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CHAPTER 8

Optimum Filtering

8.1 Mean-Square Estimation

Preview

Mean-square estimdtion seeks to minimize the mean-square error between the
estimate and the quantity being estimated. That means we need to know second-
order statlstlcs—the means, variances, and cavariances of the data-—because the
mean-square error depends only onthese quantities. The mean and autocorrelation
functions contain this information, and this is often avallable in random signal
processing.

In Chapter 7 we introduced least-squares estimation. The terms “mean-square
estimation” and “least-squares estimation” are similar, so you should be careful
to avoid confusing them. Least-squares techniques use samples of the data to
derive good estimates. Mean-square estimation is based on statistical ‘averages.

lLinear mean-square estimation is a special che of mean-square estimation.
In order to show how it fits into the overall scheme, we begin with the simplest
problem in mean-square estimation and gradually add complexity until we arrive
at a general estimation problem. Then we will specialize this general problem to
linear estimation and show how the orthogonality principle simplifies the problem.

Let X stand for an estimate of the random variable X. The error is the
difference between the value of the random variable and our estimate:
' e=X-X
The estimate Xisa number; X is a random varijable. Hence the error e is a
random variable. We square and then average this random variable to obtain
the mean-square error:

E(e’) = E[(X — X)) @.1.1)
The value of X that minimizes this expression is the minimum mean-square
estlmate of X.

326
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Estimating the Random Variable X by a Constant
If X = c, the error is X — c, and the mean-square error is

E(e) = ElX ~ cf1 = [~_ (o= cFfule) do
=c?—2cE(X) + E(X?
Differentiating with respect to ¢ and setting the derivative to 0, we have
2c -2EX)=0 or c = EX) 8.1.2)

Therefore we should use the average E(X) to estimate X when we wish to
minimize the mean-square error.

EXAMPLE 8.1.1. The random variable X is defined in Fig. 8.1.1. For
the time being, ignore the other random variable in the diagram; we will
use it later. The experiment consists of rolling a single die, and the
experimental outcome determines a value for X (and the other random
variable). Find a constant ¢ to give the minimum mean-square estimate
of X and calculate the resulting mean-square error.

soLuTION: The average value of X gives the estimate.
c=EX)=05
The resulting mean-square error is
E(eh) = E[(X — 0.5)] = 2917

This illustrates a startling feature of mean-square estimation. The esti-
mate need not be a possible value of X. Our estimate of 0.5 can never
be correct, but the average square error will be less than that for any
estimate that could possibly be correct. For example, if we fudge a little
and choose as our estimate ¢ = 1, we will be correct about one-sixth of
the time, but the mean-square error increases to 3.167.

Here the experiment is performed with outcome {. This outcome { then
determines a value of the random variable X, and it is this number we estimate.
In this problem we make the estimate before performing the experiment (or
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Fig. 8.1.1. Definition of a random variable X.
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at least before we have any information about the experimental outcome).
In all of the following we perform the experiment first and provide partial
information on which to base the estimate.

Estimating the Random Variable X given Y({)

Suppose that two random variables X and Y are defined on the same sample
space. The experiment is performed and you are told the value of Y. The
estimate X should incorporate this additional information, so X is a function
of Y, X = g(Y). The mean-square error that we wish to minimize is given
by

E(e’) = E{X — g}
The function that minimizes this expression is
g(Y) = EX|Y) (8.1.3)

as shown below:
EX- 0= o]l - s® (. B de B
= f . f " e - gBf(elB)fr(B) dadB  (8.1.4)
=["5® [ la- g@P(lp) daudB

Let us define a new function h(B) that is equal to the last integral in this
expression:

hB) = [, o = 2B)f(alB) de (8.15)
Now Eq. 8.1.4 can be written
E{IX ~ g1} = [~_f(8) h(B) dB

We wish to choose g(8) to minimize this expression. Note that fr(B) is
always positive because it is a probability density function. We have no
control over fy(f3); this is the marginal pdf of the random variable Y. Hence
we can operate only on h(B). From Eq. 8.1.5 we see that h(8) is also always
positive. The product of a squared term times a density function is positive,
so the integral of this positive expression is also positive. Therefore, if we
choose g(3) to minimize h(B) for every value of B, this will minimize the
mean-square error.
Expand Eq. 8.1.5 to obtain

h(B) = g*(B) — 2g(B) E(X|B) + E(X*B)
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Setting the derivative with respect to 8 equal to 0 gives

28(B) — 2EX|B) =0
or

g(B) = E(X|B) (8.1.6)

So to estimate X we should use the conditional expectation, the average
value of the random variable X based on what we know about it. The estimate
should be based on the given data Y = 3, and the way to do this is to use
the conditional expectation E(X|Y = B).

This situation differs from the first (estimating X by a constant) in that
the experiment is performed with outcome ¢, and we are allowed to observe
the value of Y({). If knowledge of Y allows us to determine ¢, then we can
estimate X({) exactly. That is, E(X|8) = X. Of course, this is the trivial
case in which knowledge of Y gives us complete information about X. The
other extreme is when knowledge of Y gives us no information about X, and
EX|B) = EX). |

EXAMPLE 8.1.2. InFig. 8.1.1 the random variable Y can take on one
of four different numbers, 0, 1, 4, and 9. For each possible value of Y,
find the best estimate of X, and calculate the resulting mean-square error.

SOLUTION: When Y = 4, X must be either —2 or 2 with equal probability.
Therefore

g4) = EX|r=4)=0
Similar reasoning applies to the other values of Y, giving

g0) =EX|Y=0)=0

g)=EX|[Y=1=0

g0 =EX|y =9 =3

Therefore we guess X = 0 for every value of Y except for Y = 9. For
that value of Y we guess X = 3. This is shown in Fig. 8.1.2. The resulting
mean-square error is given by

E(e®) = E[(X — X)]
= @[(—2)7 + (—1)* + 0> + 12 + 2* + 0%] = 1.667

Notice that this is less than the error in Example 8.1.1, as it should be.
Here we use more knowledge to make the estimate.

The estimate determined by Eq. 8.1.6 is a nonlinear estimate because the
values of X do not lie on a straight line through the origin. The following
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g(y)
3+

0.319Y-0.5
) -Y
0 2 4 6 8 10
7

Fig. 8.1.2. Estimates for X.

example chooses the best straight-line fit, but this is not linear estimation
because the straight line does not go through the origin.

EXAMPLE 8.1.3. Estimate the value of X given Y in Fig. 8.1.1 by
points on a straight line,
X=g¥)=a¥+b (8.1.7)

soLUTION: The only difference between this and the previous example
is that we are restricting the form of g(Y). It must be a straight line, so
we need to solve only for the two constants, a and b. The mean-square
error that we wish to minimize is given by

E(e’) = E{[X — (aY + b)J} (8.1.8)
Setting the partial derivative with respect to b equal to 0 gives

-a%E(eZ) =2b — 2E(X) + 2aE(Y) =0

The value of b that minimizes Eq. 8.1.8 is therefore
b = my — amy (8.1.9)
Using this value of b, we can write Eq. 8.1.8 as

E(e*) = E{[(X — my) — a(Y — my)I}
= 0}~ 2au, + a’o}

where w,; is the covariance between X and Y (see Eq. 4.2.2). Solving for
a by setting the partial derivative with respect to a equal to 0 gives

_ M
a=-
Oy

(8.1.10)
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For the random variables X and Y in Fig. 8.1.1 this gives

a=5=0319

oy

b=my—amy=0.5 —(0.319)3.17) = —0.5

so that g(¥Y) = 0.319Y — 0.5. This function is plotted as the straight line
in Fig. 8.1.2.

The resulting mean-square error is
E(e®) = E[(X — aY — b)"] = 1.99

Note that this error compares rather well with the optimum mean-square
error of 1.67 from Example 8.1.2.

Review

This completes our introduction to mean-square estimation. In Section 8.3 we
introduce linear mean-square estimation, which is nothing more than an estimate
of the form X ayY for one data point Y. For more than one data value, the linear
estimate is of the form (X) SN ay;.

 Mean-square estimation is a statistical procedure, which means that we need
some statistical knowledge about the quantity we are estimating before we can
derive the estimate. This is opposed to least-squares estimation, where we use
the data alone to form the estimate. For mean-square estimation we need only
second-order information, the means and correlations. We may be given more
information, as in Example 8.1.2 where we had completé knowledge, but we use
only the means and correlations in deriving our estimate. '

8.2 Vector Spaces

Preview

Ask any engineer to define a vector, and she will likely answer, “a directed magni-
tude.” This is a good answer; it is just wrong. Geometric vectors are directed
magnitudes, but there are other kinds of vectors besides geometric vectors, and
these other vectors don’'t have “magnitude and direction.” Vectors, like anything
else, are defined by listing properties. We list the important properties of geometric
vectors in our definition below, and anything else that satisfies these properties is
called a set of vectors. It turns out that many other things satisfy this definition,
|nc|ud|ng random variables. This is important to us, since we will be using properties
of vectors in our discussion of estimation theory.

In this section we define vector space, dot products, norms, metrics, and orthog-
onality. Then, in subsequent sections we will use these concepts to discuss mean-
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square estimation procedures. This will lead eventually to Wiener and Kalman
filtering.

DEFIN ITIO‘N 8.2.1. A vector space is a set V = {v;} together with a
field of scalars A = {a;} that has thc following two operations and seven
properties.

1. We can add two vectors together and obtain a third vector. Thus we
have a mechanism for combining two vectors to obtain a third.

2. We can multiply a vector by a scalar and obtain another vector. This
mechanism combines a scalar with a vector to obtain another vector.

Using theseAtwo operations, vector addition and scalar multiplication, the
following properties must hold for all v; € V and all g; € A.

@D v, +v,=v,+1y

@) Wi +v) tvy=v+ V2 + vy
(3) al(vl + Uz) = a)U; + av,

@) (a; + a)v; = aw; + ay;

®) a(aw) = (aa)v;

6 1-v;,=v;
(7) There exists a unique vector v,, called the zero vector, such that for
all vectors v; we have 0 - v; = v,, where 0 is the number 0.

Recall that a field is modeled after the real number system with the two
operations addition and multiplication. In fact, we will have no need for any
other field, so when we say ‘‘scalar’’ you can substitute ‘‘real number.”’

