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The sum we seek has a lower limit of 1 instead of 0, so we should
calculate the sum usmg Eq. 5.1.6 and then subtract the term at n = 0.
Wlth a=0 81 this gives

B . 4(0.81)
Zl x(n) =4 Z:, 0.81)" = T—0sl

Therefore the energy is do,ublc this number plus x%(0).
E= 2(1'7.0526). + 4 = 38:1052
The power is 0, as we see from the following' sequence of sums:

= 17.0526

ForN = 5, - L x*(n) = 2.383 '
11 n=-5§
For N =10, P= 3 x(n)=05471
: } 21,55
1 . 100
For N = 100, P=—— > xX(n)=0.0552
A 20]. n=—100 o .

In the limit, P = 0. Because the power is 0 and the energy is greater than
0 but finite, this is an energy signal. (The formula for calculating finite
sums is derived in the next section; see Eq. 5.2.6.)

We w111 use only those s1gnals that can be classified into one of the two
categories of energy or power 81gnals, according to the value of P or E from
these definitions. Notice once again that a power signal must last forever,
50 these deﬁmtlons apply only to their mathematical models

Review

For continuous-time signals Eqs. 5.1.2 and 5.1.3 define power and energy, respec-
tively. Equations 5.1.4 and 5.1.5 define power and energy for discrete-time signals.
You should understand how to apply these formulas to find power and energy in
asignal. You should also understand that these concepts apply equally to determin-
istic or random sngnals '

5.2 Time Correlation Functions

Preview

Correlation is a binary operation. This means that we operate on two waveforms
and produce a third waveform. Convolution does the same thing, and convolutlon
and correlation are almost identical, differing only in the details of calculation and
in thelr use. Convolutlon is'a mathematical descnptlon of the operation of linear
systems on input sugnals whlle correlation has many practlcal appllcatlons
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Initial applications were to radar and pulse communication, where a pulse of
known shape is either present or absent during each specified period. The receiver
uses a correlation receiver to determine (guess) whether or not the signal is present
during that time interval. Aimost all data and Iong-dlstance voice communication
is handled in this way.

Pattern recognltlon illustrates another application. Despite all the theoretical
and experimental work done to improve automatic pattern-recognition systems,
most systems use correlation to decide (guess) which pattern is' present. One
familiar and very successful system is the bank check readers now used by every
bank in the United States. The numbers and symbols printed across the bottom
of your checks are specnally deslgned fora correlatlon detector. A scannmg devrce
produces a signal that is sampled nine tlmes during the span of each ‘symbol.
Therefore each symbol is represented by a digital srgnal of nine samples There
are 14 different symbols used in this system, 10 numbers and 4 special characters,
so there are 14 different matched filters used to detect each symbol by correlation.

Automatic page scanners use correlatlon These devices read and enter a page
full of text into a computer automatlcally, a great labor-saving device in many
offlces Correlatlon decides which letter or number is present at each possible
symbol location. Page scanners are reliable for one particular font and type size,
but as you can imagine, they are of little value for reading arbitrary type styles
and sizes without ad]ustment This is an example of two- dimensional correlation.
We match a template for each class to the unknown symbol and make the decision
on the basis of the hlghest correlat|on value ‘This is called template matchlng in
pattern recognition.

These examples illustrate only some of the many applications of correlation to
technical problems. For a better understanding of this general technique we need
to describe the conditions under which we may apply the various forms of correla-
tion. In this chapter we look at the four forms of time correlation. In later chapters
we look at statistical correlation. In this section we define correlation for each of
the four types of srgnals continuous-time power and energy signals, and discrete-
time power and energy signals. After completing this sectlon you should be able
to find and plot the correlation functlon for any two glven srgnals when both are
the same type. :

Correlation is a binary operation. The black box with two input lines and
one output line in Fig. 5.2.1 shows a binary operation The chief requirement
for this box is that the same type of things that go in come out. If the two
input terms are numbers, then the output must be a number. If the two input
terms are functions, then the output must be a function. (I suppose if the
two inputs are elephants, then the output must be an elephant but we’ll stick
to mathematics.) Ordinary addition of two numbers is a binary operation.
We add two numbers x and y to produce the sum 2 = x + y. Convolution
is a binary operation, where the two input terms are functions and the output
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x —lt
Binary
operation

y—-b

Fig. 5.2.1. A black box.

term is a function. Both statistical and time correlations are binary operations,
and as we will see, time correlation is closely related to convolution.

