. Since there are no points surrounded by acceptable polygons,
we must look for a line with good polygons on both sides. There is only one
such line to which a model can be fitted and this is in the upper object.
Both the cube and wedge models fit this object; however, the cube is always
tested first to avoid splitting cubes into wedges. The lines of the cube model
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are then projected onto the line drawing as in A2, and the transformed
model is entered into the three-dimensional structure as displayed in A3.
After a model has been identified, the “used”” points and lines are deleted,
thus producing the line drawing in B1. Now a new search for fitting models
is made. The lower-right quadrilateral and the bottom line adjoining it are
found to fit a cube model, resulting in B2 and B3. Next, a cube is fitted at

REDUCED LINE DRAWING 0BJECT LINES INSERTED 3-D CONSTRUCTION

Y

A3

7T
—

3 _
F1a. 7. Compound object construction: original line drawing in A1 is processed to obtain

three dimensions in D3 by sequential recognition and deletion of four models in steps A,
B, C, and D.

c3

IL]] 02 03

the left, in C1, producing C2 and C3. Finally, just a wedge is left in D1 and

since all the back lines have already been determined, D2 appears the same.

When this model is added to the three-dimensional structure, the result is

a complete description of the objects and can be displayed as in D3 or from

any other point of view. Figure 8a through d shows the computer processing

of a similar compound object from a photograph. The collection of models
describing the three-dimensional object can then be rotated as in Fig. 8e

through h. '
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© (@)

Fie. 8. (a-d) Compound object construction: processing of Fig. 2 to obtain three-
dimensional description of compound object. (a) Original picture. (b) First construction
model. (¢) Two construction models. (d) Complete three-dimensional object.

) ()

F1c. 8. (e~h) Compound object construction: rotated views of object obtained in
Fig. 8(d). (¢) Rotated view. (f) All lines of Fig. 8(a). (9) Second rotated view. (h) Third
rotated view.
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D. Ground Plane Assumption

When all the objects in the picture have been constructed, they still
need their object transformations adjusted for depth. If an object consisted
of a single model, the transformation listed is Ro. If the object was com-
pound, an identity matrix was set down as the object transform and the
model transforms all relate to it. In both cases each object has one free
variable related to depth and size. The support theory would place each
object on top of another or on a ground plane. In order to simplify the
present program, the ground plane is the only support assumed. However,
the addition of object support will not be very difficult.

Finding the ground plane is the most difficult part of the depth computa-
tion. Each object could be examined for possible support planes and all
objects compared for a common plane. An object. could be supported by
anything from three points to a full plane in contact with the ground. To
simplify this chore, it was assumed that the picture was upright and each
object had a full plane in contact with the ground. A simple test of the
slope of each plane of an object is used to determine if that plane is the
bottom. This test merely asks that the bottom is not visible, that it faces
the downward z direction, and that the tilts in the y and z directions are
moderate. The best such plane is chosen from each object, and all are ex-
pected to agree. The slope of this plane is the only information available
from the incomplete transformations, so the distance of the plane below
the origin or focal point must be assumed. This distance just sets the nu-
merical scale of all distances, so it might as well be unity. Thus a ground
plane is determined and all the object bottoms are now made to lie in this
plane.

With each model surface is stored its plane equation vector for the use of
a three-dimensional display program. The dot product of this vector with
any position vector is zero if the position is on the surface, and positive if
the position is inside the solid. These plane vectors should be transformed
by R-! to become plane vectors of the transformed model. If the plane
vector of an object plane is transformed by Ry, it has the correct slope
but not necessarily the correct length. In other words, its first three compo-
nents are correct. These are used to find the ground plane. Now with the
ground plane distance equal to one, we must find the depth z for each R.
The lower-right component of R, we shall call w, and the same component
in the final R, w’. We first set z; = —w/2r and w; = w/2 to obtain R,.
If we transform the plane vector by Ry and R, we obtain # and 7.
Normalizing these vectors so that the sum of the squares of the first three
components is 1, we obtain normalized fourth components po and p,. The
plane vector for R has a fourth component which is a linear combination
of po and p,. Setting this combination equal to one and solving for the depth
z, we obtain
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r(1 + pr — 2po)
w =w+rr

z

“Here again the focal ratio r is needed, and this time if r is zero, the compu-
tation of z blows up. This just reflects the fact that an infinite projection
has infinite depths; however, it restricts » to nonzero for this procedure.