These are the properties that define a vector space. Any set of objects
that collectively satisfies all of these properties is called a vector space.
Notice that we have not defined a vector. Instead we defined a vector space,
a set of vectors. A vector space is a set together with two functions, a
mapping from V X V — V that defines vector addition, and a mapping from
A X V — V that defines scalar multiplication. (The notation V X V and
A X V stands for the set cross product.) Any set of objects with these two
functions that satisfies the seven properties is a vector space. Furthermore,
these vectors are equally as legitimate as geometric vectors, even though
they may not have ‘‘magnitude’” and ‘‘direction.”

Ordinary geometric vectors satisfy these properties, and therefore form a
vector space. To show this, let vy, v,, ... be a set of ordinary geometric
vectors. These are the familiar ‘‘directed magmtudes of geometry. Let a,,
a,, . .. be ordinary numbers (from the real number system). We will call
these numbers ‘scalars,’” but they are just ordinary numbers from the field
of real numbers (see Section 3.1). We can add two vectors together in any
order (property 1). We can add three vectors by first adding v, + v, and
then adding v, or we can add v, + v, before adding v,, and we get the
same result either way (property 2). Continuing in this way, you can see
that geometric vectors satisfy each property listed.
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But geometric vectors are not the only objects that satisfy Definition 8.2.1.
All 3 X 2 matrices satisfy these properties. We don’t usually call a matrix
a vector, but all matrices of the same dimension form a vector space.

The set of real numbers satisfies these properties. Here the numbers play
a dual role: They are both vector and scalar.

The set of all waveforms that can be generated in the laboratory satisfy
these propertles Here, instead of vy, v,, . .., we have time functions v,(f),
v,(D), . ... We can add waveforms together to form another waveform. We
can multiply by scalars to change the amplitude. And there is a zero vector,
namely, vy(f) = 0, for all time, which satisfies property 7. (These same
statemients apply equally to a set of discrete-time waveforms.) So you can
see that waveforms (signals) are vectors.

Our interest in vectors stems from the fact that ail random variables
defined on the same sample space form a vector space. We can add two
random variables and their sum is a third random variable. We can multiply
a random variable by a scalar and the result is another random variable, and
there is a zero random variable that assigns the number 0 to each experimental
outcome. To illustrate, two random variables X and Y are defined on the
sample space of die-toss outcomes in Fig. 8.2.1. We can add X + Y and get
another random variable. This means that we add the numbers for each
experimental outcome. If the one-spot turns up, X + ¥ = —2 + 4 = 2. If
the two-spot turns up, the sum is 1 — 1 = 0. Continuing in this way, we
can obtain a sum for each experimental outcome, which is another random
variable. We can also multiply X by a scalar to obtain another random
variable, and all seven properties are satisfied. So the set of all random
variables that could be defined on the die-toss experiment forms a vector
space. Notice that all random variables must be defined on the same sample
space. Random variables defined on different sample spaces are not vectors
in the same space.

So far, we have imposed little structure on our vector spaces. All we can
do is multiply them by scalars and add two vectors together. We have said
nothing about how to measure the length of a vector, or how to determine
the distance between two vectors, or how to find the dot product of two
vectors. In order to do geometry we must be able to do all three of these

Y 4 1 0 1 4 9

x |2 |10 |1 ]2]3

0 (O O R |

Fig. 8.2.1. Random variables X and Y defined on the sample space of die-
toss outcomes.
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things. A vector space in which we can do geometry is called an inner
product (or dot product) space. That is because once we have defined the
dot product, a measure of length and distance is automatically imposed. So
we begin by defining an inner product.

DEFINITION 8.2.2: Inner product. The symbol (v,|v,) denotes the
operation of extracting a number from a pair of vectors. This is called
the inner (or dot) product, and must satisfy the following four properties
for all scalars and vectors.

@) (Wifva) = (lvy)

(2 (v1 + vifvs) = (ifvs) + (Vovs)

@) (awilvy) = avijvy)

@) (vilv,) = 0, and (v,|v;) = 0 if and only if v, = v, (the zero vector)

~ If the vector space V = {v;} satisfies these properties, it is called an inner
product space, which means that we can do geometry in this space. The
length of a vector v,, denoted by [[v,|| and called the norm, is defined by

loul = (wilv” (8.2.1)
The distance between two vectors is given in terms of the norm by
dv,, vy = “U1 - 02" (8.2.2)

This gives us a hierarchy of measures: The inner product induces a norm
(a measure of length), which, in turn, induces a measure of distance between
two vectors. Incidentally, we can determine the ‘‘angle’’ 6 between two
vectors by the formula

cos = M (8.2.3)
lfoill v

In the space V = R" over the field R of real numbers, the standard inner
product of two vectors,
a . b 1
vi=|: and v,=|:
a, bn
is (U jvy) = 21 ab,, which can be written in térms of matrices as (Vv =
viv,, where v is the transpose of the (n X 1) matrix v,. The norm induced
by this inner product is

n. 12
ol = oo = (3 )
k=

and the metric (distance between two vectors) is

a 12
dv,,v)) = "01 - Uz” = [Z(Gk - bk)z]
k=1 ,
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These are the usual ways to measure length and distance, and they should
be familiar from Euclidean geometry.

EXAMPLE 8.2.1. Find the inner product, the length, and the distance
between the following vectors x and y. Use the usual dot product for
Euclidean vectors.

3 2
-1 1
o2 YTt
1 0

soLUTION: The dot product is (x]y) = x’y = 3. The length of each
vector is

Ixl=0B3-3+C-)-1)+2-2+1- 112 = V15
Il=0R2-2+1-1+(-1)(-1)+0-0]"*= N/
The distance between them is
dx,y) = |lx — y|| = [12 + (=2)* + 3 + 192 = V15

For another example, in the space of all continuous-time energy signals,
the usual inner product is defined by

O = [ v vio) de

This induces a norm given by

ol = [ ["vo dt] ;

And the metric is

© 12
dv,,vy) = [ f i@ - v,(H)? dt]

EXAMPLE 8.2.2. Find the inner product, the norm of each waveform,
and the distance between them for (see Fig. 8.2.2)

vi(®) = e 'u®
v(t) = u(@® —u—1)
SOLUTION:

(o) = f;e"dt =1-e!=0632

12
o] = ( jo e-m) =105
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vi(t) va(t)

lod] = ( ['1 dt)m -1

1 © 12
d(,,v,) = [L(l —e)dt + jl e‘z‘dt]
= (0.168 + 0.0677)"2 = 0.484

Similar definitions define the usual inner product, norm, and the metric
for discrete time energy signals.

o

Mo = D, vi(mva(n)

n=-o%

© 12
ol = [ > v«n)]

© 172
d(v, v;) = [ 2 [oi(m) = vz(n)]z]

Our primary interest is in random variables. The usual dot product for
random variables is simply the correlation:

(X|Y) = E(XY) (8.2.4)
The norm induced by this dot product is
Xl = By (8.2.5)

which is the root-mean-square (rms) value of the random variable X. This
is the standard deviation if the mean of X is 0. The distance between two
random variables X and Y is given by

dX,Y) = |X — Y| = [EX — Y)}]"” (8.2.6)

EXAMPLE 8.2.3. Find the inner product, the norm of each vector,
and the distance between the random variables X and Y in Fig. 8.2.1.
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soLuTION: The inner product is

6
EXY) = a,BP[X=a; Y=
i=1

=@(-2)H+ D1 +0-0+1-1+2-4+3-9]1=45

The norm of each random variable is

6 12
Il = B = (z 2 P[X = a,.])
i=1

=[@®4+1+0+1+4+9]"7=178
Y]|=[(16+1+0+1+ 16+ 81)]"2 =4.378

The distance between them is

6 12
dX,Y)=[EX - Y)]"* = (E (i, —B)YPIX=a; Y= BJ)
i=1

={®I(-2-42+(-1-1P2+0+0+ Q2 -4+ (3 - 9"
=3.65

Orthogonality

Two vectors are orthogonal if their inner product is 0. We are accustomed
to geometric vectors that have the additional property that orthogonal vectors
are 90° apart. Since the vectors we will use do not have an apparent *‘direc-
tion,”” you should not look for ‘‘right angles’’ when using orthogonality.
For random variables, orthogonality simply means E(XY) = 0.

Notice that being uncorrelated and orthogonal are not the same thing.
Uncorrelated means E(XY) = E(X) E(Y). Orthogonal means E(XY) = 0.
Only if the mean of either X or Y is 0 do these two terms mean the same
thing.

The Cauchy—Buniakovshy—Schwartz (CBS) Inequality

If V is an inner-product space, which means we can do geometry, then the
CBS inequality holds for any valid inner product:

[ulv)* = (ulu)vlv) (8.2.7)

The proof follows from the properties of the inner product as follows: First,
if v = v,, the zero vector, then we have equality by property 4. If v # v,,
then we start with

0=<(u— Avju— Av) = (uu) — 2Aulp) + AXv|v) (8.2.8)
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which holds for all A. Let A = (u|v)/{v|v). Then Eq. 8.2.8 gives

-2 G
0= ) = 2055 oy~ “ ~ Gy

which gives the CBS inequality in Eq. 8.2.7.

Here is an example of template matching using the CBS inequality. In
order to store an image in computer memory, we sample the gray-scale
values (how dark the image is) in small blocks called pixels. Thus, an
N X M image has N rows and M columns of values, which may be stored
and manipulated in a computer. Typical sizes are 128 X 128 or larger, but
we will simplify this by using a 2 X 3 image array. Let

131 -2 |1 3 -3
““l1 2 -3 21 -2
The usual inner product for matrices multiplies corresponding pixels and
sums the products. That is,

() = 2 2 u;v;

For the particular ¥ and v above, the inner product is 22. We define the
energy in image u as

= (ulu) = [|ul?
This gives
E,=28 E,=28

Thus the CBS inequality is satisfied because [(u|v)[? is less than (u|u)(v|v).

This example illustrates that for equal energy images, the maximum
response (or correlation, or inner product) is given when the two images are
identical, and this maximum response is determined by the CBS inequality.

Review

Notice that we did not define a vector in Definition 8.2.1. Instead, we defined a
vector space, a set of objects that collectively satisfies the properties listed there.
This means that we cannot determine that an object v by itself is or is not a vector.
The entire set must satisfy all the properties of Definition 8.2.1. There are many
sets besides geometric vectors that satisfy these properties, including all random
variables defined on the same sample space.