The four forms of the correlation operation correspond to the four signal
types we deal with. These four signal types are

Type 1. Continuous-time energy signals
Type 2. Continuous-time power signals
Type 3. Discrete-time energy signals
Type 4. Discrete-time power signals

See Section 5.1 for a discussion of these signal types. There is a different
correlation formula for each type. We discuss each formula in turn below.

Type 1. Continuous-Time Energy Signals

The correlation r,,(t) between two continuous-time energy signals x(¢) and
y(t) is given by

ro(n =[x yt— D dr (5.2.1a)
= f " x(t+ Dy dt (5.2.1b)

If x(t) = y(¢), this is called the autocorrelation and is written r.(7). If
x(t) # y(t), this is called the cross correlation between x and y. Notice that
r4(7) # (7). The two formulas in Eq. 5.2.1 give the same result because
a change of variable ‘relates the two integrals. Let A = ¢ — 7 in the first
form to obtain the second form. We will use lowercase r for time correlation,
and uppercase R for statistical correlation.

Figure 5.2.2 shows correlation as a binary operation. The input terms are
continuous-time signals x and y, so the output r,(7) must also be a continuous-
time signal. When the input terms are discrete-time signals, the correlation
is a discrete-time signal. Here are some examples.

x(t) ———>i

Joxn yi-nydt—e ()

y(t) —

Fig. 5.2.2
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EXAMPLE 5.2.1. Find the correlation function r,,(7) for the two sig-
nals in Figs. 5.2.3a and 5.2.3b. .

soLUTION: Figure 5.2.4 shows a plot of x(t — 7) and y(z) for various
values of shift 7. In Fig. 5.2.4a no overlap occurs between x(¢t — 7) and
¥(t), so the correlation from Eq. 5.2.1a is 0. Notice that the abscissa is
labeled ¢ in the diagram, and the variable of integration in Eq. 5.2.1 is ¢.
You should plot functions versus the variable of integration for both
correlation and convolution so that they will provide a picture of the
integration process. Figures 5.2.4b and 5.2.4c show the picture for —1 <
7<0, and for 0 < 7 < 1. The p1cture for 1 < 7is not shown, but there
is no overlap so the correlation is O in that interval.

-Figure 5.2.5 shows the correlation function r,,(7) plotted versus 7.
Since x(¢) = y(¢) this is also the autocorrelation function for signal x(z).
Notice that r,(0) is the energy in the signal x(#), which we calculated in
Example 5.1.1.

EXAMPLE 5.2.2.  Find the correlation function r,,(7) for the two sig-
nals in Fig. 5.2.6a and 5.2.6b.

soLUTION: Figure 5.2.7 shows the answer. You should be able to arrive
at the answer by using the same techniques for evaluating the correlation
integral as in the previous example.

Type 2. Continuous-Time Power Signals

The correlation r,,(7) between two continuous-time power signals x(f) and
y(?) is given by

ro(7) = lim 51} f T x@y(t -7t (5.2.22)
= 1imif x(¢ + P y() dt (5.2.2b)
10 2T ) -1 Y “
x(t) y(t)
2 2
0 1 t 0 1 t

(a) (b)
Fig. 5.2.3
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x(t—1) ()
~ - r< ot
rxy(t) =0
T 7+1 0 1 t
(@)
x(t-1) y(1)
N pd -1<7<0
7+ 1
rxy (7) =f0 4dt=4(r+1)
T 0f(r+1)1 t
(b)
y(1) x(t=17)
™ e O<7<1
1
. 1 ¢ ny(n=f adt=4(1-1)
T '
(©
Fig. 5.2.4

This is similar to our definition for mean square value or power (see Eq.
5.1.2), because we have the limit as T — o in the formula.

