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Application – Traffic Tracking

• We want to track 
vehicles on a road
• Eg: The truck in the 

images to the left
• They are moving with 

a (fairly) constant 
velocity

• In each frame we can 
measure the position 
of a feature on the 
vehicle we want to 
track

t=0

t=10
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State Update Equation

• We assume the truck 
is moving with 
constant velocity
• Our state is the truck 

position (x,y) and 
velocity (u,v)

s=[x,y,u,v]T

• At each time the 
velocity adds on to 
the position
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Measurement Equation

• At each time we can 
detect features in 
the image
• These make our 

measurements, mt

• We can directly 
measure the position 
of the truck, but not 
its velocity

• mt = [x,y]T
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An Initial Estimate

• The initial estimate 
of the state
• We give a rough value 

of x and y to say 
which feature we are 
tracking

• We probably won't 
have any idea about u
and v

• So we will use
s0=[100,170,0,0]T

• We also need to give 
the (un)certainty
• Our estimate of the 

position is good to 
within a few pixels

• Our motion estimate 
is not good, but we 
expect the motion to 
be small

• We represent this as a 
covariance matrix
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Covariance Matrices

• So what is a 
covariance matrix?
• It gives the 

relationships between 
sets of variables

• The variance of a 
variable, x, is
var(x) = E((x-x)2)

• The covariance of two 
variables, x and y, is

cov(x,y) = E((x-x)(y-y))

• Given a vector of 
variables

x=[x1,x2,…,xk]
• The covariance , C, is 

a k×k matrix
• The i,jth entry of C is:

Ci,j=cov(x,y)
• A diagonal entry, Ci,i, 

gives the variance in 
the variable xi

• C is symmetric
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Covariance in Noise

• The noise terms v
and w need to be 
estimated
• They have zero mean, 

and covariance Q and 
R respectively

• We need an estimate 
of these matrices

• Q and R say how 
certain we are about 
our model equations

• To estimate Q
• Our initial estimate 

will be within a few 
pixels, say σ=3

• The velocity is a bit 
less certain, but won't 
be large, say σ=5

• There is no reason to 
think that the errors 
are related, so the 
covariance terms will 
be zero
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Initial Covariance
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• The variances of x
and y are 32 = 9

• The variances of u
and v are 52 = 25

• Since we assume 
independence the 
off-diagonal entries 
are all 0
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Uncertainty in the Model

• Our model equations 
have noise terms
• v represents the fact 

that our state update 
model may not be 
accurate

• w represents the fact 
that measurements 
will always be noisy

• We need to estimate 
their covariances

• In general
• Often the terms will 

be independent. If 
this is the case the 
off-diagonal entries 
will be zero

• Choosing the diagonal 
entries (varainces) is 
often more difficult
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State Update Covariance

• The state update 
equation is not 
perfect
• It assumes that the 

motion is constant but 
u and v might change 
over time

• It assumes that all 
the motion is 
represented by u and 
v but other factors 
might affect x and y

• These errors will 
probably be small
• The motion is slow 

and quite smooth
• So the variance in 

these terms is 
probably a pixel or 
less, say σ = ½












=

0.25000
00.2500
000.250
0000.25

Q

More on the Kalman Filter Image Processing and Interpretation
at The University of Nottingham

State Update Covariance

• The measurements 
we make will be 
noisy
• The features are 

located only to the 
nearest pixel

• Because of image 
noise, aliasing, etc, 
they might be off by a 
pixel or so

• These errors are a 
bit easier to estimate
• The feature is 

probably in the right 
place, or a pixel off

• So the variance in 
these terms is 
probably σ2 = 1








=
10
01

R

More on the Kalman Filter Image Processing and Interpretation
at The University of Nottingham

Predict the State

• We can now run the 
filter
• First we make a 

prediction of the state 
at t=1 based on our 
initial estimate at t=0












=
























=

=−

0
0

170
100

0
0

170
100

1000
0100
1010
0101

01 Ass

More on the Kalman Filter Image Processing and Interpretation
at The University of Nottingham

Prediction Covariance
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Making a Measurement

• The state prediction 
gives us a guide to 
where the feature 
will be
• We expect it to be 

near (100,170)
• The variance in the x

position is 34.25
• The variance in the y

position is 34.25 also

• We can use this to 
restrict our search 
for a feature
• We are 95% certain 

that the feature lies in 
a circle of radius 2σ of 
the prediction

• We look for a feature 
in this region

5.8534.25σ ≈=
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Making a Measurement

• Within the search 
region
• We compute a value 

that tells us how likely 
each point is to be a 
feature (Harris)

• We find the point with 
the largest value 
within this region

• This is
m1 = [103,163]T

We look for a feature near
our predicted value, and
the covariances tell us how
widely to search
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The Kalman Gain

• We now combine  
the prediction and 
measurement
• We compute the 

Kalman gain matrix
• This takes into 

account the relative 
certainty of the two 
pieces of information • The first components 

are close to 1, which 
will give more trust to 
the measurement
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The Final Estimate

• We can now make a 
final state estimate
• We combine the 

prediction and the 
measurement

• We also compute the 
covariance in this 
estimate
• This can be used to 

tell us how far we can 
trust the estimate

• It is also used to 
make a prediction for 
the next frame
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The State Estimate
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The State Covariance
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Iteration

• We repeat this 
computation for each 
frame
• Over time the state 

predictions become 
more accurate

• The Kalman gain 
takes this into 
account and places 
more weight on the 
predictions

• To implement the 
Kalman filter
• We need a lot of 

matrix routines
• These are tiresome to 

code by hand, but 
there are several 
libraries available

• Only need basic 
operations: +, –, ×, 
transpose, inverse
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The Extended Kalman Filter

• The Kalman filter is 
limited by its 
assumptions
• It assumes that all 

the noise/error terms 
are Gaussians with 
known (co)variance

• It assumes that the 
model equations are 
linear

• Extended Kalman
filters overcome the 
second assumption
• They use a linear 

approximation to a 
non-linear function

• They depend on the 
accuracy of this 
approximation

• No proof, but they 
work well in practice
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Linear Approximations

• If we have some 
function, y = f(x)
• We can approximate 

this using
y≈f(a) + f'(a)(x-a)
• a is any value we 

choose
• This approximation is 

best when x ≈ a

y

x

y=f(x)

a

y≈f(a) + f'(a)(x-a)
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Linear Approximations

• If we have z=f(x,y)
we get
z ≈ f(a,b) + 

fx(a,b)(x-a) + 
fy(a,b)(y-b)

• fx and fy are the partial 
derivatives of f with 
respect to x and y

• This approximates a 
2D surface by a plane

• More generally, given 
y = f(x1, x2,…, xk) we 
have
y ≈ f(a1,a2,…ak)
+ fx1(a1,a2,…ak)(x1-a1)
+ fx2(a1,a2,…ak)(x2-a2)
…
+ fxk(a1,a2,…ak)(xk-ak)
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Example EKF

• Lines are detected 
with the Hough 
transform
• The relationship 

between the states at 
subsequent times is 
non-linear

• An extended Kalman
filter allows us to 
track groups of lines 
with a common 
motion model
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For More Information

• Videos of the truck example are 
available on the website

• Tracking lines with the EKF
• Tracking in a Hough Space with the 

Extended Kalman Filter, Steven Mills, Tony 
Pridmore, and Mark Hills, Proceedings of the 
British Machine Vision Conference 
(BMVC2003), pages 173-182,  2003. 

• A useful Java matrix library is JAMA
http://math.nist.gov/javanumerics/jama/