The inner product, norm (length), and metric (distance) impose structure on a
vector space. For random variables the usual inner product is E(XY), which means
the norm is the rms value, and the metric is the rms value of the difference between
X and Y. See Egs. 8.2.4, 8.2.5, and 8.2.6.
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8.3 Linear Mean-Square Estimation

Preview

The concept of linearity applies to functions. When we say that a function is linear,
we mean that the functional réiationship' between the domain and codomain is
linear. When we say that an estimate is linear, we mean that the relationship
between the data and the estimate is linear. When we say that a system is linear,
we mean that the functional relationship betweén the input and outpuit is linear,
that is, the input—output function that describes the system is linear.

In this section we introduce the two-part test for linearity, and show how this
applies to mean-square estimation. Then we introduce the idea of setting the error
orthogonal to the data, which is the basic tenet in linear estimation.

A fuhction is linear if it is additive and homogeneous. A function
f: X — Y is said to be additive if
fG + x5) = flx) + f(x) _ (83.1)
for all elements x; 1n X. The addition on the left is in X, while the addition
on the right is in Y. ‘
We say that f: X — Y is homogeneous if
flax) = af(x) (8.3.2)
for all scalars a and all elements x in X. The multiplication on the left is in
X, while the multiplication on the right is in Y.
EXAMPLE 8.3.1» Let y = 2x + 3. Test this relationship for additivity
and homogeneity.

soLUTION: Try x, = 5 and x, = 6 in Eq. 8.3.1. Then we have on the
left,

x1+x,=5+6=11

$0
fo +x)=2-114+3=25

The right side of Eq. 8.3.1 gives

fGx) =2x, +3 =13

fr) =26, + 3 =15
giving

f(x) + fx) = 28

Since we have found at least one case where Eq. 8.3.1 is not satisfied,
the relationship f(x) = 2x + 3 is not additive (and therefore not linear).
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To test for hothogeneity, let x = 5, a = 2 in Eq. 8.3.2. Then on the
left we have

ax=10 and fla)=2:10 + 3 = 23
The right side of Eq. 8.3.2 becomies ,
af(x) = 22x + 3) =2-13 = 26

Now we have found one case where the function is not homogeneous,
$0 it also cannot be linear for this reason.

As this example shows, linearity is a very restrictive condition. Not only
must the relationship be a straight. line, it must also pass through the origin.
If in the example above the constant had been 0, giving a function of the
form y = ax, then and only then would it be linear.

Testing a function for lmeanty can be reduced to an algonthm, called the
two- -part test for linearity. This algorithm, which implements Eqs. 8.3.1 and
8.3.2 in a systematic way, is illustrated in Fig. 8.3.1. Part 1 of the test
accomplishes the left sidé of Eqs 8.3.1 and 8.3.2, performing the addition
and multiplication operations in the domiain of f. Part 2 does the right
side of these equations, thus performing addition and multiplication in the
codomain of f. The function fis linear if y, = y, for all possible scalars a,,
a,, and for all values in the domain x, and X

EXAMPLE 832. Test y = 2x + 3 for linearity using the two-part
test in Fig: 8.3.1.
soLuTioN: For é\rbitrary a,, d,, x;, and x;, pan 1 gives

i = flarx; + ayx)) = 2(a1x; + ax) + 3

a3
X1 . l[>
F(*) y1=f(a1x1 + agxa)

az

Xo l/¥
- aj
X1 et F(s) —>

Y2 = a{f(xq) + axf(x2)

, ap
X2 F(e) 'l>

Fig. 8.3.1. The two-part test for linearity of f.
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Part 2 gives
Y2 = a1 f(x) + a, f(x2) = a;2x; + 3) + a,(2x, + 3)

The two terms yi and y, are not equal for all values of a,, a;, x;, and
X,, so the function is not linear.

An estimator is a function, a relation between the data and the estimate.
A filter, like a function, has an input and an output, so if we identify the
filter input as data and the output as the estimate, the filter serves as the
estimator. If the system is linear, then it is a linear estimator. A finite-impulse
response (FIR) filter has the form

y(n) = 2 hix(n — i) (8.3.3)

where x(ri) is the input, the &; terms are the filter taps, and y(n) is the output.
To show linearity, apply the two-part test as follows. Let a; and a, be
arbitrary constants, and let x,(n) and x,(n) be two input sequences. Part 1
of the test gives

yi(n) = 2 hila,x,(n — l) + ayx,(n — )]

i=0
Part 2 gives

p p
yin) = X hiayx(n — i) + X, hiapxn — i)
i=0 i=0
The two terms in y,(n) can be combined to give the form y,(n), proving
linearity. 4
A linear estimator has the form
d = hex(n) + hix(n — 1) + -+ + hyx(n — p) (8.3.4)

where x(i) is the data, the ks are constants, and d is our estimate of the
desired quantity d. Compare Egs. 8.3.3 and 8.3.4 to see that the FIR filter
shown in Fig. 8.3.2 will serve as one type of estimator for us. The other
type is an IIR filter, which we will discuss later.

The usual paradigm has the filter input x(n) equal to signal plus noise:

x(n) = s(n) + wn) 8.3.5)

The parameter that we wish to estimate can be a future value of the signal,
s(n + k), a past value of the signal, s(n — k), or the present value of the
signal, s(n). This gives

Extrapolation: d(n) = s(n + k)

Interpolation: d(n) = s(n — k)
Smoothing: d(n) = s(n)
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x(n) z-1

A
d(n)

Fig. 8.3.2

where d(n).is the desired parameter the quantity to be estimated. The ﬁlter
output in Fig. 8.3.2 is therefore y(n) = d(n) in each case. That is, rega.rdless
of whether we wish to predict a future value of the signal, estifnate the
present value, or interpolate a past value, the filter output can setve as the
estimate of d(n). The question to be answered in this chapter is: How do
we select the filter coefficients in these filters to minimize the mean-square
error? The answer lies in the orthogonality principle.

Set the Error Orthogonal to the Data

In Section 8.1 we established the general procedure for deriving a mean-
square estimator: Find an expression for the squared error, take its eXpected
value, and differentiate the expected value with respect to the parameters
we seek in order to minimize the mean-square error. This leads to expressions
for the unknown parameters such as Egs. 8.1.9 and 8.1.10. We have a similar
problem here, so we could follow the same procedure to arrive at expressions
for the filter coefficients h;. Less computation is required, however, by
viewing random variables as vectors with the inner product between X and
Y defined as E(XY ).

To give you an intuitive concept of mrmrmzmg error by setting the error
orthogonal to the data look at Fig. 8.3.3. The data is the vector x, the
parameter to estimate is d, and the estimate is ax. You can see that the length
of the érror vector is minimum if the error is orthogonal to the data x. This
is accomphshed by choosing a so that the length of ax makes the error
d — ax a minimum. We will now apply this concept to several representative
problems, and give a better explanation of why it is so after the examples.

X
ax

Fig. 8.3.3. The orthogonality principle.
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Single Observation

Suppose that we are given one observation x(n) and wish to estimate s(n),
where

x(n) = s(n) + w(n)
d(n) = s(n)
Set the error e(n) = d(n) — a(n) orthogonal to the data x(n).
E{ld(n) — d(m))x(n)} = 0 8.3.6)
The estimate a(n) is y(n) = hox(n), giving
E{[d(n) — hox(m)]x(n)} = 0
Since d(n) = s(n), this gives _
hoRxx(0) = R (0)
giving
Rx(0)
R (0)

This optimum solution agrees with Egs. 8.1.9 and 8.1.10. Both means are
0 here, giving b = 0 in Eq. 8.1.9. The value of a in Eq. 8.1.10 is the same
as h, in Eq. 8.3.7.

ho = 8.3.7)

EXAMPLE 8.3.3. Find the optimum 4, and mean-square error in esti-
mating s(n) if the data is x(n) = s(n) + w(n). The noise w(n) is white
Gaussian noise with zero mean and unit variance. The signal, which also
has zero mean and is independent of the noise, has autocorrelation function
given by

Rss(n) = 0.9
sOLUTION: We need to find Ryx(0) and Rg(0) to plug into Eq. 8.3.7.
Since x(n) = s(n) + w(n),
E[x*(n)] = Rx(0) = E{[s(n) + w(n)]}}
= E[s¥n) + E[s(n)w(n)] + E[w(n)s(n)] + E[w*(n)]
= Rss(0) + Rsw(0) + Rys(0) + Ryw(0)
But the cross-correlation terms are 0, since s(n) and w(n) are zero-mean

and independent. Since w(n) is white with unit variance, Ryw(n) = (n).
This gives

Rxx(0) = Rs5(0) + Ryw(0) = 09°+ 1 =2
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The cross correlation Ry (0) is given by
E[s(mx(n)] = E{s(n)[s(n) + w(m]} = Rss(0) = 1
Therefore
_Rx(®) 1
" Rx(0) 2
The mean-square error is given by
E(e%) = E{[s(n) — $(m)]*} = E{[s(n) — hox(m)I’}
= E[s%n) — 2hos(n)x(n) + h3x¥(n)]
= Rs5(0) — 2hoRx(0) + hiRxx(0) = 1

We will derive a simpler expression for the mean-square error in Eq.
8.3.11.