If x(¢) and y(¢) are periodic with the same period T, we may replace Eq.
5.2.2 by the simpler form given by

rod =130yt = e (5230)
1 (r
=T7)ox¢t 'r)_y(t)dt (5.2.3b)

EXAMPLE 5.2.3. Find the autocorrelation function r.(7) for the signal
in Fig. 5.2.8a.

soLuTION: Figure 5.2.8b shows x(¢z — 7) for 0 < 7 < 7/2. Figure 5.2.8¢c
shows the product x(t) X x(t — 7). Integrate over one period and divide
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rxy(r)

T

-1 0] 1
Fig. 5.2.5. The correlation of x(¢) with y(z).

by T according to Eq. 5.2.3a to get

1 m _, E* (T T
= ==|z- <r<=
r(7) T Ed T(Z ) o<r 2
Figure 5.2.9 is like Fig. 5.2.8, but for 7/2 < 7 < T. Figure 5.2.9a shows
the original function x(¢). Figure 5.2.9b shows x(¢ — 7) for Tapproximately
equal to 37/2, and Figure 5.2.9c shows the product. Now integrate over
one period to get
1 (-2, E? T T
== ==|r—-= =<
ra(?) Tfo Eldr=" <7 2), S<r<T
If this process is duplicated for all values of 7, the result is the penodlc
autocorrelation function shown in Fig. 5.2.10.

This example illustrates that the result of correlating two periodic signals
with the same period is a periodic correlation function with the same period.
Do not, however, draw the incorrect conclusion that the result of correlating
two power signals is a power correlation function. In this example, the
correlation r,(7) is periodic, and is therefore a power function. But that is
only in this example. The correlation function for the random power signal’
in Section 1.2 is an energy function.

x(t) ¥(t)

(@ (b)
Fig. 5.2.6
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-2 -1 0| 1

Fig. 5.2.7. The solution to Example 5.2.2.

Type 3. Discrete-Time Energy Signals

The correlation f,,(t) between two discrete-time energy signals x(n) and y(n)
is given by o B

@

re(n= 2 x(m) y(n =17 (5.2.42)
x(t)
T -T2 0 T2 T 2T !
@
X(t—‘l')
E
=T 0| T T+T2  T+T T+2T t
(b)
x(t) x(t-7)
E2
| I N O N O I
=T QI T T2 4T

(©
Fig. 5.2.8. Calculating correlation for 0 < 7 < T/2.
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x(t)

| | L

-T -T2 0 T/2 T ' 2T
(a)

X(t—-'r)

—T |0 T T+T/2 74T
(b)

x(t) x(t- 1)

HHI_II—

0 T-T/2
(©
Fig. 5.2.9. Calculating correlation for 7/2 < 7 <T.

©

= 2 x(n+ 7) y(n) (5.2.4b)

n=-o

We will use 7 for the shift parameter for both continuous- and discrete-time
signals. You should be aware, however, that 7 is a continuous variable in

ryy (1)

E2/2

-T -T2 0 /2 T 3T2

Fig. 5.2.10. The autot_:ofrelatiop function for Example 5.2.3.
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x(n)

0

Fig. 5.2.11

Eqs: 5.2.1 through 5.2.3, and 7 is a discrete variable here for digital signals.

EXAMPLE 5.2.4.  Find the autocorrelation function r(7) for the sighal
in Fig: 5.2.11.

SOLUTION: Th1s is the energy s1gna1 from Example 5.14. Flgure
5.2.12a shows x(n — 1) for 7 < 0, along with x(n). You can see that as
7 increases, overlap occurs at 7 = —2. The sum in Eq. 5.2.4 therefore
has the values shown in Fig. 5.2.12b.

EXAMPLE 5.2.5. Find the autocorrelation function r.(7) for the expo-
nential energy signal shown in Fig. 5.2.13.

soLuTioN: The probiem here is to evaluate the sum

re() = Z x(n — 7 x(n)
for each value of 7. We begin with 7 < 0, as shown in Fig. 5.2. 14a After
multiplying the functions x(n — 7) and x(n); we have two regions with
different terms in the product.

Region 1: (n < 0), product 0.
Region 2: (n = 0), product = (0.9)*"7(0.9)" = (0.9)" ’(0 9),

’xxt‘f)

x(n-f) \ / x(n)

LT ] ]r*,

T T+2 ol -2 —1o| 2

(@) (b)

Fig. 5.2.12
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x ()

0| 1

Fig. 5.2.13

The sum over these two regions gives the autocorrelation function for
r<0.

