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Feature-Based Motion

• An alternative to OF.
• Find some points of 

interest in a scene
• Predict where they 

will be in the next 
frame from a motion 
model

• Look for them in the 
next frame and 
update our model

• We need
• A way to find points of 

interest – Harris 
feature detector

• A motion model – we 
will use linear models

• A way to update the 
model as we see a 
series of frames – this 
is the idea behind the 
Kalman filter
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The Kalman Filter Overview

• The Kalman filter
• Gives an estimate an 

unknown state, s. The 
value of s at time t is 
st

• This estimate is based 
on measurements, m
The measurement 
made at time t is mt

• Also estimates the 
uncertainty in the 
estimate, Pt

Initial
Estimate 

of st+1

Final
Estimate 

of st

Measure
mt

Initial
Estimate 

of st

Motion
Model
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A One-Dimensional Filter

• We start with a 1D 
Kalman filter
• We want to estimate 

some value, s, which 
varies over time

• We have a model of 
how s changes with 
time

st+1 = ast + v
• v is a random value 

with mean 0 and 
variance q

• We will estimate s
from measurements
• At each time, a 

measurement, mt, is 
made

• The measurement is 
related to st by

mt = hst + w
• w is a random value 

with mean 0 and 
variance r
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Example: Population Growth

• We want to estimate 
the population (in 
millions) of some 
country
• We know that the 

population grows at 
some rate, say 10% 
per annum, but that 
this figure has a 
variance of 5 million

• So we have a = 1.1, 
and q = 5

• We have a series of 
measurements from 
census forms
• We know that not 

everyone fills in the 
forms. We expect that 
about 85% will, with a 
variance of 10 million

• So we have h=0.85
and r = 10
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An Initial Estimate

• We need an initial 
estimate to get 
things started
• We have not made 

any measurements so 
we have no idea what 
the population is

• We can put some 
bounds on it – it has 
to be greater than 
zero, and is probably 
less than a billion

• We pick a value for 
the initial estimate

s0 = 500 (million)
• This value is very 

uncertain, so we give 
it a large variance
p0 = 5002 = 250,000

• The estimate is 
probably wrong, but it 
doesn’t matter since it 
has a high variance
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A First Measurement

• We are now ready to 
start a Kalman filter
• At each time we make 

a prediction from the 
last estimate

• We then make a 
measurement

• We combine the 
prediction and the 
measurement to give 
the final estimate

• Predicting s1
• We just use our model 

equation, so
s1

- = as0

= 1.1×500
= 550

• Note the superscript  
‘–’, this marks s1

- as 
an initial estimate

• The noise term, v, 
doesn’t affect s1

-, 
since it is (on 
average) zero
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Predicting the Variance

• To predict the 
variance we need a 
couple of results 
from statistics
• If a and b are 

independent random 
variables with 
variances va and vb, 
and k is a constant
var(a+b) = va + vb

var(ka) = k2va

• So the variance in
s1

- = aso + v
is given by
p1

- = a2var(s0) + var(v)
= a2p0 + q
= 1.12×250,000 + 5
= 302,505

• Since s0 is uncertain, s1
-

is uncertain also
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Making a Measurement

• We now make a 
measurement of the 
population

m1 = 91 (million)
• We know the variance 

in this measurement 
(10 million)

• We know that this is 
about 85% of the true 
population

• The problem is how 
do we combine the 
prediction and the 
measurement
• The one with lower 

variance should have 
greater weight

• We also need to take 
into account the 
factor h
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The Kalman Gain

• The Kalman filter 
uses a value called 
the Kalman gain
• It is computed from 

the variances of st
-

and mt

• It is chosen so that 
the variance in the 
final estimate, st, is as 
small as possible

• Our final estimate 
will be 

st = st
- + kt(mt – hst

-)
• mt – hst

- is the 
difference between 
the measurement and 
the one we would 
expect if our 
prediction was right

• kt tells us how much 
attention to give this 
difference
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The Variance in our Estimate
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Finding the Kalman Gain