Multiple Observations

Suppose that we are given two observations, x(n) and x(n — 1). Then our
estimate is given by

y(m) = hox(n) + hix(n — 1)
The error is )
e(n) = d(n) — y(n) = d(n) — hox(n) — hix(n — 1)
Therefore, setting the error orthogonal to the data gives two equations,
E{[d(n) — hox(n) — hix(n — D]x(n)} =0 (8.3.8a)
E{[d(n) — hox(n) — hyx(n — D]x(n — 1)} =0 (8.3.8b)
Taking expected values and transferring terms gives
hoRxx(0) + hiRxx(—1) = Rpx(0)
hoRxx(1) + h1Rxx(0) = Rpx(1)

These two equations in two unknowns allow us to solve for the filter coeffi-
cients to produce the optimum linear mean-square estimate. In matrix form

they are given by
Rex(©) Rex(=1)|[ ko | _ [ Rox(0)
[Rxxa) R(0) ][hl]_[RDx(l)] (839)

EXAMPLE 8.34. For the signal in Example 8.3.3, suppose that we
are given two observations. Find the optimum linear estimate and the
mean-square error.
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X(n) z-1

\/ 0.373 0.2821

~(—— ym=dn)
Fig. 8.3.4. The optimum filter.

soLuTION: The quantities that go into Eq. 8.3.9 are

2 09]|ho| _ |1
09 2 | 09
giving hy = 0.3730 and h; = 0.2821. This first-order filter is shown in

Fig. 8.3.4. The mean-square error is
E(e) = E{[s(n) — hox(n) — hix(n — D]*} = 0.373

There is always some confusion about the sign on the arguments in the
expressions for the correlation functions. For example, how do we know
just where to put Ry (1) and Ryy(—1) in Eq. 8.3.9? The answer is that it
really does not matter as long as you are consistent. The convention adopted
in this text is that E[x(i)x(j)] = Rx(i — j). We subtract the second argument
from the first. This convention gives the following results:

E[x(n)y(n — D] = Ry(1)
E[x(n — 2)y(m)] = Rxy(—2)
Elx(n — 2)y(n — 3)] = Rxr(1)

The Projection Theorem
For more than two data values we can write Eq. 8.3.8 as

E{[d(n) = hox(n) = - -+ — hyx(n — p)lx(n — )} =0, i=0,---,p
(8.3.10)
This is really p + 1 equations, one for each i. The projection theorem says
that the mean-square error is minimum if the coefficients h; are chosen to
make the error orthogonal to the data x(n). We previously demonstrated this
with geometric vectors, but it is time for a better explanation. We can show
that this is true by taking the customary approach to minimization problems,
i.e., by setting the derivatives of the mean-square error with respect to the
parameters equal to O.

aihE(ez) = E{2[d(n) — hox(n) = - - - = hyx(n — p)l[—x(n — )]} =0
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This gives Eq. 8.3.10, so we conclude that setting the error orthogonal to
the data produces the optimum linear estimator.

Here is the simpler expression for the mean-square error we promised.
From Eq. 8.3.10 we can see that the error is orthogonal to any linear combina-
tion of the data, giving

(d — a)l[aox(n) + - +ax(n—ph=0 for any ay, ..., a,
Since d is itself a linear combination of the data, this gives ((d — 3)|2) =
0; that is, the error is orthogonal to the estimate. This can be used to simplify
the expression for the minimum mean-square error:

E(e?) = E[(d — dY] = E[(d — d)d] — E[(d - d)d]
But this last term is 0, giving
E(e®) = E[(d — d)] = E[(d — d)d] (8.3.11)

Thus, to calculate the mean-square error we find the inner product of the
error with the desired quantity d. (Note that Eq. 8.3.11 is valid only if the
optimum estimate is used. In other words, if some estimate is used that does
not make the error orthogonal to any linear combination of the data, then
our argument is not valid, and the more general formula must be used to
calculate the mean-square error.)

EXAMPLE 8.3.5. Suppose that the input signal x(n) from our previous
example represents the flight path of an enemy aircraft, and suppose that
we wish to predict its future value, x(n + 1). Thus the input signal x(n)
is the sum of signal s(n) plus noise x(n), and we wish to (a) find the
optimum first-order FIR filter and resulting mean-square error; (b) find
the optimum second-order FIR filter and resulting mean-square error.

SOLUTION: (a) Here d(n) = x(n + 1). Setting the error orthogonal to
the data x(n) and x(n — 1) gives

E{[x(n + 1) — hox(n) — hyx(n — Dlx(n)} =0
E{[x(n + 1) — hox(n) — hix(n — Dlx(n — 1} =0
Taking the expected values and transferring terms gives

hoRxx(0) + h Rix(—1) = Rix(1)
hoRxx(1) + hRxx(0) = Rx(2)
Putting this in matrix form and substituting values gives

(50 2°][]=[651]

Solving these two equations gives h, = 0.3357 and k, = 0.2539.
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The mean-squate error is given by E[(d — d)d] or
E(e?) = E{[x(n + 1) — hox(n) — hlx(ﬁ = Dlx(n + 1}
= Rxx(0) — 0.3357Rxx(1) — 0.2539Rx(2) = 1.4922

(b) To find the optimum second-order f_ilter we set the error orthogonal
to the data for three observations, resulting in

hoRx(0) + hiRux(—1) + hoRx(—2) = Re(1)

hoRux(1) + 7 Rix(0) + hsRix (1) = Rix(2)

hoRxx(2) + hiRyx(1) + h;Rxx(0) = Rxx(3)
This in matrix form with values gives _
09 0.81 || A 09

9 2 09 |[|m]|=]081
081 09 2 h, 0.729

2
0.

Which has the solution #y = 0.297, h; = 0.202, and h, = 0.153 as shown
in Fig. 8.3.5. The mean-square error is

E(e?) = El(d — d)d]
= E{[x(n + 1) — hox(n) — hyx(n — 1) — hyx(n — 2)]x(n + 1)}
= Rix(0) — 0.297Ryx (1) — 0.202Rx(2) — 0.153Rxx(3)
= 1.4575 ‘

Notice that the addition of one more term h2 decreases the mean-square
error from 1.4922 to 1.4575. .

Review

We did not discuss continiious-time systems in this section because most FIR
filters are disCrete-timé systems, although we had an example of a FIR continuous-
time system in Section 6.6. In any event, we know how to design discrete-time
FIR systems, and so our discussion was confined to that subject. We design them
for mean-square estimation by setting the error orthogonal to the data and solving

x(n)

z-1

/0.297

z-1

0.202

0.153

Fig. 8.3.5

Y

(= dtn
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the resulting simultaneous equations for the filter coefficients h;. The mééh-square
error is found by taking the inner product between the error and d(n), the quantity
we are trying to estimate.

8.4 Spectral Factorization

Preview

In this section we introduce the concepts of minimum-phase systems, the innova-
tions process, the Paley—Wiener theorem, and spectral factorization. Each of these
concepts applies equally to continuous-time and dlscrete-t|me systems, but we
will present only the discrete-time part of these concepts. We present all of these
in this section because they are connected by the following sequence of facts.

A causal minimum-phase system is stable and has a causal stable inverse.
The innovations filter that we will introduce for the stochastic processes of interest
are minimum-phase. Spectral factorization comes into all this becaiise the innova-
tions filter is one of the factors derived by spectral factorization, and the Paley—
Wiener theorem defines the conditions under which this is true.

If this seems horribly compllcated do not give up, for we will use all this in
presentlng the causal IIR Wiener filter in the next section.

DEFINITION 8.4.1 A minimum-phase polynomial has all its zeros
inside the unit circle in the Argand diagram. Conversely, a maximum-
phase polynomial has all its zeros outside the unit circle. A polynomial
with some zeros inside or on the unit circle, while others are outside the
unit circle, is neither minimum- nor maximum-phase.

DEFINITION 8.4.2, A minimum-phase system is a causal linear sys-
tem with rational transfer function

_B@
T AQ) |
where both A(z) and B(z) are minimum-phase pdlynonlials. A maximum-

phase system is one where both A(z) and B(z) are maximum-phase polyno-
mials. :

H(z

EXAMPLE 8.4.1. The pole-zero plots for two systems H, and H, are
shown in Fig. 8.4.1, where

_ 1 _z
@ =151 7203
Hy(z) = z = £

2-03z—04 (z+0.5)z—0.8)
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LI
5 /1 —0.5 j1 2
H1(2) - Ha(2)

Fig. 8.4.1. Pole-zero locations for H;(z) and Hy(z).

%

S

o

fo
\

The first system is minimum-phase because all poles and zeros are inside
the unit circle. The second system is not minimum-phase because the
zero is outside the unit circle. Recall that all poles must be inside the unit
circle for the system to be stable. Therefore each of the systems above
is stable.

Let us pause to remind you about the relation between pole location and
stability. The transfer function can be put in the form
_B(Z)=b0+blz+b2zz+ ¢ +b,,,Zm
AR) aotaizta+---+az"
A 1V A2Vl A7)

S @mp)z—p) (2= pw)

where C is a constant, 7, 23, . . . , Z are the zeros, and py, p,, ..., p, are
the poles of the transfer function H(z). Collectively, the poles and zeros are
called singularities. A system is stable if all its poles are inside the unit
circle because such poles give rise to exponentially decaying terms in the
source-free response. The partial fraction expansion of H(z) has terms of
the form
Cz
27D

The corresponding time functions are of the form C;(p;)*, where k is time.
As time increases, these terms decay to 0 because |p;| < 1. Hence the unit
circle serves as the boundary between stability and instability.

We can change a nonminimum-phase system into one with minimum
phase while maintaining the same magnitude response |H(w)| as follows: If
no poles or zeros are on the unit circle, move all singularities from outside

the unit circle to their conjugate reciprocal locations inside the unit circle.
This alters only the phase To relocate a zero at z,, multiply H(z) by

1—z¥z z7'—2z# z—1/z¥
g L= (—z)— (84.1)
Z— 20 1— 2z Z— 2
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where z§ is the complex conjugate of z,. To relocate a pole, multlply H(2)
by the rec1procal of this express1on

EXAMPLE 84.2. If we multiply Hy(z) from Example 8.4.1 by Eq.
8.4.1 to move the zero inside the unit circle, we obtain

-0. 5) z—05
-2 )7 “@Z+05)z-038)

The pole-zero plot for H; is shown in Fig. 8.4.2. Notice that |[Hy(w)| =
IHg(w)] for all w. Only the phase has changed. In fact, the phase of Ha(z)
has magnitude less than or equal to the phase for H,(z) for all @. This is
the reason for the name “‘minimum phaSe.”

Hy(@) = H@) * (— 2)(

Minimum-phase systems are important because they are stable and their
inverses are also stable. For example, H (z) in Example 8.4.1 represents a
causal stable system with 1mpulse Tesponse

h(n) = 0.5"u(n)
The inverse system is ,
Hi'®) =1-05z"< () —058(n — 1)

which is also stable and causal.

)oo

ap)

X OXN3
w 0.5
(a)
|H3(w)!
| | | |
- -w/2 0 w2 i @

(b)
Fig. 8.4.2. Pole-zero (a) location and (b) magnitude response for H;(w).
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In Sections 6.4 and 6.5 we illustrated the fact that when white noise with
variance o is supplied to a system with rational transfer function H(z), the
output has an autocorrelation function given by

Ry() = o’ru(l)
and a power spectrum given by
Gn(2) = ’|HR)P = ’HQH™)

If H(z) is a minimum-phase causal system, then H(z ') is a maximum-phase
anticausal system. This gives us a unique way to represent the autocorrelation
function of such a signal, i.e., in terms of a minimum-phase causal system
function H(z). Processes that can be represented this way are called regular,
and they satisfy the Paley—Wiener condition.