VI. Three-Dimensional Display

After a list of three-dimensional objects has been obtained in some man-
ner, it should be possible to display them from any point of view. The sec-
tions of objects behind other objects should not be seen, nor should the
back lines and construction lines of individual objects. The three-dimen-
sional display program will do all this and more. It allows macrolike in-
stances of objects so that a single object construction can be used many
times with different transformations. It allows structures of models to be
built up by the use of the knobs, push buttons, and light pen. Any object
can be duplicated, deleted, or transformed. These extras make possible the
construction of test cases for the two-dimensional to three-dimensional
program to process. However, the most significant feature of this program
is the mathematical technique which makes possible the hidden line re-
moval.

A. Storage Structure

A good method of storing three-dimensional data is extremely important.
The structure used is the basis for both the display program and the three-
dimensional construction process. Therefore, the data necessary for hidden
line removal must be quickly available and at the same time the topological
structure must be suitable for model matching.

The list structure used is a list of tied blocks connected in rings. Ring list
structures were developed for the TX-2 computer by Sutherland for his
Sketchpad system.!? Sketchpad allows a user to draw two-dimensional line
- drawings on the computer display with the aid of the light pen, knobs, and
push buttons. An extension of this work to three dimensions is currently
being completed by Johnson.!* These two systems use ring list structure
and, in order to be compatible with them, the same format is used in the
three-dimensional display program. However, the exact block form used
is different because of the different data requirements. In the ring structure,
a block of registers is used for each item and contains pairs of ties to other
blocks. Each pair of ties is part of a ring which allows the program to move
from block to block around the ring in either direction.

The basis of all three-dimensional forms is the set of models. Each model
block is tied to lists of its points, lines, and surfaces. The point blocks are
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tied to the lines connected to them and include a four-component position
vector. Since a homogeneous vector can be normalized without changing
the point, each component of the vector can be represented by a fixed-point,
36-bit number. The line blocks are tied to two point blocks and two surface
blocks, since two planes determine a line. The surface blocks are tied to a
ring of lines which represent the surface polygon and also include a plane
vector. This detailed structure is needed for models only, since the objects
are to be composed out of transformations of models. The models are always
in the list structure and must be referred to by instances in order to be
displayed. An instance is an intermediate block between a picture and either
a model or another picture. Each instance includes a 4 X 4 transformation
matrix and also the inverse of this matrix. The picture blocks may be re-
ferred to by any number of instances and have as their parts any number
of instances. Thus each picture represents an object or a collection of objects
and is composed of transformations of other pictures or models by means
of instances. One picture is the current picture being displayed, and it has
only one instance containing the picture transformation. Figure 9 shows a
possible structure leading from the models to the current picture. The
instances have been compressed to ties with matrices on them for simplicity.

i

MODEL
STRUCTURES

.

TRANSFORMATIONS

PICTURE

TRANSFORMATIONS Ty

PICTURE

VIEWING TRANSFORM

i _’*_'® W.—“"—’ O @

FINAL PICTURE

F‘IG. 9. List structure formation: representation of list structure formation of compound
pictures. Each “picture’” is composed of transformed versions of models and other
pictures. There may be as many levels of pictures as necessary.
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B. Display Generation

In order to display the picture represented by the current storage pattern,
a recursive procedure is used, starting with the cutrrent picture. Each pic-
ture block has a temporary storage area to store the effective transforma-
tion and its inverse at that picture level. One recursion involves taking the
transformation at one picture level, premultiplying by the matrix of one of
the instances the picture refers to, and placing that transformation in the
picture block referred to by the instance. The inverse matrices are carried
along also, but postmultiplication must be used for them. If the instance
refers to a model, the matrices obtained are put in a transform block along
with the model name. Each time a model is reached, the process backs up
to the last picture block and proceeds to the next instance, or if all in-
stances have been processed, it backs up to the preceding picture block.
In this way a list of transform blocks is obtained. Each transform block
is now processed by tying to it a list of point-pair blocks obtained by trans-
forming the end points of each line in the selected model. Each position
vector is postmultiplied by the transformation in the transform block to
obtain the new position vector. Also, the plane vectors of the model are
transformed by the inverse matrix and collected as the columns of a volume
matrix.

