Application - Traffic Tracking

e We want to track
vehicles on a road
e Eg: The truck in the
images to the left
e They are moving with
a (fairly) constant
velocity
In each frame we can
measure the position
of a feature on the
vehicle we want to
track
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State Update Equation

e We assume the truck

is moving with

constant velocity

e Our state is the truck
position (x,y) and
velocity (u,v)

s=[x,y,u,v]"

o At each time the
velocity adds on to
the position
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Measurement Equation

e At each time we can
detect features in
the image

e These make our
measurements, m,

e We can directly
measure the position
of the truck, but not
its velocity

e me=[xy]"
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An Initial Estimate

e The initial estimate

of the state

* We give a rough value
of x and y to say
which feature we are
tracking
We probably won't
have any idea about u
and v
e So we will use

s,=[100,170,0,0]"
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e We also need to give

the (un)certainty

e Our estimate of the
position is good to
within a few pixels
Our motion estimate
is not good, but we
expect the motion to
be small
We represent this as a
covariance matrix
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Covariance Matrices

e So whatis a
covariance matrix?
o It gives the
relationships between
sets of variables

e The variance of a
variable, x, is
var(x) = E((x-x)?)
e The covariance of two
variables, x and y, is

cov(x,y) = E((xX)(y-y))
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¢ Given a vector of

variables
x=[x1,x2,...,xk]
e The covariance , C, is
a kxk matrix
e The j,jt" entry of C is:
Ci,j=cov(x,y)
¢ A diagonal entry, C;;,
gives the variance in
the variable x;
e Cis symmetric
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Covariance in Noise

e The noise terms v

and w need to be
estimated

e They have zero mean,
and covariance Q and
R respectively

We need an estimate
of these matrices

Q and R say how
certain we are about
our model equations
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e To estimate Q

e Our initial estimate
will be within a few
pixels, say 0=3

e The velocity is a bit
less certain, but won't
be large, say 0=5

e There is no reason to
think that the errors
are related, so the
covariance terms will
be zero
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Initial Covariance

900 0
090 0
P, =
0025 0
00 0 25
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e The variances of x
and y are 32 =

e The variances of u
and v are 52 = 25

e Since we assume
independence the
off-diagonal entries
are all 0

Image Processing and Interpretation
at The University of Nottingham

Uncertainty in the Model

e Our model equations
have noise terms
e v represents the fact
that our state update
model may not be
accurate
w represents the fact
that measurements
will always be noisy
We need to estimate
their covariances
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e In general

o Often the terms will
be independent. If
this is the case the
off-diagonal entries
will be zero
Choosing the diagonal
entries (varainces) is
often more difficult

Image Processing and Interpretation
at The University of Nottingham

State Update Covariance

e The state update
equation is not
perfect
o It assumes that the

motion is constant but

u and v might change

over time

It assumes that all

the motion is

represented by u and

v but other factors

might affect x and y
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e These errors will

probably be small
e The motion is slow
and quite smooth
e So the variance in
these terms is
probably a pixel or
less, say 0 = 2
0.25 0 0 0
Q=| o 025 OSE
0 0 0.25500
0 0 0 025
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State Update Covariance

e The measurements
we make will be
noisy

e The features are
located only to the
nearest pixel

e Because of image
noise, aliasing, etc,
they might be off by a
pixel or so
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e These errors are a

bit easier to estimate

e The feature is
probably in the right
place, or a pixel off

* So the variance in
these terms is
probably 02 = 1

R:10
01
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Predict the State

e We can now run the
filter
e First we make a
prediction of the state
at t=1 based on our
initial estimate at t=0
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Prediction Covariance

P, = APAT+Q
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Making a Measurement

e The state prediction
gives us a guide to
where the feature
will be

* We expect it to be
near (100,170)

e The variance in the x
position is 34.25

e The variance in the y
position is 34.25 also
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e We can use this to
restrict our search
for a feature

e We are 95% certain
that the feature lies in
a circle of radius 20 of
the prediction

0=+34.25=5.85

e We look for a feature
in this region
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Making a Measurement

e Within the search
region

* We compute a value
that tells us how likely
each point is to be a
feature (Harris)

* We find the point with
the largest value
within this region

e This is

m;=[103,163]"
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We look for a feature near
our predicted value, and
the covariances tell us how

widely to search
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The Kalman Gain

e We now combine
the prediction and
measurement
e We compute the

Kalman gain matrix
e This takes into
account the relative
certainty of the two
pieces of information
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0.972 0

~ 0 0.972
0.709 0

0 0.709

The first components
are close to 1, which

will give more trust to
the measurement
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The Final Estimate

e We can now make a
final state estimate

¢ We combine the
prediction and the
measurement
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e We also compute the

covariance in this
estimate
e This can be used to
tell us how far we can
trust the estimate
e Itis also used to
make a prediction for
the next frame
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The State Estimate
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s,=s;+K,(m,-Hs;)
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~ 163.2
2.13
-4.96
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The State Covariance
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Iteration
e We repeat this e To implement the
computation for each Kalman filter
frame e We need a lot of
e Over time the state matrix routines
predictions become e These are tiresome to
more accurate code by hand, but
e The Kalman gain there are several
takes this into libraries available
account and places e Only need basic
more weight on the operations: +, -, X,
predictions transpose, inverse
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The Extended Kalman Filter

e The Kalman filter is e Extended Kalman

limited by its filters overcome the
assumptions second assumption
e It assumes that all e They use a linear
the noise/error terms approximation to a
are Gaussians with non-linear function
known (co)variance ¢ They depend on the
e It assumes that the accuracy of this
model equations are approximation
linear .

No proof, but they
work well in practice
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Linear Approximations

o If we have some
function, y = f(x) y
e We can approximate
this using
y=f(a) + f'(a)(x-a)
e ais any value we
choose

e This approximation is
best when x = a

y=f(x)
y=f(a) + f(a)(x-a)
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Linear Approximations

o If we have z=f(x,y) e More generally, given
we get y = f(X1, Xz...s X)) WE
z = f(a,b) + have
f(a,b)(x-a) + y = f(azay,..a.)
f(a,b)(y-b) + fu(ay,a,...a)(x;-ay)
e f,and f, are the partial + fo(a,,a,...3)(X-a5)

derivatives of f with
respect to x and y

e This approximates a + ful@1,85--3) (X=ay)
2D surface by a plane
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Example EKF

e Lines are detected
with the Hough
transform

e The relationship
between the states at

subsequent times is

non-linear /

An extended Kalman

filter allows us to
track groups of lines

with a common
motion model
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For More Information

¢ Videos of the truck example are
available on the website

e Tracking lines with the EKF

e Tracking in a Hough Space with the
Extended Kalman Filter, Steven Mills, Tony
Pridmore, and Mark Hills, Proceedings of the
British Machine Vision Conference
(BMVC2003), pages 173-182, 2003.

e A useful Java matrix library is JAMA
http://math.nist.gov/javanumerics/jama/
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