The Paley—Wiener condition is a property of Fourier transforms that allow
us to state that when the power spectrum of a process y satisfies the condition

f " |In Gyr(w)] dos < o0 (8.4.2)

then the spectral density can be factored as
Gn(2) = KIH@I = K H.(H.(2) (8.4.3)

where K is a constant determined by the input power, H.(z) is a minimum-
phase causal system function, and H,(z) is a maximum-phase anticausal
system function. The subscript on H, stands for ‘‘causal,’” while the a on
H, stands for ‘‘anticausal.”’ H, and H, are related to each other by

H,(z) = H.(z™") (8.4.4)

With this notation we are now in a position to describe the innovations
representation and the innovations process for a stochastic process y. Figure
8.4.3 shows two systems, H.(z) and H;'(z), which means simply that they
are reciprocal functions:

1
H () =
(2) 2G)
White noise w (n) y(n)
——————  H(2)
Variance = o 2 Gyy(z) = o? IHc (2)1?
(a)
1 White noise
y(n) Helz)
The innovations

process

(b)
Fig. 8.4.3. The innovations representation (a) and the innovations process

().
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The first system, H,(z), has white noise w(n) with variance o? as its input.
The output process has the spectrum given by Eq. 8.4.3, and is called the
innovations representation.

Since the second system is the inverse of H.(z), it ‘‘undoes’’ what H,.(z)
does. Thus, if we supply the inverse filter with a signal y (n) that has spectrum
Gyy(z), the output will be white noise. This white noise derived from y(n)
is called the innovations process. (This is not just any white noise: It is
derived from y.)

Wiener coined the term *‘innovations’’ because it represents the unpredict-
able part of y(n). Notice that we have used the term ‘‘innovations’’ in two
different (and opposite) ways here. You should not confuse the innovations
representation in Fig. 8.4.3a with the innovations process that is the output’
of the system in Fig. 8.4.3b. Also notice that we have discussed three filters,
all different. They are H,(z), H;'(z), and H,(z) = H.(z7}).

Given a regular process with spectrum Gyy(z), the procedure for finding
the innovations representation is called spectral factorization. This is not
difficult, but you must be careful to derive minimum-phase systems from
Gyy(2); otherwise the representation will not be the desired innovations
representation. Here are some examples.

EXAMPLE 8.4.3. Find the innovations representation for a stochastic
process with spectrum

-2
G =—
0 (2) z—25+771
soLUTION: Factoring the denominator, we can write
-2
Gxx(2) =

(1-052Hz—-2)
Now if we divide top and bottom by —2, we get

1
(1—0.5z")1 — 0.52)

This gives K = 1 in Eq. 8.4.3 and

G (2) =

_r
1—0.5z7"!
H:'(z)=1-0.5z7"!

H.(z2) =

and

1
1—0.5z

H,(2) =
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EXAMPLE 84.4. Find the innovations model for a process with an
autocorrelation function given by

Ry (D) = 4(0.9)"

SOLUTION: A first-order impulse response h(n) = a"u(n) has a corre-
sponding second-order impulse response found by correlating h(n) with
itself. The results give

1 1 '
rw (D) [ - aZ] a 019 (0.9) since a=0.9

Since Ryy(l) = o*r (1), we see that o> = 4(0.19) = 0.76.
The spectrum corresponding to this type of autocorrelation function is
given by
1-a®
(1—azHh(1 —az)
(This is a good formula to memorize.) Therefore Gyy(z) is
41 - 0.99)
(1-0.9z7)(1 —0.92)
_ 0.76
(1-09z7(1 —0.92)

a'

(8.4.5)

Gy(2) =

Therefore K = 0.76 and

S S
1—-09z7!
H:'(z)=1-09"

H:() =

and

1
1-0.9z

H,(9) =

While we are preparing for the next section, there is one more topic we
need to discuss. Figure 8.4.4 shows a cascade of two systems, k; and h,.
The input signal x(r) drives h, to produce v (n), which drives A, to produce
d(n). Thus there is a cause-and-effect relationship between these signals, so

v(n)
x(n) ——> hy(n) ho(n)y ——d(n)

Fig. 8.4.4. A cascade of two systems.
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if we know the correlation between x(n) and d(n), we should be able to find
the correlation between v (n) and d(n). This is the relationship we will need
in the next section.

Since Rpy is known, and x and v are related by convolution, we can find
Rpy in terms of Rpy as follows. Write

v(n)= 2, hyn— K)x(k)

k=—o

Multiply this expression by d(n — [) and take the expected value to get
Ryp()=E[v(n)d(n — )] = E{[ > hy(n— k)x(k)] d(n— l)}
k=—o

= i h](n - k)RXD(k -n+ l)

=—00

Change the variable. Let A = n — k.

Rypp() = AE R (AR — A) = hy(D) * R (1)

Reversing the subscripts gives
Rpy(l) = hy(—1) * Rpx(]) (8.4.6)

This relationship between Rpy and Ry seems rather strange because A,(—1)
is the time-reversed or anticausal version of #,(), but this is the relation we
will need in the next section.

Review

A signal with a specified spectrum Gyy(2) can be generated by supplying a unique
filter H.(2) with white noise. Provided Eq. 8.4.2 is satisfied, the output signal y(n)
then has the spectrum

Grv(2) = KIH:(2F = KH.(2H.(2™)

From this we obtained three filters of interest (at least they will be of interest in
the next section). They are H.(2), H;'(2), and H,(2) = H.(z""). These are the
filters we will need to define the optimum IIR Wiener filter.

Physically realizable (causal) minimum-phase systems are stable and have
stable inverses. Thus, if H;(2) is minimum-phase, we are assured that its inverse
H;'(2) exists and is stable. This is why the concept of minimum-phase systems
is important to us. Spectral factorization is the procedure for decomposing a given
spectrum into components K, H., and H, so that H, is minimum phase. These are
the skills we will need in the next section.
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8.5 IIR Wiener Filters

Preview

In this section we describe how to derive the optimum IIR filter to perform mean-
square estimation, so we combine the two subjects of system theory and mean-
square estimation. This marriage of the twq disciplines is called Wiener filtering,
after Norbert Wiener (1894—-1964), who originated the concept. '

In the preface to his book, Statistical Theory of Communication, Prof. Y. W.
Lee explains that he used Weiner's new work, The Extrapolation, Interpolation
and Smoothing of Stationary Time Series, to teach the first course in this discipline
at MIT in 1947. His course notes evolved into his book published by Wiley in 1960.
Wiener's work was often referred to as the “yellow peril” because of its yellow
cover and its difficult mathematics. The main source of difficulty was the system
theory in the document, not the mean-square estimation. Since that time others
have discovered easier ways to explain the necessary system theory, and |t is thls
theory that we now explore in this section.

“Wiener’s original work was for continuous-time systems, since that was all they
had atthe time. The digital compiiter was essentially unknown in 1939 (the capyright
date on Weiner's document) for John von Neumann did not invent the stored
program concept until about 1944. We are leaving out the continuous-time system
derivation for two reasons. The discrete-time system theory, which we will present,
parallels Wiener's work, and most applications now are to discrete-time systems.

A linear system output y(n) = h(n) * x(n) serves as the estimate d(n)
for some desired part of the input x(n). The error is e(n) = d(n) — y(n)
and the data are x(n), —»© < n < o, We first assume that the data are
available for all time, which includes the future. This will lead to physically
unrealizable filters and serve as a precursor for the more complex realizable
filters.

Abiding by the orthogonality principle, we set the error orthogonal to the
data, giving

E{[d(n) — y(m)x()} = 0, —o <<
Substituting y(n) = 2:=_w h(k) x(n — k) and taking expected values gives

S hk)Ree(n — k— 1) = Roxn — D, —w<l<e
k=—o
The number of variables can be reduced if we set A = n — L.

i h(k)Rxx (A —‘k) = Rpx(A), —00 <A< ® 8.5.1)

k=—c
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This is called the Wiener—Hopf equation. Since the term on the left is the
convolution summation, we can write it in the form A(l) * Ryx(!) = Rpx().

The mean-square error, found by the inner product of the error with d(n),
is glven by

E(e?) = Rpp(0) — E Rox(0h(R) (8.52)

k=—

Solving for the optimum filter coefficients from Eq. 8.5.1 is easy. That
is the reason we begm w1th noncausal filters. Taking z transforms and solving
for H(z) gives .

H(2)Gx(2) = Gpx(2)

or

H(p = 229 (8.5.3)

Gx(2)

where Gxx(z) and Gpx(z) are the z transforms of Ryx(n) and Rpx(n), respec-
tively.

A common situation has the input signal x(n) equal to the sum of signal
plus zero-mean independent noise, and the desired quantity is the signal.
When the signal is a ﬁrst—order low-pass process and the noise is white, we
have

x(n) = s(n) + wn) d@n) = s(n)
Rgs(l) = Ad" Ryw(l) = B&()

Solving for the spectral densities to substitute into Eq. 8.5.3 gives (see Eq.
8.4.5) ’

Gxx(2) = Gss(2) + Gyw(2)
___A0-a)
T (1 =az™hH(1 —az)

+ B, la] < |7 < li’ (8.5.4)

Al — a?
(1 —az (1 ~ az)’

Gpx(2) = _Gs;(Z) = la| < lz| < l%l (8.5.5)

We may now substitute these quantities into Eq. 8.5.3 and solve for H(z)
to obtain the optimum filter. From H (z) we can find h(n). Here is an example.
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EXAMPLE 85.1. LetA=1,B=1l,anda = 0 9 in the specification
above. Find the optlmum ﬁlter h(n).

SOLUTION: Substituting into Egs. 8.5.4 and 8.5.5 gives

2= Qlag+1

Gl = e - 1a)
__zla-1/a)
Gpx(2) = G=-aG-1/a @-1/a)
Hence
_6om@ _ _za-l/a _ _ —02111z

Gu(® 72— QRla)z+1 72—-2222z+1

Using partial fraction expansion gives

H() _ —0.21111
z (2 0.62679)(z — 1.59543)
0.21794 0.21794

T (2= 062679)  (z— 1.59543)
Taking the inverse z transform gives the impulse response:

h(n) = 0.21794[(0.62679)"u(n) + (1.59543)"u(—n — 1)]
=0. 21794(0 62679)"!