Thus a list of transform blocks is obtained, each block of which has a
volume matrix and a list of point pairs. The point pairs represent all the
lines in the display and can now be processed to eliminate the hidden lines.
The display coordinates of a point are obtained from the four-component’
position vector 7 as

T = /v,
Y = v3/vy

C. Hidden Line Elimination

Three steps are required to prepare a line for display. First, it is trimmed
off at the edges of the display. Next, the back lines of each model are deleted.
Third, the sections of each line which are hidden by other models are re-
moved. It is the third part which is difficult and time-consuming. As far
as I know, no one has ever devised a procedure for determining hidden line
segments. One can imagine brute force methods such as calculating all the
line intersections on the focal plane and then computing which lines were
in which polygons and tracing out the frontal lines. But procedures such as
this are hard to make complete for all cases, and the processing time could
be fantastic. Therefore, a new mathematical method was conceived which
utilizes volume inequality matrices to find out whether a point is inside or
outside a volume. This test can then be extended by linear inequality solu-
tions to tell which segment of a line is behind a volume. This is why the
inverse transformations, plane vectors, and volume matrices are needed.
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Since they are available, they can be used to advantage in the first two
steps. ’

The volume matrix V of a model is a 4 X n matrix with the n-plane vec-
tors as columns. In the homogeneous coordinate system, a dot product of a
position vector and a plane vector produces a measure of the distance of
the point from the plane. The plane vectors of the models have had their
signs adjusted so that the dot products will be negative if the point is
outside the solid and positive if the point is inside. Thus, when a position
vector ¥ is postmultiplied by a volume matrix, the resulting vector vV,
since it is a collection of dot products, will have at least one negative term
if the point is outside the volume. If any terms are zero, the point is on
the model’s surface, and if all are positive, the point is inside. In order that
this test may work, the models must be convex. This is a small restriction,
since the objects constructed with the models need not be convex,

@V > 0) = 7 inside volume V

In the expression above, the inequality sign means that all components
of the vector should be nonnegative. Expressions and formulations of
inequality matrices have been used in the field of linear programing to
express the interior region of convex polyhedral cones where the general
problem was the optimization of a function in such a region. However,
literature in this field does not seem to cover the geometrical type of prob-
lem we are concerned with. .

A volume matrix can be used for the first step of the line reduction: the
elimination of lines from the display. As well as cutting off lines at the
display edge, we wish to cut off lines in front of the focal plane. Thus a
volume matrix can be designed which has planes at y = &1,z = =1, and
z = 0. These planes form a semi-infinite box, and we wish to find the section
of each line inside the box. First, we shall define the volume matrix V,,

0 0 0 0 -1
1 -1 0 0 0
0 0 1 -1 0
1 1 1 1 0

The set of all lines is the list of point-pair blocks. We shall want to use a
line equation of the form

v=85+td, 0<t<Ll1

where ¢ is a running variable, moving the position 7 from 3 to 3 + d. A
point-pair block has two points, 3 and 7. If the fourth component of these
vectors is made to agree by normalizing one vector, the difference vector
d = 7 — § cam be formed. With this line representation we can proceed
to find the values of the variable ¢ for which the following inequalities are
true: ‘

Vo='

sV, + taVo >0
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This set of inequalities requires that the line be inside V, and we can solve
for the minimum and maximum ¢. If we define

p=38V,, g=2dV,
then for all j,
pi+ig 20
For q; > 0,t > —p;/q;. For ¢; < 0,t < —p;/q;. From these relations it is
fairly obvious that we can obtain a minimum and maximum value for ¢ and
thus define the segment of line inside the volume. This segment then re-
places the old point pair.

The second step of the line elimination is the removal of all the lines
hidden by their own volume. Although this would be done automatically
if we went right on to the third step and included the line’s own volume
among all the others, it is faster to eliminate these back lines ahead of time.
The volume matrix associated with a line contains the plane vectors of the
model, and two of these planes intersect to form the line. In each point-pair
block we keep track of which columns of V are the line’s plane vectors.
The first component of a plane vector is the  component and will be nega-
tive if the plane faces toward the observer. Thus the second step is very
simple: a line should be deleted if both the x components of its plane vectors
are positive.