-1 .0 . ) ©
re(m= > 0+ (0.970.9> = (09" (0.81)
n=-w n=0 ’ n=0
The sum S, (0.81)" is a geometric series. This familiar series has the

value given by

Sa=—1_  |g<1 (5.2.5)
) n=0 1- a ‘ :
To see this, divide 1 — a into 1 by long division. With a = 0.81 the
autocorrelation function is
o
(D) = —— (0.9) T <
r(7) 019 0.9) for'T 0

Figure 5.2.14b shows the picture for 7> 0. For this situation the autocorre-
lation sum is given by

-1 © . o
re(D= > 0+ > (0.9)" 0.9 = (0.9, (0.81)

n=—o n=Tt

If the lower limit on the sum was 0, we could use Eq. 5.2.5 to find its
value. Since the lower limit is 7, we can write

© ®© 1
E a"= 2 a"— Z a"
n=r n=0 n=0

Therefore we need a closed form ’expressiori for this last term. To find
this, write

™1
S=Ya=1l+a+a*+- - -+a™!

n=0

1
aS=aya=a+a*+a*+---+a’

n=0
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S (0.9)n-7 [ (09n
[T 1T
<0 ["'.__.. J‘["..."
, fho- [Ty
(a)
(0.9)n
h ~’~ / "‘~ (09)’7 -7
>0 f"“*i["'"~
: [Tl T,
(b)
Ixx(7)
1
_0_.]{_9_ (0.9)~ . 219 (0.9)7
-------- anll : Ty )
()

Fig. 5.2.14

Now subtract the bottom expression from the top one to get
S—aS=1-a"

or

™1
,_1—a’
S= ’éa 1=
For our sum, a = 0.81. Note that (0.81)" = (0.9)*". From all this we can
write

la] =1 (5.2.6)

re(?m = -013 0.9)" forr=0

This result is plotted in Fig. 5.2.14c.
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Type 4. Discrete-Time Power Signals

The correlation r,,(7) between two discrete-time power signals x(n) and y(n)
is given by

N

. 1
ro(7) = 1141-2 INT1 ”;Nx(n) yin—17 (5.2.7a)
N
= lim >=— ";_Nx(n + 7 y(n) (5.2.7b)

If x(n) and y(n) are periodic with the same period N, we may replace Eq.
5.2.7 by the simpler form given by
N-1

ro(7) = %% x(n) y(n — 1) (5.2.8a)

x(n)

“L L

L] ;U].;CIU;';I!Uu;I -
| | o | o

(©
Fig. 5.2.15
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N-1
= i—,%x(n + 7) y(n) (5.2.8b)

EXAMPLE 5.2.6. Find the autocorrelation function for the periodic
signal from Example 5.1.5, shown in Fig. 5.2.15a.

soLUTION: We multiply the shifted function x(n — 7) in Fig. 5.2.15b
by x(n) to produce the product in Fig. 5.2.15c. In this picture, 7 = 1, but
the general idea is to shift x(n) by any amount 7 and multiply to produce
the product. For each value of 7 the average in Eq 5.2.8 gives the
correlation function plotted in Fig. 5.2.16.

As with continuous-time signals, periodic signals produce periodic auto-

correlation functions. Also notice that r,(0) is the mean square value of the
signal. This is a general property of autocorrelation functions. The value at
7 = 0 is either the power or the energy in the signal, depending on whether
we have a power or an energy signal.

Random Signals

The time correlation function that we have defined for each of the four types
of signals applies to both random and deterministic time functions. Therefore
we could use these formulas for the coin-toss function in Section 1.2. The
trouble is that these formulas are accurate only for T — oo. The correlation
functions in Section 1.2 for the coin-tossing experiment were calculated
using the statistical relation between samples, rather than the formulas for
time correlation functions that we have presented in this section. Let us now
calculate the time correlation functions for the signal xq(n) for comparison.
See Section 1.2 for a description of this signal. Figure 1.2.2 shows a plot
of the first 100 samples of x,(n).

The idea expressed in Eq. 5.2.7 for calculating the autocorrelation function
is to multiply x(n + 7) by x(n), sum over all terms, and divide by the number

-] .’ ail rlh Iljlg Il]l

Fig. 5.2.16
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Recursive filtering, which is patterned after Eq. 5.2.10, plays an important
part in apphcatlons We will discuss Kalman (recursive) filtering in Section
8.6.

Here is a hstmg of procedure corr, whlch implements Eq 5.2.9. The input
to this procedure is the signal x, and it returns the correlatlon r(7) for
0<T<M

procedure corr(x) /* find autocorrelation of x */
define x(N), r(M)

7.=0
while 7 < M
begin
’ n=1
sum = 0
while n = (N=-7)
begin »
sum = sum + X(n)*x(n+7)
n=n++1
end for n
r(r) = sum/(N—7)
o r=7+ 1
‘end for T
return(r)
end corr

EXAMPLE 5.2.7. In Section 1.3 we promised to find the correlation
between successive numbers from the random number generator there.
The autocorrelation function for 7 = 1 gives this value. The plot in Fig.
5.2.20 shows the normalized time autocorrelation function averaged over
500 values of this number generator, which was found by the procedure
above. At 7 = 1 the value of the function is 0.046, a relatively small
number compared with 1. If we could trust the results from only one
sample of length 500 from the random number generator, we could say
that this is a reasonable generator.