This function is plotted in Fig. 8.5.1. A system with this impulse response
is physically unreahzable, meaning the output occurs before the input is
apphed

h(n)

A.. 0.21794 (0.62679)'™

oot 165

e :
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The Optimum Physically Realizable Filter

Now it is time to derive the optimum realizable filter for mean-square
estimation. One thought that comes to mind upon looking at Fig. 8.5.1 is
why not discard the anticipatory part of the 1mpulse response and keep the
realizable part? Would that be optlmum" If so, we can derive the optimum
filter by first assuming that the signal is present for all time and deriving
the optimum nonrealizable filter. Then we 51mp1y discard the part that gives
us trouble and keep the rest, and hope this is optimum. In order to find out
how well this works, we first need to go through some comphcated math
(the yellow penl) and compare.

First, here is what we are aiming at. We break the optimum filter h(n)-
into two -parts, hi(n) and hy(n), as shown in Fig. 8.5.2, Now we want to
show that if A,(n) is the whitening filter from Section 8.4,

hy(n) < H7() (8.5.6)
and if hy(n) is given by

an(z)] 8.5.7)

H.(z7Y)

then the optimum filter is h(n) = hy(n) * hz(n), as shown in Fig. 8.5.2.
Recall that we use the double-headed arrow to indicate transforms (in

this case, the z transform), and that the power spectral density for the data

x(n) is given by .

ha(n) & Hy(z) = [

Gxx(2) = KH.(9)H.(z™") . (853

(see Section 8.4). The filter H.(z) is the physically realizable minimum-
phase component of Gy, K is a constant related to the power in the signal,
and H,(z™") is the maximum-phase component of the spectrum. The subscript
outside the right bracket in Eq 8.5.7 means that we will use the physically
realizable part of this expression and discard the anticipatory part.

The idea behind the derivation to follow is that if h,(n) is chosen to make
the error orthogonal to its input data v (), and if A,(n) is the whitening filter

H'(z), then the overall filter h(n) will make the error orthogonal to the input
data x(n), meaning that h(n) is optimum. Notice that the v (n) is the innova-
tions process for the input x(n). Wiener used thé term innovations because

v(h) A
x(n) ——>= hy(n) ha(n) —d(n)

AN - J
Y

h(n)
Fig. 8.5.2. The optimum filter A(n) broken 1nto the cascade of two sys-
tems, 1(71) and hz(n)
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v(n) contains the ‘‘new information’’ in x(n). The signal can be split into
two parts, the predictable part and the unpredictable part. (This is called the
Wold decomposition.) The predictable part is that which can be predicted
with complete accuracy based on the past history of x(n). The innovations
process contains the difference between the actual value of x(n + 1) and
the predicted value v (n + 1). But before getting into the details, let us work
an example to make certain we understand what each of the terms in Egs.
8.5.6 and 8.5.7 stand for.

EXAMPLE 8.5.2. Find the optimum physically realizable filter if

x(n) = s(n) + wn) d(n) = s(n)
Rss() = 09" Ryw() = 8()

where the noise is zero-mean and independent of the signal, as in Example
8.5.1.

soLUTION: We need to find Gpx(z) and Gyx(z) and identify the terms
K, H.(z), and H.(z™") to substitute into Egs. 8.5.6 and 8.5.7.

Rox(l) = E[d(mx(n — D] = E{s(m)s(n — ) + w(n — DI} = Rss()
since the noise and signal are independent with zero mean. Thus

1-09
(1-0.9z7H1 -0.92)

We use the same reasoning to find Ryy.

Ry(l) = Rss(D) + Ryw(l)

Gpx(2) = Gss(2) =

SO

0.19
Gu(h = Gs (D) + Gw(l) = (1 =09z — 0.92) 1
(1 — 0.62679z7")(1 — 0.62679z)

(1 -09z7)(1 - 0.92)

From this we can identifyAthe parameters in Egs. 8.5.6 and 8.5.7 as

= 1.43589

K = 1.43589
(1 -0.62679z7)
H@="1"05:

(1 — 0.62679z)
(1—0.92)

Therefore H,(z) in Eq. 8.5.7 is given by

H,(x)=H.(z™") =
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_ 1|1 Gx(@) | _ 0.19
H2) =y [H,(z-l)]+ = 0.69643 [(1 -0.9z7)1 - 0.62679z)]+
Expanding in partial fractions to separate the causal part gives

0.13232 _ 030357 + B
(1—-09z7")(1—0.62679z) 1-09z"' 1-0.62679z

SO

0.30357
1-0.9z7!

Multiplying by H, = H_! gives the final answer:

H()=< 1-09z" ) 0.30357 )_ 0.30357
Y \1- 062679 /\1- 09

Hyz) =

" 1-0.6267977!

Hence

h(n) = 0.30357(0.62679)"u(n)

This filter is shown in Fig. 8.5.3. Notice that the only difference between
the realizable part of the optimum filter in Example 8.5.1 and this filter is
in the gain. The realizable part of that filter had a gain of 0.21794, while
here the gain is 0.30357. Is this important? Well, it can be. If you are trying
to estimate d(n), it is all-important. If you are trying to separate signal from
noise, however, as in an ordinary AM radio, the gain is adjustable by the
operator. It therefore assumes little importance. In presenting this theory we
can only assume that the gain is very important, for we must be prepared
to estimate the desired quantity d(n) as accurately as possible.

Now to derive the optimum filter. We want to show that when the input
signal x(n) has a spectrum that can be decomposed into the components K
and H, according to Eq. 8.5.8,

Gx(2) = KH.(2)H,(2) (repeated) (8.5.8)
h(n)

b, 0.30357 (0.62679)"

0

Fig. 8.5.3. The physically realizable optimum filter.



Sec. 8.5 / IIR Wiener Filters 361

where H,(z) = H.(z™"), then the optimum filter is given in Fig. 8.5.2, where
h, and h, are given in Eqgs. 8.5.6 and 8.5.7.

hin) < H'(2) (repeated) (8.5.6)
G
hy(n) & Hy(z) = %[FD(LZ(:%I)—)]+ (repeated) (8.5.7)

We start with the estimate d(n) given by

dn) = 2 h(n — k)x (k) (8.5.9)

(=)

Notice that the upper limit on this summation is n. This is because the data
x(k) are available for the infinite past, but none of the future values of x(k)
are available. This is the only difference between the assumptions here and
those for the anticipatory system in Eq. 8.5.3. The error is

e(n) = d(n) — d(n) (8.5.10)

and the data are x(n — i) fori = 0, 1, 2, ... . We set the error orthogonal
to the data to obtain

Ele(m)x(n —i)] = E{ [d(n) - i h(n — k)x(k)]x(n - i)} =0
k=—0
or
Rpx(i) = i h(n — k)Ryx(k — n + i), i=012,...
k=—o

We can simplify this expression if we let [ = n — k.
Rpx(@) =D h(DRx(G —1), i=0,1,2,... (8.5.11)
1=0

This is the Wiener—Hopf equation. It would be the convolution of A(l) with
Rxx(1) except for the troublesome restriction on the values of i. We now
wish to show that h(n) in Fig. 8.5.2 satisfies this equation.

Let us first consider h,(n) with white-noise input v (n), where h, is specified
by Eq. 8.5.7. From the Wiener—Hopf equation with x = v,

Rpv() = D Rw(i — Dhy(), i=0,1,2,...
=0

but since v is white noise with variance o?, we have

Rw() = a}8()
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SO
1
h(l) == Rpy(),  1Z0
gy

so now we need to find Rpy(/). We derived Eq. 8.4.6 in the previous section
specifically for this occasion. That formula gave the relationship as

Rpy(l) = hy(—1) * Rpx (1) (repeated) (8.4.6)

But A,(—10) is the time-reversed or anticausal version of A,(l), so its transform
is H,(z™"). This means that the transforms of the terms in Eq. 8.4.6 are

Gov(2) = Gpx(DH\(z™")
Since H\(z) = H;'(z) = 1/H.(z), then H\(z™") = 1/H.(z™"). This gives

Gpx(2)

Gpv(z) = H.Z )

since hy(I) = (1/0})Rpy(l), 1 = 0,

GDx(Z)]
Hc(z_l) +

where K = 0% and the + is necessary because of the condition ! = 0 on
h,.

This completes our derivation of Eq. 8.6.7. Now we choose for 4, the
innovations filter 4! and show that this, combined with #,, makes the overall
filter optimum, i.e., it makes the error orthogonal to the data. Since v (n) =
hy(n) * x(n),

H2) = £ G, = % [

x(n) =v(n) * hi'(n) = i hi'(n = k) v (k)

k=—w
Multiply this by the error and take the inner product:
(xle} = E[x(n — i)e(n)]
= > hiln—i—kEpvKkem], i=012,...

k=—w
But v(n) is orthogonal to the error because we chose h, to make it so.
Therefore it follows that x(n) is orthogonal to e(n), meaning that h(n) =
hi(n) * hy(n) is optimal.
The mean-square error resulting from the filter that satisfies this equation
is found by the inner product of the error with d(n):

E[e?] = Rpp(0) — g h(1) Rpx(1) (8.5.12)
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EXAMPLE 85.3. Find the mean square error in Example 8.5.2.
SOLUTION | |

Rpp(0) =Rs5(0) =1

Rpx(l) = Rx(l) = Rss(D) = 0.9¢ =0
Therefore

EE=1- 2 h()Rss() =1 — 2 0.30357(0.62679)'(0.9)'

1=0

=1- 030357 E (0.56411)’
1=0

From Eq. 5.1.6 we get
E(e?) = 1 — 0.30357(2.29416) = 0.30357

Review

In order to find the filter derived in this section we need to know the input spectrum
Gxx(2) and the cross spectrum between the input and the desired signal Gpx(2).
Given these quantities (or their transforms) we first decompose Gxx(2) into Hy(2)
and Ha(z) H.(z™") by

G (2) = KH,(2)H:(z™") (repeated) (8.5.8)
then the optimum physically realizable filter is the cascade of hy(n) and hy(n) given
by . _ .

hy(n) < H3;'(2) (repeeted) (8.5.6)

H
ha(n) <> Hy(2) = }([ GD(X (_21))] (repeated) (8.5.7)

8.6 Recursive Filtering

Preview

The finite-impulse response filterin Section 8.3 is optimum for a fixed-length signal.
That is, if the input signal is of length p, then a filter of length p with appropriate
coefficients ho, hy, ..., h, gives the optimum estimate of d(n) at its output. But
in real life, p increases as time increases. For example in a radar trackmg system
the input signal has a beginning, and the number of terms in the input signal
increases with time. Neither the fixed-length FIR filter nor the IIR filter (which also
has flxed length) is approprlate for this situation. What we need |s a different
FIR fllter at each time instant, the difference being that one more filter tap is
added for each new input signal term. That is what recursive frltenng accom-
plishes.
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In this section we will consider only the simplest recursive filtering problem,
which is for a first-order signal with additive white noise. We do this to illustrate
the essential features of recursive filtering without too many complications. The
extension of these concepts to more realistic applications should not be too difficult
when you need to do so.