The third method of eliminating a line is to see if it is hidden by some
other volume. For this test, each remaining line is tested against every
volume matrix except its own. The procedure is similar to that of step one
except that a two-variable inequality solution must be found this time.
The segment of line found is the part to be deleted, and this may be an end,
the center, or the complete line.

A volume matrix produces inequalities which tell if a point is in the vol-
ume. In step one we used a point with one degree of freedom ¢ along a line.
Now the line may be behind the volume so a second degree of freedom must
be used to move the point forward through the volume. If a point on the
line is moved forward in z in this transformed space, it will have to move
through the volume, if it is hidden. The variable point will thus be repre-
sented as before with a variable ¢ along the line, but also with a variable «,
in the £ = [1, 0, 0, 0] direction.

Variable point: ¥ = 3 + td + o%
Inequalities: oV >0
Thus: sV+@dV+axV >0

Now zV is just the top row of V, which we can call ¥, and 5V and dV
can be computed as before.

Define: p=38V, g=dV, w=3zV
Thus for all j: -p; + tg; + aw; > 0
Where: 0>2a21, 02t=>1
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These inequalities must be solved for the minimum and maximum ¢ for
any nonnegative a. A few simple tests allow the removal of equations which
are always satisfied or the termination of the test if an equation will never
be satisfied. Ignore equation:

(>0 A (@ 20) A (pi +w; 20) 0]

G <OA@>OA@+¢6G20) AP +9+w 20 (2
Quit, leave line:

G>0A@<OAD@+GSOADP +¢+wi<0) @)

@G <0OA@ZLO)A@+w;<0) | 4)

These tests speed up the process considerably since only a few planes of
each volume are really involved in the determination of ¢{. To solve the
remaining equations, many methods are possible and a very simple one
was chosen. Each inequality is considered as an equality and all intersec-
tions between these equalities are found. Also, the intersections of these
equalities with the boundaries, « = 0, 1and ¢ = 0, 1, are found. Each inter-
section results in a pair (e, t), and these pairs are tested in the inequalities.
Any pair satisfying all inequalities and the boundary conditions is used
to compute a minimum and maximum ¢. Because the actual minimum and
maximum ¢ must occur at intersections, this is a complete solution. It is
also fairly fast since there are usually very few equations. If no pair will
satisfy all the inequalities, then the line is not hidden by the volume and
is left intact. Otherwise, the section of line corresponding to the solution
area, between minimum and maximum ¢, is deleted.

One case of interest can be modified during this process. We want to
eliminate joint lines between touching, tangent objects. A joint line, when
processed with the touching solid, is detectable since the inequality caused
by the plane through the line will have ¢; = p;, = 0. If this occurs, the
solution space is limited to @ = 0. Thus the joint line can have a proper so-
lution and will be eliminated. However, this also occurs for joints between
objects where the planes are not tangent. We want these lines and must
act to preserve them. Therefore, whenever ¢; = p;, = 0, we make a special
test to find out if either of the planes through the line from its own volume
is parallel to the plane being tested. We also ask that the tangent planes
face the same direction. If parallel planes facing the same way are not
found, the line under consideration is kept intact and the rest of the test
skipped. '

This completes the testing of one line with one volume. The line is then
tested against the other volumes. The final result of the complete hidden
line removal is a modified list of point pairs. These lines are then displayed.
The complete process tends to be time consuming for complicated displays,
but the time does not seem to go up as the square of the number of objects,
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as might be expected. This is because objects far away from the line being
processed are quickly disposed of by conditions (3) and (4). Thus the time
consumed is on the order of one second per objedt for displays of up to
thirty objects. It is not necessary to do the complete hidden line removal,
though, if a faster moving display is required. The complete process can
be reserved until the desired view is obtained.

D. Display Construction

Besides being able to display the list structure, the display program has
provisions for modifying the list. The picture transformation in the first
instance can always be changed by a rotation about each of three axes, a
translation in three directions, or a size change. All transformation changes
are obtained through the use of four shaft encoder knobs on the computer
console. The function of these knobs is selected by means of push buttons.
In addition to modifying the picture transformation, the light pen can be -
used to point out any instance transformation for modification. The pen
is pointed at the object to be modified, and a level register indicates which
instance level of the object to modify. This method is somewhat crude but
does allow any instance to be modified. The transformation changes allow-
able for objects include rotation, translation, three size components, three
skew components, and an over-all size factor. Beyond these transformation
controls, any object can be deleted or duplicated. New instances of models
can be generated and instances made of present pictures. These controls
allow the construction of any list structure possible or the modification of
any existing structure. Thus test pictures may be generated to facilitate
the testing of this program and the three-dimensional construction pro-
gram. Some sample pictures generated on the computer appear in Figs. 10a
through k. These photographs illustrate the complexity of three-dimen-
sional arrays which can be constructed on the computer in a few minutes.