( )

rph
hp

  k

2hpr)p(h2k0

pk2hpr)kp(h
dk
d

dk
dp

t
2

t
t

tt
2

t

ttt
2
tt

2

tt

t

+
=

−+=

+−+=

−

−

−−

−−−

The Kalman Filter Image Processing and Interpretation
at The University of Nottingham

The Kalman Filter

• This expression for kt
allows us to simplify 
the formula for pt to

pt = pt
- – kthpt

-

• We now have the 1D 
Kalman filter

• It is based on the 
model equations

st+1 = ast + v
mt = hst + w

• The 1D Kalman filter 
equations are

st
- = ast-1

pt
- = a2pt-1 + q

kt = (h pt
-)/(h2pt

- + r)
st = st

- + kt(mt – hst
-)

pt = pt
- – kthpt

-
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The Example Again

• We had an initial 
estimate at t=1

s1
- = 550

p1
- = 302,505

• We then made a 
measurement

m1 = 91
r = 10

• We can now 
compute k1 1.176

25218,569.86
257,129.25

10302,5050.85
302,5050.85

rph
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Example Continued

• We now use kt to combine st
- and mt

and find st and pt

st = st
- + k(mt-hst

-)
≈ 550 + 1.176(91-0.85×550)
≈ 107

pt = pt
- – kthpt

-

≈ 302,505 – 1.176×0.85×302,505
≈ 13.9
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Example Continued

• The computation then iterates with 
each measurement

654321t

6.756.766.796.907.258.46pt

180165149134120107st

0.5750.5780.5870.6160.7191.176kt

15314012911510391mt

13.213.213.815.221.7302Kpt
-

180164147132118550st
-
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Filter Convergence
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Generalisation

• There is no reason 
for q, r, a, and h to 
be fixed
• They can all vary with 

time if needed
• Often they are fixed, 

but not always
• For example, we could 

have q and r being a 
percentage of the 
population in our 
example

• This makes the filter 
equations look like

st = at-1st-1 + vt-1

mt = htst + wt

st
- = at-1st-1

pt
- = at-1

2pt-1 + qt-1

kt = (htpt
-)/(ht

2pt
- + rt)

st = st
- + kt(mt – htst

-)
pt = pt

- – kthtpt
-
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Generalisation

• Usually our state and 
measurements are 
sets of values
• We can represent 

these as vectors for s
and m at each time

• a, h, q, r, k, and p 
become matrices, 
which we write as A, 
H, Q, R, K, and P

• This makes the filter 
equations more 
complicated
• We can’t divide by a 

matrix to find K, but 
the matrix inverse 
does much the same 
thing

• The terms like a2p
become terms like 
APAT
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Multi-Dimensional Kalman Filter

st = At-1st-1 + vt-1

mt = Htst + wt

st
- = At-1st-1

Pt
- = At-1Pt-1At-1

T + Qt-1

Kt = HtPt
-(HtPt

-Ht
T + Rt)-1

st = st
- + Kt(mt – Htst

-)
pt = Pt

- – KtHtPt
-

Model
Equations

Initial
Prediction

Kalman Gain

Final
Estimate
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Kalman Filter Assumptions

• The Kalman filter is 
based on a number 
of assumptions
• It assumes that the 

relationships, A and 
H, between st and st-1
and mt are linear

• It assumes that these 
linear relationships 
are known beforehand

• We’ll look at a way to 
relax this constraint

• It also relies on a
Gaussian error 
model
• The noise terms v and 

w are assumed to be
Gaussian

• It assumes that their 
(co)variances are 
known beforehand

• The formulation of K
to minimise P relies 
on this assumption
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For More Information

• Greg Welch and Gary Bishop maintain a 
useful site on the Kalman filter 
• http://www.cs.unc.edu/~welch/kalman/
• Includes an introduction and some tutorials
• Also has a copy of Kalman’s original paper

• Next lecture we’ll see more also
• An example in tracking
• The Extended Kalman Filter for use with 

non-linear model equations