Here we illustrate the features of recursive filtering in the following way.
Figure 8.6.1 shows a sequence of optimum filters. The minimum mean-
square-error lmear estimate for d(n) when only one value of x(n) is avaﬂable
for use is d (n) = x(n) If two data values x(n) and x(n — 1) are avallable,
then the optimum estimate uses a linear combination given by dn) =

hix(n) + hix(n —1). In general when the present value plus p past values
of the data are available, the opUmum estimate is

d(n) = hix(n) + hix(n — 1) + - - - + h2x(n — p) (8.6.1)

The superscript p indicates simply that the filter tap values vary from one
filter to another. That is, Y # h?™' for every i. Of course, in all this we are
assuming proper choice for the coefficients in each filter.

As the order of the filter increases, meaning the estimate is based on more
data, the error should decrease. Here is an example to illustrate these ideas.

EXAMPLE 8.6.1. Suppose we are presented with signal plus zero-
mean mdependent noise and we wish to estimate the signal.

x(n) = s(n) + w(n)
din) =s(n)
where
R = 09"  and  Ruyy() = 6(Q)

(See Examples 8.3.3 and 8.3.4.) Find the optimum filter and the mean-
square error for each case in Fig. 8.6.1.

SOLUTION: From Examples 8.3.3 and 8.3.4,

9=05  E[e}] =0.5
Ry=03730  hl=02821  E[e}] = 0.3730

For three data values,
d(n) = hix(n) +hix(n—1) + hix(n — 2)
and the error is
ex(n) =d(n) — hix(n) — hix(n — 1) — h3x(n — 2)
Setting the error e,(n) orthogonal to the data, which are x(n), x(n — 1),
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365
5 A Optimum
x(n) {> d(n) for x (n)
z-1
¥ " n
A Optimum for
{(*+F d(n)  x(n), x(n-1)
-1 z-1
2 L, 2 2
:7 hO :7’71 h2
A - Optimum for
(+) d(n) x(n), x(n=1), x(n = 2)
71 z-1 z-1
thg <7 h? §7h2 hg
A
(= dlm

Fig. 8.6.1. Optimunm filters for data of length exactly 1, 2, 3, or 4.

and x(n — 2), gives three equations in three unknowns:

Rx(0) Ryx(—1) Ry(=2)
Rx(1) Rxx(0)

K Rpx(0)
ht | = Rox(1)
| 13 Rpx(2)_

) Ra(-1)
Rx(2) Rx(1)  Rux(0)

or
[2 09 0817
09 2 09 [|A
081 09 2 h3 |

This gives

h} = 0.3298 h?=0.2250

h}=0.1702

1.0
=109
0.81

E[e}] = 0.3298
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When we repeat this procedure for four observations, we get

hi=0.3137 h} = 0.2037 h3 = 0.1389
h3=0.1051 E[e}] = 0.3137

The results of this example plus the h* coefﬁ01ents along with the associ-
ated mean-square error, are dlsplayed in Table 8.6.1. Notice that the mean-
square error (mse) decreases as we use more data (longer filters) in our
estimates. This is called block processing, because successive blocks of data
are. processed by successively larger systems. As each new data value is
received, the processor muist be redemgned with new coefficients 4? and one
new delay added to the systern. This begs the question of whether we can
design an equivalént recursive filter, one with time-varying parameters, that
produces the same estimate at each step. If so, it would need to be of the
form

d(n) = A, d(n — 1) + K,x(n) (8.6.2)

where A, and K, are the time-varying coefficients to be determined. For this
to be equivalent to Eq. 8.6.1, we start at n = 0 and set

d(0) = h3x(0)
Then successive steps give
d(l)=A4,d0) + Kx(1)
= A [h{x(0)] + K1x(1)
d2)=A,d(1) + K,x(2)
= A,[A1h3x(0) + K1x(1)] + Kpx(2)
etc.

If we know the block—ﬁrocessmg parameters hf, we can use these equations
to solve for the A; and K; parameters. But thlS is not what we want. We
need to be able to find the A;’s and K;’s directly.

Table 8.6.1

ho h, h, hy hy mse
R 05 0.5
B 0373 0.2821 0.373
R? 03298 02250  0.1702 0.3298
R 03137 02037 01389  0.1051 03137

h* 0.3075 0.1955 0.1269 0.0866 0.0655 0.3075
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The approach taken by R. E. Kalman in 1960 began with a general model
for the signal based on the same idea as the innovations representation. If
the signal could be generated by a system with known characteristics, this
would allow him to find the optimum recursive estimates. These estimates
turn out to be related to the parameters of the system that generated the
signal in the first place. For instance, the signal in Example 8.6.1 has an
exponential correlation function, and we know that the innovations represen-
tation for this signal is a first-order system described by any of the three
descriptions,

Impulse response: h(n) = o"u(n)

Transfer function: H(z) = = (8.6.3)

1—az
Difference equation: s(m)y=asn—1) + nn)

where the difference equation description has white-noise input n(n) and
output signal s(n). The observations are in the form

x(n) = s(n) + wn) ,(8.6.4)

The system diagram in Fig. 8.6.2 combines these last two equations to give
the signal model. The system driven by white noise 1(n) produces the signal
s(n). The noise w(n), which is independent of the driving force noise 7 (n),
is added to s(n) to produce the observation x(n). [We are using two different
noise terms here. The 7(n) noise is part of the innovations model. The w(n)
noise is our usual additive noise.]

The mean-square linear recursive estimate for s(n) is given by Eq. 8.6.2.
As we will show later, A, is given in terms of the parameter a by

A, =(1-K)au (8.6.5)
giving
d(m) = ad(m - 1) + K,[x(n) — ad(n — 1)] (8.6.6)
This allows us to express the recursive estimate as the sum of two terms
given by

w(n)

(P JL x(n)

n(n) QIL/

z -1

Fig. 8.6.2. The signal model.
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Term 1: dl(n) ad n—1) The forward prediction term
Term 2: dz(n) =K,[x(n) —« d (n—1)] Theresidual or correction term

where « is the parameter in Eq. 8.6.3, and K, is a time-varying gain to be
determined. We can derive a system diagram from this equation, just as we
derived Fig. 8.6.2 from Eq. 8.6.3. This is the recursive filter shown in Fig.
8.6.3. For proper choice of K, and initial estimate §(0), it will produce the
same estimates as the sequence of block-processing units in Fig. 8.6.1.

The way to derive these proper values of K, is to set the error orthogonal
to the data and solve the resulting equations. That is a rather involved
procedure, which we will get to shortly. In the meantime, let us present the
procedure for evaluating the parameters and do an example.

The changing mean-square error determines the time-varying gain K, as
follows: Label this mean-square error as &(n), where

e(n) = E[eX(n)] = E{ld(n) — A, d(n — 1) — K,x(m)]}} (8.6.7a)

Since the estimate we are using is linear, this is also given by the inner
product of the error with d(n),

&(n) = E[e(n)d(n)] (8.6.7b)
Then K, is given in terms of &(n) by

=) (8.6.8)

Ow
You may notice we have traded one problem for another. Since K, depends
on £(n) in Eq. 8.6.8, and £(n) depends on K, from Eq. 8.6.7a, it seems we
are going around in circles. And we are, but we can escape from this loop
by the fact that £(n) depends on the previous mean-square error €(n — 1).

_ oi+a*(n—1) )
em) = [03, + o% + a’e(n — 1)] Tw (8.6.9)

with initial value given by
oioy

e(0)= ot + 0%

(8.6.10)

x(n) (+) (n)

Fig. 8.6.3. The recursive filter. For proper choice of K, and initial estimate
3(0) it is exactly equivalent to the sequence of block processors in Fig.
8.6.1.
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We will derive these equations later.

EXAMPLE 8.6.2. For the conditions in Example 8.6.1, calculate the
first three Kalman estimates.

soLUTION: The initial error term is given by

2 2

_ _Osoy _1-1 _
sO)= gi+ol 1+1 0.3
Equation 8.6.8 gives »
K0=(l.§=0.5

SO
8(0) = K, x(0) = 0.5 x(0)

For n = 1, the variance o is related to the variance o3 of the signal
by

or=(1-aYot=(1 - a®)Rs(0)=1-0.81 =0.19
Plugging this into Eq. 8.6.9 with n = 1 gives
_ ol +a’e(n—1) )
o= [a% ¥ 7+ ale(n - 1)] o

_[_0.19+ 081005
0.19 + 1 + 0.81(0.5)

Then, from Eq. 8.6.8, K; = 0.3730. Therefore,
§(1) = af(0) + Ki[x(1) — a$(0)] = 0.373 x(1) + 0.2821 x(0)

] =0.3730

which agrees with the coefficients in Example 8.6.1.

Forn = 2,
_[_019+0810373) ] _
@ [0.19 1+ 0.81(0.373)] 03258
K, =22 — 03208
Ow

§(2) = as(1) + Ky[x(2) — as(1)]
= 0.3298 x(2) + 0.225 x(1) + 0.1702 x(0)

which agrees again with the values in Table 8.6.1. As you can see, these
recursive estimates are equal to those obtained by block processing.
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Derivation of the Kalman Filter

We wish to show now that the recursion formulas 8.6.6, 8.6.8, and 8.6.9
can be derived by setting the error orthogonal to the data. The data are

x(n) = s(n) + w(n) n=0,12,...
The estimate is
§(n) =A,8§(n — 1) + K,x(n)
and the error is -

e(n) =sn) — §(n)
We break the following analysis into two parts, / = 0 and [ > 0.