VIl. Conclusion

In the past, research in the pattern recognition field has been limited
to the identification of two-dimensional shapes, mainly because it was
thought that any three-dimensional analysis would be more difficult. The
idea seems to have been that the two-dimensional work would pave the
road for future three-dimensional work. However, progress has been slow
and it may well be that the study of three-dimensional projections is an
easier step. The human visual field is the result of a projective transforma-
tion, and the shapes perceived are independent of this transform. Thus it
makes sense to utilize this transformation, since our goal is to recognize
the same similarity classes which humans do.

The mathematics necessary to go from a photograph to an object list
have been described. A set of transforms is found which takes a set of models
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(© (d)

F1g. 10. (a-d) Three-dimensional displays: pictures constructed with three-dimensional
display program. (a) Table. (b) Array made with instances. (c) Compound object.
(d) Rotated view of object.

(f)

(9) (O]

Fi1e. 10. (e-h) Three-dimensional displays: pictures constructed with three-dimensional
display program showing hidden line elimination. () Seesaw. (f) With hexagonal prism.
(9) Second view. (k) Balanced.
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into the shapes observed. The models are then the invariant shapes which
we perceive as the same object from any point of view. Individually or in
specific groups, they could be given names.

The process of creating an object list from a picture is mainly mathe-
matical, based on the natural laws of the space around us. It is based on the
assumptions of model construction and object support and shows the theo-
retical implications of these concepts. Four or more points on an object
must be seen in order to find the correct model and its transformation.
Further, the depth relationships between objects depend on the focal ratio
which can either be assumed as a camera constant, or calculated from the
picture if the data are accurate enough. If the focal ratio used is wrong,
the effect will be a contraction or expansion of the depth dimension. When
both the focal ratio and the distance from the camera to the ground are
known, the exact size of each object can be calculated.

The two-dimensional to three-dimensional and three-dimensional to two-
dimensional programs are completely general, as long as the assumptions
of model construction and support are not violated. The display program
can handle any structure made up of transformations of models. The con-
struction program will always produce a three-dimensional structure which
projects to the given line drawing except that it will eliminate any two-
dimensional markings, isolated polygons, and superfluous joint lines. Any
drawing produced by the three-dimensional display program will be cor-
rectly reconstructed into the three-dimensional structure if the objects are
properly supported and sufficiently visible.

The programs are all written for the TX-2 computer at Lincoln Labora-
tory. The TX-2 is ideal for this type of work because of its large memory
for picture storage and its special input-output equipment. During the
course of developing these programs, I designed a vector-drawing display
for the computer which can draw line and circle segments. This display
enables the computer to display a line drawing continuously and still spend
most of its time computing new data. Thus it is possible to display rotating
objects and have them move fairly smoothly.

The input program has about 5000 instructions and uses over 40,000
registers of data storage for its pictures and lists. It takes about one minute
to process a picture into a line drawing of which half is for differentiation.
The three-dimensional construction and display programs are each about
3000 instructions and use from 5000 to 40,000 registers of data storage
depending upon the number of objects. Both construction and display take
about one second per object. All told, a rotated view of the objects in a
photograph might be obtained in two minutes. ’

I foresee at least two uses for this type of picture handling system. First,
it could be used for an information reduction system to aid in the trans-
mission of pictorial information. However, the necessity of an ultrahigh-
speed computer will probably limit this use. Second, the computer programs
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will be useful input-output tools for future investigations of three-dimen-
sional processes. The biggest benefit of this investigation, however, is an
increased understanding of the possible processes of visual perception.