Noisy Periodic Sequences
Suppose a signal is periodic with added noise,

x(n) = s(n) + w(n) (5.2.11)
where s(n) is the sigiial, w(r) is the noise, and x(n) is the received S1gnél
Because the autocortelation function of a periodic signal is periodic, the

autocorrelation furiction of x(r) reveals periodic tendencies in the signal. To
show why, consider the autocorrelation function of x(n).
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1.4

1.2

0.8

0.6

Normalized autocorrelation

10 20

Fig. 5.2.20. Normalized autocorrelation function for the random number
generator.

N

T 1n_E_Nx(n) x(n— 1) (5.2.12)

re() = hm

Substitute Eq. 5.2.11 into this expression to get

[s(r) + win)lls(n — 7 + wn — ’T)]
2"’ 1,8 Z | (5.2.13)
= rss(T) + r.vw(T) + rws(T) + rww(T) ‘

ro(7) = 11m

The first factor is the autocorrelation function of s(n). If s(n) is periodic, this
function is periodic. The second and third terms represent cross correlations
between signal and noise. If there is no relation between signal and noise,
these are O for all 7. The last term represents the noise correlation, and this
is often O for all 7 # 0. Therefore, under these conditions we can detect
periodic components in a received signal by finding its autocorrelation
function.

Review

Basically the same dpefation calculates correlation functions for each class of
signal. Integration applies to continuous-time signals, and summation applies to
discrete-time sngnals For energy signals we integrate or sum over all time, from
—& to +, For power signals we ifitegrate or sum over one period, and then
divide by the period length. This works well for periodic signals, but has littte
meanirig for aperiodic signals. This business of letting the period approach «
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makes good. sense until we try to put it into practice. That is when we begin to
appreciate the statistical approach for power signals.

You should now be able to calculate the time correlation function for two signals
from the same class.

5.3 Time-Frequency Relations

Preview

Some people become set in their ways as they grow older, and some become
eccentric. Jean Baptiste Joseph Fourier (1768—1830) became eccentric. He pur-
sueda military career in his youth, spending time in Egypt with Napoleon Bonaparte,
and also pursued his mathematical interests. He was too good a mathematician
to stay in military service, but his stay in Egypt exposed him to the benefits of
desert heat. Believing heat essential to health, Fourier spent his Iatei' years with
his residerice overheated and himself swathed in layers of clothes. Perhaps he
was right: Isaac Asimov said that Fourier died of a fall down the stairs. (T he
mathematical historian E.T. Bell said he died of heart disease. )

Fourier's theorem, announced in 1807, states that a periodic function can be
expressed as the sum of sinusoidal ccomponents. This we now call the Founer
series for continuous-time periodic power signals, and is one of four formulas we
. call the Founer transform. There is a Fourier transform for each of the four types
of signals, but before defining these four transforms, let us discuss transforms in
general.

A transform is a special type of function. In the beginning, the concept of a
function applied to numbers. The domain and codomain consisted of numbers.
Now the term function applies to the relationship between any two sets if the two
properties for a function aré satisfied. These are: (1) for each element in the first
set (the domain), there corresponds at least one élement in the second set (the
codomain); and (2) for each element in the domain, there cofresponds at most
one element in the codomain. We combine these into one statement by saying
that a function is a relationship between two sets stich that for each element in
the first set there corrésponds exactly one element in the second set. Here is an
example of a function where neither the domain nor the codomain have anything
to do with numbers. . ‘

Suppose | have a basket full of cards, and on each card is written an instruction.
You reach into the basket, select a card, and carry out the instruction written on
it. This is a function. The domain is the basket of cards with their instructions. The
codomain is the set of all possible actions you could perform. The set of actions
~ that might actually be performed (those on the cards) is called the range, and this
is a subset of the codomain. .

This distinction between the codomain and range occurred recently in mathe-
matics. We previously called both sets the range, which led to some confusion.
In modern parlance the term range refers to those elements in the codomain that