I = 0. First, for [ = 0, setting the error orthogonal to the data gives
Ele(mx(n)] = E{e(m)[s(n) + w(m)]}

= Ele(n)s(n)] + E[e(n)w(n)] =0
The first term is &(n), the mean-square error, because this term is the inner
product of the error with the term to be estimated. Substituting this term
and expanding the second term gives

&(n) + Ele(mw(n)] = e(n) + E{[s(n) — A,8(n — 1) — K,x(n)Iw (n)}
= g(n) + E[s(nyw(n)] — A,E[§(n — Dw(n)]

- K,E[x(n)w(n)] =0
Since the noise is uncorrelated with s(n), and also uncorrelated with past
values of x(n), the second and third terms are zero. This gives

e(n)—K,o4=0

or

2= E%l—) (repeated) (8.6.8)
Ow

This gives a formula for calculating K, if we can calculate £(n). This is
provided by the second part of the derivation, for / > 0.

I > 0. Now when we set the error orthogonal to the data we get
E[e(mx(n — D] = E{[s(n) — A,§(n — 1) — K,x(m)lx(n — D)}
=E[s(mx(n — )] — AE[§(n — Dx(n— 1)
—K,E[x(n)x(n—D]1=0
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The first term is Rg(1). So is the last term, though it may not be so obvious.
The last term is Ryy(I) = Rss(!) + Ryw(l), but for I > 0 we have Ryy(l) =
0 [because w(n) is white noise]. This gives
(1 = K)Rss() —A{ls(e — 1) —e(n — Dx(n — D} = 0
But E[e(n — 1)x(n — )] = 0 for [ > 0, giving
(1 = K)Rss(l) — Ayls(n — Dx(n — )]
= (1 = K.)Rs()) = AR5 — 1)

=0
or
Rs(D) = A Rs(l—1) (8.6:11)
1-K,
This first-order homogeneous difference equation has the solution
Rss(l) = Rs5(0)d, 1>0 (8.6.12)
where
A,
a=1_ X, (8.6.13)

which gives us Eq. 8.6.5.

We have succeeded in deriving Eqs 8.6.5 and 8.6.6. Now we rieed to
show that the recursive error equation 8.6.9 is valid. The mean-square error
at each step is the inner product of the error with the quantity we are
estimating.

e(n) = (s(m)e()) = E{s(m)[s(n) — a(l = K)8(n — 1) = Kx(m)]}
= El[s*(n)] — a1 — K,)E[s(m)$(n — 1)] — K,E[s(n)x(n)]
The first and last eXpected values are R,,(0) = o2 This gives
e(n) =051 - K,) —a(l — K,)E[s(m$(n — 1)]
= (1 = K)(03 — aE{[as(n — 1) + n(m)]$(n — DY)
The input noise ﬁ(n) is uncorrelated, implying that it is uncorrelated with
past values of the signal. Therefore,

e(n)=(1-K)lot— azE{s(nl - D§(n— DY (8.6.14)

From this we may now derive Eqs. 8.6.9 and 8.6.10. Initially, with n = 0,
if we assume that there is no prior estimate §(n — 1), we get

e(nm) = (1 - K,)o}

SuBstituting K, = e(n)/o% from Eq. 8.6.8 and performing a few manipula-
tions gives Eq. 8.6.10.
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For n > 0 we can use Eq. 8. 6.14 to derive Eq. 8.6.9, but first let us
display an expression for &(n — 1)

en—1)=E[s(n— De(n — 1)] =E{s(n— Dis(n — 1) — §(n — 1)]}
=g} —E[s(n — 1)§(n — 1)]

Solving for E[s(n — 1)§(n — 1)] and substituting into Eq. 8.6.14 gives
, é(n) =1 -K)oi—aYot—e(n— 1)]} (8.6.15)
This provides a recursive relationship between &(n) and £(n — 1). Recall
that 0% = (1 — a*)o}and that K, = £(n)/ o} Substituting these two quantities
into Eq. 8.6.15 gives Eq. 8.6.9.
Revuew
in order to use the Kalman fllter derlved in this section, we need to know

1. The signal has exponentlal autocorrelatlon function, meanmg thata signal with
identical second-order statistics can be generated by the system in Fig. 8.6.2.
The parameters « and o2 must be known.

2. The additive noise w(n) is white with known variance o%.

Then we perform the following steps.
Step 1: Setn =0 and calculate the initial rean-square error:

o o80%
e(0) = o3+ o¥y
Step 2: Calculate K, = e(n)/o%. »

Step 3: Input the data x(n) and calculate the estimate:

8(n) = ad(n — 1) + K,ix(n) — ad(n — 1)]

‘ [For n = 0 assume §(n — 1) = 0, so §(0) = K;x(0).]
Step 4: Letn=n+ 1.
Step 5: Update the error:

e(n) = [ +as(n—1) ]2

2+(J'W+¢xs(n—1)

~ where 02=(1 - a?)od
Step 6: Go to step 2.
8.7 Problems

8.1. Let X and Y be random variables defined on the {H, T} sample space.
Define vector addition and scalar multiplication by the rules
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) L-E] of-ls

Is this a vector space? Show why or why not.

8.2. Let A be the ternary field as in Problem 2.8b. Let X = {x, y, z}. Fill
in the blanks in the following table for vector addition to satisfy the
properties listed in Definition 8.2.1.

+ X y 4

x | x|y | z

y y

2 Z

Example: x + z = z.
Also fill in the following table to define scalar multiplication.

X\ x|y | z

0

1

2

8.3. Two random variables X and Y are defined on the sample space given
in Fig. 8.7.1. There are three possible experimental outcomes ¢, {,, and
{3, and they occur with equal probability.

(a) Find the mean-square estimate of X and the resulting mean-square

error.

(b) Find the mean-square estimate of X given Y and the resulting mean-
square error.

X -2 0 1

Y 1 0 1
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8.4. Repeat Problem 8.3 for the probabilities

Py =P =% P)=%

8.5. Let X be a random variable that assumes the values —2, —1, 0, 1, 2
with equal probability. Let Y = X + N, where N is another random
variable, statistically independent from X, that assumes any of the values
=1, 0, 1 with equal probability. Find the linear estimate of X given Y
and the resulting mean-square error.

8.6. Let X and N be as in Problem 8.5, but now we perform the experiment
as follows: A number is selected for X and recorded. A number N, is
chosen and added to X to form ¥; = X + N,. A second number N,;
independent of N, is chosen and added to the same X to form Y, =
X + N,. If you are shown the two numbers Y, and Y,, how can you
estimate X with a linear estimator? Also find the resulting mean-square
error and see that it is smaller than in Problem 8.5.

'8.7. Repeat Problem 8.6 with three observations Y, Y, and Y;.

8.8. Let Nbe a Gaussian random variable with zero mean and unit variance.
Repeat Problem 8.5.

8.9. A continuous-time, stationary stochastic process X(f) with mean 0 has
correlation

Rye(7) = sin(w 1)

(a) One sample is taken at time z. It is x () = 1.5. Find the linear estimate
of x(t +3) and the resulting mean-square error.
(b) Now suppose that you are given two values of x: x(f) = 1.5 and
x(t —%) = —0.5. Repeat part (a).
8.10. Which of the following discrete-time systems are minimum-phase
systems?

_ 22+1
@ H@ =06 —0.16
_ 2z-0.5)
® B2 = 05— 016
2+ 177+ 06
Hyp) =2t 172406
© H@ = 06z - 0.16

8.11. For each minimum-phase system in Problem 8.10, do the following:
(a) Find the impulse response of the system.
(b) Find the inverse system and its impulse response.
(c) Convolve the two impulse responses and show that the result is a
delta function.
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8.12. Factor the following complex spectral density functions into mini-
mum- and maximum-phase components.

—25
® 6@ = —557
_z—25+77!
® D= 05+

8.13. Find the innovations representation for each process in Problem 8.12.

8.14. Factor the following complex spectral density functions into mini-
mum- and maximum-phase components.

—4
(@ G2 = =425+ 21
_ —5z72
® G =T 557

8.15. Find the innovations representation for each process in Problem 8.14.
8.16. Suppose that we are presented with signal plus zero-mean indepen-
dent noise and we wish to estimate the signal.
x(n)=s(n) +w(n)
d(m)=sm)
where
Rss()) = 2008)"  Ruw(l) = 0.56(0)
Find the optimum realizable IIR Wiener filter and the resulting mean-

square error.

8.17. For the conditions in Problem 8.16, let d (n) = s(n + 1) (prediction)
and repeat the problem.

8.18. For the conditions in Problem 8.16, let d(n) = s(n — 1) (smoothing)
and repeat the problem.

8.19. Suppose that we are presented with signal plus zero-mean indepen-

dent noise and we wish to estimate the signal.

x(n)=sn) +wh)

d(n) = s(n)
where

Rss(1) = 1.2(0.7)M Ryw(l) = 0.26()

Find the optimum realizable IIR Wiener filter and the resulting mean-
square error.

8.20. For the conditions in Problem 8.19, let d(n) = s(n + 1) (prediction)
and repeat the problem.
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8.21. For the conditions in Problem 8.19, let d(n) = s(n — 1) (smoothing)
and repeat the problem.

8.22. Suppose that we are presented with signal plus zero-mean indepen-
dent noise and we wish to estimate the signal.

x(n) =sn) +wn)
d(n) =sn)

where
Rss(1) = 2(0.8)M Ryw(l) = 0.56()
Find the recursive (Kalman) estimate and the resulting mean-square error

forn =1, 2,3, and 4.

8.23. For the conditions in Problem 8.22, let d(n) = s(n + 1) (prediction)
and repeat the problemn.

8.24. For the conditions in Problem 8.22, let d(n) = s(n — 1) (smoothing)
and repeat the problem.

8.25. Suppose that we are presented with signal plus zero-mean indepen-
dent noise and we wish to estimate the signal.

x(n) =sn) + w(n)
d(n) =s(n)

where
Rss(1) = 1.2(0.7)% Ryw(l) = 0.26(1)
Find the recursive (Kalman) estimate and the resulting mean-square error

forn =1, 2, 3, and 4.

8.26. For the conditions in Problem 8.16, let d(n) = s(n + 1) (prediction)
and repeat the problem.

8.27. For the conditions in Problem 8.16, let d(n) = s(n — 1) (smoothing)
and repeat the problem.
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