APPENDIX A
Homogeneous Coordinates

In a homogeneous coordinate system, a fourth coordinate, or scale factor, is
used in such a way that the total scale of a vector is unimportant. That is,

g
i
<

I am using = to indicate that the same point is represented even though the indi-
vidual components may not be equal. The above form is achieved by defining the
point’s coordinates, X, Y, Z, in terms of the homogeneous components z, y, z, w
as below,

X =z/w, Y = y/w, Z = z/w

When new points are introduced into the system, w may be assigned to any
nonzero value and these equations used to find z, y, and z. When points are to be
displayed, the same equations are used to find X, ¥, and Z. An added advantage
for a fixed point computer is gained by using a homogeneous system: w may always
be chosen so as to keep the numbers normalized.

A plane is represented by I, m, n, p such that on the plane

lz+my+nz+pw=0

I have chosen to represent points by row vectors; therefore, to transform a set
of points #;, each is postmultiplied by a 4 X 4 matrix H,

' = uH

The advantage of homogeneous coordinates is that a single transform H can
accomplish a full projective transformation. Normally, it is convenient to separate
the various functions provided by a transform until they are needed and then
multiply them. Below is a breakdown of a transform H, consisting of a rotation
by a standard 3 X 3 R maitrix, a translation by a vector 7 = (z, y, 2, w), a perspec-
tive transform from a focal point at f on the z axis, a translation after perspective
to a center (yo, 20), and a total picture scale factor S. This sequence might represent
the transform {made by taking a picture with an arbitrary camera orientation and
making an enlargement of a section. The transform would take the real space
points X, Y, Z into a Y’, Z’ on the print. An X’ will be formed which can be used
for eliminating object overlap.
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It should be noted that a set of points #; can be written as the successive rows
of a matrix V and transformed by one matrix equation, V' = VH.
Also, a plane equation can be expressed as a scalar product in terms of 7 =

(l)mrn)p)v
7-m=0

A plane normal n can be transformed along with the points of a space,
¥ =3H, @ =mHYH, 7.7=0

Of course, if the transform is orthogonal, (H!)T = H.

APPENDIX B
Similarity Test

We are given a matrix 4 of n points (z, y, 2z, w) from a model and want to find
a transform H that will most nearly fit n points (y, 2, w) in a matrix B. Thus we

hope for
AH=B

However, we cannot write an equality sign above without introducing a diagonal
scale matrix D which will allow the w; values of AH to differ from the w; of B,
AH = DB

We now have 12 unknowns in H (3 X 4) and n unknowns in D (n X n). Matrix A
is 4 X n and matrix B is 3 X n, creating 3n equations. Therefore, n > 6 should
produce a complete solution. We shall use a minimum square-error technique to
solve the equations. Thus we wish to minimize the squared error in each equation.
We shall use A’ to indicate the transpose of 4,

PR N A .
a—hl_ [Z Z (E aiihik - d\'bik) ] =0
) [ s

or A’AH = A’DB. Thus
H = (A’A)'A’'DB
Now we must find D,

d n 3 4 2

3&; [z Z (Z Gijhix — dt'bik) :I =0
~ -~ -

4

3 3
Z ai; Z haby = di Z bu?
k k

J
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Thus the diagonal terms of AHB’ equal those of DBB'. Substituting for H and
making the definition .
G=AA'A)A4 =1
we obtain a matrix GDBB’, which has zero diagonal terms.
Define: @ = BB’
If we now multiply the terms of G by those of @', term by term, we get a new
n X n matrix S,
Sij = gitis
Define:d = d, --- d,
Now the vector d or diagonal terms of D can be found by solving
Sd=0

This equation requires S to be singular, with degeneracy at least one. If the
degeneracy is one, the problem is solved since the common scale factor of D and H
is unimportant. A degeneracy more than one means that too few equations were
used (n < 6) or that the picture had no perspective. However, by assuming a
value of unity for each undefined d;, an accurate, but not complete solution, can
be found.

When D is found, H can be found,

= (A’A)"'A'DB
It should be noted that for n = 4, A~! will probably exist and in this case the
best solution obtainable is one with no perspective,
H=A"'B

If solutions without perspective are expected, the matrix D is unnecessary
and the ordinary minimum square-error solution holds,

= (4’4)"'4'B
An error criteria can be found to indicate the mismatch of model and picture.
An error matrix E is found,
E=AH —- DB or E=GDB

Now if the sum of the squares of the components of E is taken, this number
can be used to indicate the error magnitude. If one row of E contributes the main
error, this point of B probably should not be mapped to the model 4.
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